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Directed coherent transport due to the Bloch oscillation in two dimensions
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We point out that in higher dimensions, in contrast to the one-dimensional case considered usually, Bloch
oscillation driven by a static force can induce transport of the wave packet. The wave packet oscillates constantly,
but on a larger time scale it drifts at a constantly velocity permanently. As a noteworthy feature, the net transport in
the long run is always normal to the external force and thus controlled by it. We verify this prediction numerically
and discuss its experimental realization both with cold atoms in optical lattices and with two-dimensional photonic
lattices.
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Bloch oscillation is a peculiar response of a particle in
a periodic potential to an external force [1]. Under a static
uniform force, the particle performs an oscillatory motion in
the real space without falling down to the potential minimum
at infinity as in free space. This counterintuitive phenomenon
is purely quantum and has its root deep in the band structure
associated with the periodic potential. The periodic potential
mixes the plane waves into Bloch waves, which are classified
by band number n and wave vector k. For a weak external
force, the gap between the bands protects the particle from
transition into other bands, with the only effect being that the
wave vector is dragged across the Brillouin zone (BZ). The
oscillation of the center of mass of the wave packet is then
related to the fact that Bloch waves are periodic with respect
to k.

So far, Bloch oscillation has been investigated and observed
in a variety of systems, such as semiconductor superlattice [2],
cold atoms in optical lattices [3,4], and photonic lattices [5–7].
However, most of these works are confined to one dimension
(some exceptions being [4,6]). In one dimension, the BZ
[−G/2, + G/2] has the topology of a circle since −G/2 is
identified with +G/2. Therefore, in the k space, the motion
of the particle is simple—it transverses the BZ repeatedly.
Quantitatively, we have the Newton second-law-type equation
of motion [8]

dk

dt
= F (t), (1)

where F (t) is the time-dependent external force, and the wave
vector k is identified with k + nG for an arbitrary integer n

(h̄ = 1 in this Brief Report). In the static case F (t) ≡ F , after
a period of T = G/F , the wave vector returns to its initial
value k0 and so does the center of mass [8,9]

F

∫ T

0
dt

dr

dt
= F

∫ T

0
dt∇kE(k0 + F t)

= E(k0 + G) − E(k0) = 0. (2)

Here E(k) is the dispersion function of the relevant energy
band. Therefore, in one dimension, Bloch oscillation induced
by a static force does not lead to transport. To induce a net
transport, a time-dependent force is needed. This makes sure
that the BZ is transversed nonuniformly and thus the center-of-
mass displacement accumulated in different k regions do not

cancel each other. This is essentially the scheme employed to
induce the so-called super Bloch oscillations and macroscopic
transport with cold atoms in one-dimensional optical lattices
[10–12].

In this Brief Report, we would like to point out that
the situation is different in higher dimensions. In a higher-
dimensional potential, suppose the wave vector returns ever
to its initial value by been dragged by some reciprocal lattice
vector G, the counterpart (or generalization) of Eq. (2) is

F
∫ T

0
dt

d r
dt

=
∫ T

0
d(Ft)∇kE(k0 + Ft)

= E(k0 + G) − E(k0) = 0. (3)

Thus we can only arrive at the conclusion that, as the wave
vector returns to its initial value, the displacement of the center
of mass of the wave packet must be perpendicular to the
external force, but it does not necessarily vanish.

In the following, we give an explicit expression of the
displacement in one period. We take the tight binding model
to consider the Bloch oscillation. Note that, in a real lattice,
Bloch oscillation is a good picture only when the single-band
approximation is valid (i.e., when the band-band transition
or the Zener tunneling is negligible). With a tight binding
model on a simple Bravais lattice, there is one and only one
band, and the system is then free of band-band transition.
Conversely, if we restrict to a single band, then effectively we
are dealing with a tight binding model on a simple lattice. The
Wannier functions associated with that band in each primitive
cell serve as the basis states on each site. Of course, by
restricting to a single band, we necessarily misses the potential
Berry phase effect and the transport associated [13]. However,
since generally the Berry curvature is small in most area of
the BZ [14], or even vanishes identically in the presence of
both time reversal and spatial inversion symmetry [13,15], we
neglect it in this Brief Report.

