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Quantum atom-heteronuclear molecule dark state: Role of population imbalance
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Recently, the finite-number effect of initial atoms in coherent atom-molecule conversion was investigated by
Zhao et al. [Phys. Rev. Lett. 101, 010401 (2008)]. Here, by extending to the atom-heteronuclear molecule dark
state, we find that the initial populations imbalance of the atoms plays a significant role in quantum conversion
rate and adiabatic fidelity. In particular, even for the finite total number of imbalanced two-species atoms, the
mean-field conversion rate, contrary to the general belief, still can be remarkably close to the exact quantum results.
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The concept of a coherent population trapping (CPT)
state or dark state is well known in quantum optics with
many important applications [1]. Recently, an intriguing
ultracold atom-molecule CPT dark state was experimentally
observed by Winkler et al. [2] through coherent two-color
photoassociation (PA)

A + A + γp → A∗
2, A∗

2 → A2 + γd,

where A, A∗
2, or A2, and γp,d denote the entrance-

channel atoms, the intermediate excited or the closed-channel
molecules, and the pumping or dumping photons in coun-
terintuitive pulse sequences. This process, also referred to as
the stimulated Raman adiabatic passage (STIRAP) [3–6], has
been studied quite extensively as an efficient technique for
enhanced atom-molecule conversion rate. Various properties
of this process were probed within the classical mean-field
approach (MFA), such as the stability of the atom-molecule
dark state [7], the formation of molecular matter-wave vortex
[8], and the nonlinear adiabatic condition of the STIRAP [9].

Recently, Zhao et al. used a fully quantum approach to
study the atom-molecule conversion system with a finite
number N of initial atoms [10]. They found that the particles
populations exhibit interesting quantum deviations from the
MFA results, which turns out to be significant for the few-N
cases (the classical MFA completely breaks down). The
availability of exact quantum solutions also allows one to
study the higher-order matter-wave statistical properties. We
note that in the absence of the atom-molecule CPT dark state,
quantum counting statistics were already proposed by Meiser
and Meystre to diagnose the (coherent or chaotic) bosonic
molecules created from bosonic or fermionic atoms [11].

In this Brief Report, we study the exact quantum solutions
of the atom-heternuclear molecule dark state by considering
the two-color PA process

A + B + γp → AB∗, AB∗ → AB + γd,

here A, B denotes the entrance-channel atoms of different
species AB∗ and AB are the intermediate excited or the
closed-channel ground-state molecules. Our purpose here is
to find the possible role of initial populations imbalance
M �= 0 of the two-species atoms in quantum conversion rate
and second-order matter-wave correlations [12]. The main
results of this work are (i) even for the finite total number
of imbalanced two-species atoms, the mean-field conversion
rate still can be remarkably close to the exact quantum

results, a new feature which is impossible to exist in creating
homonuclear dimers; (ii) for Na > Nb, it is not the total
particles number N but Nb which determines the molecular
correlations; and (iii) the adiabatic fidelity can be improved by
increasing the imbalance M (even with zero optical detuning
or large N ).

Quantum conversion rate with M �= 0.—Without any loss
of generality, we take the Rabi frequency of pumping or
dumping laser �p,d to be real and positive whose phase factor
can be absorbed by a global gauge transformation of the field
operators [8]. � and δ are the single-photon and two-photon
detunings of the frequencies of two lasers, respectively. Here,
to compare with that of Ref. [10], we focus on the role
of coherent atom-molecule-light couplings by ignoring the
collisions of a dilute or Feshbach-resonance tuned gas [1], a
safe approximation for short molecular lifetime [2,10]. In the
interaction picture under the two-photon resonant condition,
the Hamiltonian of this system can be written in the simplest
level as (h̄ = 1)

Ĥ = �ψ̂†
e ψ̂e + 1

2 (�pψ̂
†
e ψ̂aψ̂b + �dψ̂

†
e ψ̂g + H.c.), (1)

where ψ̂i or ψ̂
†
i is the bosonic annihilation or creation operator

(i = a,b,e,g). The standard MFA is valid if the number of
particles is significantly large and then the operators can be
replaced by the c-numbers ψi or ψ∗

i . Then the mean-field dark
state is computed

|D〉MF = (
ψ0

a ,ψ0
b ,ψ0

e ,ψ0
g

)T = (
ψ0

a ,ψ0
b ,0,ψ0

g

)T
,

with
∣∣ψ0

a

∣∣2 + ∣∣ψ0
b

∣∣2 + 2
∣∣ψ0

g

∣∣2 = N,
∣∣ψ0

a

∣∣2 − ∣∣ψ0
b

∣∣2 = M > 0,

2
∣∣ψ0

a,b

∣∣2 = −1/χ2 ± M +
√

(N + 1/χ2)2 − (N2 − M2),

and χ = �p/�d . Clearly, by tuning χ (t), the atoms can
be converted into the ground-state molecules without any
population in the excited state |e〉. This picture is also true
for quantum CPT state |D〉Q = |0〉e|�〉µ∈(a,b,g). From the
eigenequation Ĥ |D〉Q = 0, we have