One advantage of shaping the problem on a lattice is that
quantities of only a metric value are irrelevant. To be precise,
the exact shape of the lattice (e.g., the lengths of the two
basis vectors and the angle between them) are of no concern.
We then simply take the two basis vectors along the x and y

directions and assume their lengths to be unity. The first BZ is
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then [−π,π ] × [−π,π ]. The original real lattice differs from
this square lattice by only an affine transform.

The tight binding Hamiltonian is HT B = −∑
l,m Jm|l〉〈l +

m|. Here l and m both take values among all the integer
pairs (m1,m2), −∞ < m1,2 < ∞, and |l〉 denotes the Wannier
funtion at site l . Because HT B = H

†
T B , we have Jm = J ∗

−m.
The Bloch states are �k = ∑

m eikm|m〉, where k = (k1,k2) is
the wave vector. They are eigenstates of HT B with eigenval-
ues E(k) = −∑

m Jm exp(ikm). In many cases, the original
Hamiltonian is time-reversal invariant, and therefore E(k) =
E(−k) necessarily. This implies Jm = J−m. Combined with
the previous condition, this implies Jm is real.

Now suppose a linear potential is applied to the system.
The Hamiltonian is now H = HT B − ∑

m Fm|m〉〈m|. In
the semiclassical theory, the details of the wave packet are
neglected and it is characterized just by a pair of variables
(r,k), which are, respectively, the average values of the
position and moment of the wave packet. The semiclassical
equations of motion are [8]

dk
dt

= F, (4)

d r
dt

= ∇E(k) = −i
∑

m

mJm exp(ikm). (5)

These equations can be understood as follows. First note that
an initial Bloch state remains as a Bloch state all the time, more
precisely, the time-varying Bloch state �k0+Ft e

−i
∫ t

0 dt1E(k0+Ft1)

solves the Schrödinger equation i∂ψ/∂t = Hψ . This actually
implies or solves Eq. (4). Now for an initial wave func-
tion ψm(0) = ∫

BZ dkf (k)eikm, where f (k) = f (k0 + δk) ≡
g(δk) is a function narrowly localized around k0 (so that it is
meaningful to say the wave vector of the initial wave function
is k0), the wave packet at time t is

ψm(t) =
∫

BZ
dkf (k)ei(k+Ft)me−i

∫ t

0 dt1E(k+Ft1)

�
∫

d(δk)g(δk)eiδk[m−∫ t

0 dt1∇E(k0+Ft1)]

× ei(k0+Ft)me−i
∫ t

0 dt1E(k0+Ft1). (6)

Here the phase factor in the first line is expanded around
k0. This is legitimate because the main contribution to the
integral comes from a small neighborhood of k0. The second
line implies that the wave packet is translated forward by

r(t) − r(0) =
∫ t

0
dt1∇E(k0 + Ft1)

= −i
∑

m

mJm

∫ t

0
dt1e

i(k0m+Fmt1), (7)

which solves Eq. (5).
Assume that there exist some time T such that FT is equal

to a reciprocal lattice vector, that is,

FT = (F1T ,F2T ) = (2πq,2πr), (8)

where q and r are some coprime integers. For F1/F2 = q/r ,
the explicit value of T is T = 2πq/F1. After one period of T ,
the wave vector returns to its initial value since k is identified

with k + (2πq,2πr). The displacement of the wave packet in
this period is calculated as

DT = −i
∑

m

mJm

∫ T

0
dt1e

i(k0m+Fmt1)

= T
∑

m

mJm sin(mk0)δFm. (9)

This equation is our central result. The Dirac function means
that for a given F in some direction, only those m which
are perpendicular to F contribute to the net displacement.
Physically, this means in the long run the wave packet drifts
perpendicular to the external force. This is quite reasonable.
If after one period of T , the wave packet is shifted somewhat
along the direction of the external force, then in the long run,
the shift of the wave packet along the direction of the external
force will diverge to +∞ or −∞ linearly with time. As the
system is conservative, the kinetic energy of the particle will go
to +∞ or −∞, respectively. However, this is impossible since
in a definite band E(k) has both upper and lower bounds. The
argument applies equally well to any dimensions and holds as
long as the single band approximation is valid.