(χψ̂aψ̂b + ψ̂g)|�〉µ = ψ̂ge
χψ̂

†
gψ̂aψ̂b |�〉µ = 0. (2)

The four-mode quantum dark state is then

|D〉Q = C(χ,N,M)e−χψ̂
†
g ψ̂aψ̂b |Na,Nb,0,0〉, (3)

with the normalization factor C(χ,N,M) and the Fock-state
basis |Na,Nb,Ne,Ng〉. By expanding the exponential operator,
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FIG. 1. (Color online) The populations of ground-state molecules
A2 or AB as the function of Rabi frequencies ratio χ , for different
initial atomic number N = 10, 20, 50.

we have another form of the superposition state (i.e., |D〉Q =∑
cn|Na − n,Nb − n,0,n〉).
The comparisons between the quantum and the MFA results

about the populations of closed-channel molecules A2 or AB

are shown in Fig. 1, forM = 0 (but with different values of N ).
In this case, as one expected, quantum effects are significant in
the few-N situations and the conversion rate is always higher
than the mean-field results, for both heteronuclear and the
homonulclear cases. We note that the quantum deviations are
always larger in creating heteronuclear molecules AB.

Figure 2(a) shows the results for a small number N = 10
but M �= 0. Clearly, even for the finite total number of
imbalanced two-species atoms, the mean-field conversion rate
still can be remarkably close to the exact quantum results. This
interesting new feature is impossible to be observed in creating
homonuclear dimers. In Fig. 2(b), it also can be seen that for
both large N = 100 and small N = 10, the mean-field and
exact quantum lines are almost overlapped (Nb = 4 for both
cases). In fact, for large Na , this system is reduced to a linear
one since the operator ψ̂a can be replaced by a c-number. We
note that the populations imbalance M also plays a significant
role in the ground-state stability properties [13].
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FIG. 2. (Color online) Panel (a) is the population number of
molecules AB as the function of χ , for different initial number of
Nb, at N = 10. Panel (b) adds a line of N = 100,Nb = 4. In all
figures both the quantum and mean-field solution is presented.

Quantum correlations with m �= 0.—The second-order
correlation functions are defined as [11]

g
(2)
i = 〈ψ̂†

i ψ̂
†
i ψ̂i ψ̂i〉

〈ψ̂†
i ψ̂i〉2

= 〈ψ̂†
i ψ̂

†
i ψ̂i ψ̂i〉
n2

i

, Cig = 〈n̂i n̂g〉
ning

.

For M = 0, we have confirmed that for large N the classical
Poissonian distribution can be reached for both the homonu-
clear and the heteronuclear cases [11]. Nevertheless, we can
also observe an unexpected and somewhat surprising result for
the atoms A,

A2 : g(2)
a > 1(super-Poissonian),

AB : g(2)
a < 1(sub-Poissonian),

for even particles number N . This indicates that quantum
second-order coherence may be used to distinguish the bosonic
heteronuclear and homonuclear molecules both created from
bosonic atoms [11]. We emphasis that this interesting feature
in the quantum regime has not been noticed in the previous
literature [10,11].

For the general case M �= 0, we have

lim
χ→0

g
(2)
a,b = 1 − 1

Na,b

, lim
χ→0

g
(2)
AB = (Na − 1)(Nb − 1)

NaNb

, (4)

and

lim
χ→∞ g(2)

a = 1 − 1

M , lim
χ→∞ g

(2)
AB = 1 − 1

Nb

,

(5)
lim

χ→∞ g
(2)
b = 1 − N + M + 2

(N − M)(M + 2)
.

Figures 3(a) and 3(b) shows the numerical results for
evolutions of quantum matter-wave correlations with a finite
small number N = 10. We can observe that, by increasing
the imbalance value M, g(2)

a can be significantly increased
and tends to the classical value g(2)

a → 1. In contrast, the
nonclassical feature becomes more evident for the created
molecules (i.e., g

(2)
AB → 0). The most interesting result turns
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FIG. 3. (Color online) Quantum correlation functions g(2) (a–b)
as a function of χ for N = 10, and (c) as a function of populations
imbalance M for N = 50,χ = 10; (d) the atom-molecule correlation
Cag,bg as a function of χ .