Another remark is worthy. Our assumption (8) about the
direction of F seems quite stringent. Indeed, since the measure
of rational numbers is zero, for a generic F, the ratio F1/F2 is
irrational and thus Eqs. (8) and (9) seem irrelevant. Moreover,
even restricted to the field of rational numbers, T and DT

are pathologically sensitive to the ratio F1/F2 (e.g., suppose
F1/F2 is perturbed from 1/2 to 101/200, T enlarges by a factor
of 100 while DT shrinks almost to zero since the associated
hopping coefficients are exponentially small). The way out of
this anomaly is that T and DT both refer to the overall behavior
in the long run and thus they become irrelevant if T � τ , the
observation time span. We further note that in a given finite
time interval, the displacement r(t) − r(0) in Eq. (7) is a well
behaved smooth function of F1/F2. Thus, as long as the motion
in a given time interval is concerned, the concerns above are
irrelevant. Of course, to make the directed transport effect
as significant as possible, it is preferable to choose F in the
vicinity of those directions (q,r) with q and r not large.

In the hindsight, we see from Eq. (6) why Bloch oscillations
in one dimension and in higher dimensions behave differently.
In one dimension, all k vectors undergo the same trajectory
and thus the phases accumulated are the same for all the k
vectors. This means after one period the wave function itself
returns to its initial value (up to a global phase), not only its
center of mass. In contrast, in higher dimensions, different k
vectors may take different (parallel) trajectories in the k space,
though they all return to their initial values simultaneously. The
phases accumulated in one period for k vectors on different
trajectories differ in general and this dispersion leads to the
shift of the center of mass of the wave packet.

In the following we apply the formalism developed previ-
ously to some concrete case. We consider the scenario of cold
atoms in a planar triangular optical lattice. This lattice can be
constructed by interfering three laser beams traveling 2π/3
with respect to each other in the xy plane and all polarized in
the z direction [16]. The laser beams are all of wave length λ

and amplitude E. Suppose the laser is red detuned from the
atomic transition, then the minima (of value V0 ∝ 9E2) of the
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FIG. 1. (Color online) (a) Contour plot of the triangular optical lattice with the minima V0 = −1.5Er , with Er = h2/2mλ2 being the
recoil energy. The basis vectors chosen are OA and OB, with |OA| = |OB| = 2λ/3. The coordinates of sites A and B are (1,0) and (0,1),
respectively. (b) Natural logarithm of the absolute values of the hoppings J(m1,m2) in units of Er . Note that the D6 symmetry of the lattice in (a)
is respected, e.g., we have exactly J±(1,0) = J±(0,1) = J±(1,1) ≡ J1.

optical potential form a triangular lattice [see Fig. 1(a)]. By
solving the energy bands exact numerically and then perform-
ing the Fourier transform by using the expression of E(k), we
can solve the hopping amplitudes Jm which are controlled by
V0. In Fig. 1(b), we show the logarithm of their magnitudes
ln |Jm| in the case of V0 = −1.5Er , with Er = h2/2mλ2

being the recoil energy. We note that the site-site hopping
decreases monotonically with the site-site distance. Moreover,
the D6 point group symmetry of the lattice is respected
perfectly. In our numerical simulations in the following, we
will only preserve site-site hoppings belonging to the first three
hopping values Ji (i = 1,2,3) according to their magnitudes.
In the specific case of V0 = −1.5Er , (J1,J2,J3) = (0.0765,

− 0.0149,− 0.0078)Er . Those site-site hoppings belonging to
J1 are J±(1,0), J±(0,1), and J±(1,1), and those belonging to J2 are
J±(2,1), J±(1,2), and J±(−1,1), and to J3 are J±(2,0), J±(0,2), and
J±(2,2).