025601-2



BRIEF REPORTS PHYSICAL REVIEW A 82, 025601 (2010)

out to be that of g
(2)
b , which first increases to some maximum

value for

Mmax =
√

2N (N + 2) − (N + 2),

and then decreases to 0. This feature also can be seen in
Fig. 3(c) for N = 50. Clearly, Mmax ∼ 4 for N = 10 and
Mmax ∼ 20 for N = 50.

The role of populations imbalance also can be observed by
probing the atom-molecule quantum correlations. In the two
limits of χ ,

lim
χ→0

Cag = 1 − 1

Na

, lim
χ→∞ Cag = 1,

(6)
lim
χ→0

Cbg = 1 − 1

Nb

, lim
χ→∞ Cbg = 1 − 1

Nb

< 1.

The distinction between Cag and Cbg is obvious, since one tends
to the classical value 1 but the other tends to a nonclassical
value relying on the initial atomic number. This feature, as
numerically confirmed in Fig. 3(d), does not exist both in the
homonuclear case or in the heteronuclear (balanced) case with
M = 0.

Adiabatic fidelity with M �= 0.—The exact quantum so-
lutions also allows us to study the full energy spectrum
and the adiabatic fidelity of the atom-heteronuclear molecule
conversion. As shown in Fig. 4(a), we plot the eigenvalues of
Hamiltonian (1) in a Fock-state basis as the function of �,
where the solid or dotted lines represent the fully quantum
or the MFA results. To make the figure more clear, here we
set Na = 5, Nb = 3, and �p,d = 1 (the nondegenerate MF
spectrum has four lines but two of them overlap with the
horizon line). All the lines increase monotonically with �,
except for the zero-energy one (dark state). The quantum
spectrum has two degeneracies for � = 0, ± 0.7, which allows
the system to evolve from dark state to other states (adiabatic
breakdown). Figure 4(b) shows the number of lines cross the
zero-energy line at � = 0, for larger N . For example, no such
line for Nb = 1, but one for Nb = 2,3 and two for Nb = 4,5,
indicating more possibilities to departure from the dark state.
In our simulation, the existence of M makes the energy
spectrum clearly separated.
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FIG. 4. (Color online) (a) The energy spectrum as the function
of single-photon detuning �, the initial atomic numbers are Na = 5,
Nb = 3. (b) The degree of degeneracy at � = 0 as the function of
initial number Nb.
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FIG. 5. (Color online) The adiabatic fidelity |〈ψ(t)|D(t)〉Q|2 as
the function of time, for � = 0 (dashed lines, Nb = 5, M = 0,5,15)
and � = 0.5 (indistinguishable solid lines for different values of
N and M). Other parameters: �0 = 5, T = 100, td = 250, and
tp = 450.

To confirm this point, we performed the simulations by
choosing two Gaussian pulses (with width T , centered at tp,d ,
td < tp)

�p,d (t) = �0e
−(t−tp,d )2/T 2

. (7)

Figure 5 shows the adiabatic fidelity between |ψ(t)〉 and the
instantaneous dark state |D(t)〉Q. In the ideal case, the fidelity
should be close to 1. However, for � = 0, the system depar-
tures from |D(t)〉Q even for finite number of atoms N . This
problem can be overcome either by choosing a larger detuning
(i.e., � = 0.5, see Fig. 5), or more interestingly, by choosing
a larger populations imbalance [e.g., M = 15, � = 0
(with a fixed value of Nb)]. We note that larger total particles
number N (with a fixed value of Nb) leads to an improved
adiabatic fidelity. This is in contrast to that of the homonuclear
system (the adiabatic fidelity is worse for larger N [10]).
Clearly, the parameter M provides an additional freedom to
control quantum dark-state evolutions of the system.

In conclusion, we have constructed an exact quantum
atom-heteronuclear molecule dark state and confirmed that for
nonzero two-species populations imbalance M, the quantum
atom-molecule dark state possesses some new features that are
absent for the homonuclear case: (i) even for finite total number
of atoms, the mean-field conversion rate still can be remarkably
close to the exact quantum results; (ii) for Na > Nb, it is not
the total particles number N but Nb which determines the
molecular correlations; and (iii) the adiabatic fidelity can be
improved by increasing the imbalance M (with a fixed Nb).
This means that, in contrast to the homonuclear case, both the
total particles number N and the populations imbalance M
play the important roles in controlling quantum dynamics of
coherent atom-molecule system. In our future work, we plan
to study the exact quantum solutions of the laser-catalyzed
bimolecular reaction [14–16]. We also plan to study the role
of populations imbalance in creating fermionic dimers from
a two-species Bose-Fermi mixture [17] or molecular trimers
from a three-species atomic mixture [18].
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