The initial wave packet is assumed to be a Gaussian, ψm(t =
0) = A exp[−(m2

1 + m2
2)/σ 2 + ik1

0m1 + ik2
0m2], with m =

(m1,m2). Here σ = 20 is the width of the wave packet and
k0 = (k1

0,k
2
0) = (0.05,0.03) is the initial wave vector, while A

is some normalization factor. The width σ � 1 so that the
wave function is well localized around k0 in the k space.
Three cases of different forces are investigated. They are
(i) F/J1 = (0.5, − 0.5), (ii) F/J1 = (0.7, − 0.7), and (iii)
F/J1 = (0.4, − 0.8), respectively. The Schrödinger equation
i∂ψ/∂t = Hψ is solved on a 121 × 121 lattice by the fourth-
order Runge-Kutta method. The time evolutions of the center
of mass of the wave packet 〈m1〉 and 〈m2〉, are shown in
Fig. 2(a). In another respect, the trajectories 〈m1〉 versus 〈m2〉
are shown in Fig. 2(b). The semiclassical predictions according
to Eqs. (4) and (5) agree with the exact numerical calculations
perfectly and thus are not shown. In all cases we see that
though there are temporary oscillatory deviations, in the long
run, the wave packet drifts at a constant velocity perpendicular
to the external force. In cases (i) and (ii), the drifting direction
is along (1,1), while in case (iii), it is along (2,1), as evident in
Fig. 2(b). We also note, by comparing case (i) with case (ii),
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FIG. 2. (Color online) (a) Time evolutions of the center of mass 〈m1〉 and 〈m2〉 of a wave packet in the optical lattice depicted in
Fig. 1. The initial wave packet is a Gaussian ψm(t = 0) = A exp[−(m2

1 + m2
2)/σ 2 + ik1

0m1 + ik2
0m2], with width σ = 20 and wave vector

k0 = (k1
0,k

2
0) = (0.05,0.03). Evolution of the wave packet under three different forces are considered. They are (i) F/J1 = (0.5, − 0.5), (ii)

F/J1 = (0.7, − 0.7), and (iii) F/J1 = (0.4, − 0.8), respectively. In each case we have, respectively, (i) 〈m1〉: blue ◦ ◦ ◦ line, 〈m2〉: blue solid
line; (ii) 〈m1〉: green + + + line, 〈m2〉: green dotted line; (iii) 〈m1〉: red ∗ ∗ ∗ line, 〈m2〉: red dashed line. (b) Trajectories 〈m1〉 versus 〈m2〉 in
the three cases. The solid, dotted, and dashed lines refer to the cases (i), (ii), and (iii), respectively.
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that the oscillation amplitude is suppressed for a larger force,
and on the other hand, the oscillation period is shortened.
These features are reminiscent of Bloch oscillation in one
dimension. For a larger force, the BZ is transversed faster and
thus the period is shortened, and so is the oscillation amplitude
because the deviation accumulated decreases accordingly. The
three cases show how the transport direction and the detailed
temporary motion of the wave packet can be controlled by the
direction and magnitude of the external force, respectively.

In conclusion, we have demonstrated that Bloch oscillations
in higher dimensions, in contrast to their counterpart in one
dimension, can lead to transport of the wave packet. Moreover,
the direction of the transport is always perpendicular to
and is thus controlled by the external force. In view of the
intensive investigations on the control of transport of ultracold
atoms in optical lattices [11,12,17], this fact may find use
in future experiments. As for the experimental observation
of the scenario considered in this Brief Report, we would
say that the system can be readily realized with current
experimental technology. The optical lattice can be constructed
routinely [16] and the external force can be provided by the
gravity [18]. By tilting the two-dimensional optical lattice from
the horizontal plane, both the magnitude and the direction

of the force can be adjusted at will. Furthermore, the great
progress in in-situ observation of cold atoms in real space [19]
guarantees that observation of the directed transport should
also be achievable in the near future. Finally, we note that 1/J1

in Fig. 2(a) corresponds to a time on the order of 0.6–0.7 ms
for 87Rb, while the lifetime of cold atoms in an optical lattice
can be made well on the order of 1 s [11,12]. Thus this system
is long-lived enough to allow for a significant drift which is in
turn readily observable experimentally.

An alternative approach for experimental realization is by
the two-dimensional photonic array. There the propagation
of light in the waveguides maps to the tight binding model
perfectly, and the force can be effected by engineered refractive
index variation [7]. Actually, two-dimensional Bloch oscilla-
tion and Zener tunneling have been observed in this system [6].
Therefore, it is likely that directed transport should also be
observable in this system, which would show up as drift of the
center of the pattern with the propagation length.
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