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Reanalysis of Casimir force measurements in the 0.6-to-6-µm range
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A systematic correction for Casimir force measurements is proposed and applied to the results of an experiment
that was performed more than a decade ago. This correction brings the experimental results into good agreement
with the Drude model of the metallic plates’ permittivity. The systematic is due to time-dependent fluctuations in
the distance between the plates caused by mechanical vibrations, tilt, or position measurement uncertainty and is
similar to the correction for plate roughness.
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Introduction. This is a brief report of a correction to the
Casimir force [1] and the results of its application to my
experiment that was performed some 15 years ago [2]. One
might question whether it is worth reanalyzing an experiment
that is so very dated; however, this work stands, together with
work with germanium [3], as the experiments with the largest
plate separations and is particularly sensitive to a number
of fundamental, thermal, and systematic effects. Indeed [2],
led to a resurgence in interest in the Casimir measurement
field [4] and has been discussed in various works, for
example [5,6].

Although my experiment [2] was intended as a demonstra-
tion, the deviation between its results and the theory presented
by Böstrom and Sernelius [5] remains as a puzzle. Despite
years of theoretical work and years of questioning, there
has been no satisfactory explanation of the discrepancy. In
particular, it would appear that the Drude model must be the
correct one for describing the plates because the so-called
plasma model implies a superconducting boundary condition
at zero frequency.

Unfortunately, the raw data that led to [2] are no longer
available; however, there is enough information in that article
to make a good estimate of the correction. As the correction
depends on external factors that were not measured, it is not
clear that the raw data would help much in any case. The
work reported here was inspired by our recent and ongoing
remeasurement of the Casimir force between Au plates, which
support the Drude model better than the plasma model. In the
course of our recent work, it occurred to us that time-dependent
fluctuations between the plates can lead to a correction, much
like the surface-roughness correction that has been studied by
Mostepanenko and collaborators [6].

The interesting features of [2] are as follows: The Drude
model appears to better describe the long-distance (greater that
1.5 µm) data. The short-distance data appear to agree with the
plasma model prediction. The roughness usually associated
with optical surfaces is too small to account for the deviation
between the Drude theory and experiment and seems to have
the wrong form, as in this case, the discrepancy should fall, as a
fraction of the force, as 1/d2, where d is the separation between
the plates. Thus, for the Casimir force alone, the effect should
be very short range. In [2], a background potential existed,
creating an electrostatic force that was greater than the Casimir
force over the measurement range. Thus, the effects of both
forces must be considered together.

Corrections due to vibration and distance calibration un-
certainties. The force between two plates, for small variations
δ(t) of the distance d, is

F (d + δ(t)) = F (d) + F ′(d)δ(t) + 1
2F ′′(d)δ2(t). (1)

If we assume that δ(t) represents a stationary random process
with zero mean, there are two cases to consider. First, if
the correlation time of δ(t) implies frequencies higher than
the measurement bandwidth, the term linear in δ(t) does not
contribute to anything, while the second-order term results in
a change in the apparent force,

Fa(d) = F (d) + 1
2F ′′(d)〈δ2〉, (2)

where 〈δ2(t)〉 = δ2
rms is the mean-square fluctuation. It should

be noted that δrms can have contributions from multiple sources,
which, if uncorrelated, can be added in quadrature. In addition,
a finite surface roughness can be included here; the form of
Eq. (2) does not distinguish between spatial and temporal
roughness.

Second, if the fluctuations frequency is within the mea-
surement bandwidth, which is the case for uncertainties in
the distance determination, there will be an excess scatter
associated with the force measurement,

σ 2
Fa

= σ 2
F + [F ′(d)δrms]

2, (3)

while the apparent average force is given by Eq. (2), as before.
Application to the experiment. In [2], there is a large

background electrostatic force that is used for determining
the absolute distance, obtained by fitting to β/(d − d0), using
points at distances greater than 2 µm. For the approximations
here, let us assume that there are no significant corrections at
these long distances. Based on Fig. 3 of [2], the background
electrostatic force is

Fe(d) = β

d
; β = (215 ± 7) µdyn µm. (4)

The total force is the electric plus Casimir force,

F (d) = Fe(d) + Fc(d), (5)

and the first derivative at d = 0.62 µm is approximately
1000 µdyn/µm. Comparing the size of the error bars in Fig. 4
of [2], where the 0.1-µm bins have 1/10 the data of the 1-µm
bins and should be

√
10 times larger. It is observed that they

are 1.32
√

10 larger, so the contribution to the error due to
fluctuations is 4 µdyn. This implies that the rms fluctuations
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in position on a time scale of the measurement of each point
(50 s) is 40 nm. This is to be compared to 14 nm in our present
experiment, where the intrinsic signal to noise is similar, as
is the applied calibration voltage. The excess noise in [2] is
likely due to the faster rate of drift in position. It is stated in [2]
that the fluctuations in absolute position measurement is less
than 100 nm, which is consistent with the result here. On the
other hand, the quality of the data in Fig. 3 of [2] suggests that
perhaps 40 nm is optimistic; unfortunately, the original data set
is not available to further investigate this point. For fluctuations
at this level, the apparent change in force is less than 5% so
these fluctuations do not contribute to the discrepancy.

Our recent work shows that, due to vibrations and tilt, there
is an rms position fluctuation of 20 nm in a 0.01-to-5-Hz
bandwidth for our torsion pendulum supported by a tungsten
wire of a few cm length. The variations at low frequency
are dominated by the tilt of the pendulum and correspond to
angular fluctuations of the order of 1 × 10−7 rad. Given that
the pendulum in the present experiment has a length of 4 cm,
compared to an effective length of nearly 80 cm for [2], we
might expect position rms fluctuations of order 400 nm, as
the change in position is roughly the pendulum length times
the tilt angle, which is not to be confused with the torsional
motion angle. However, the bandwidth of the swinging mode
of the longer pendulum is lower (it is relatively smaller by
a approximately a factor of 1/

√
40 = 1/6.3, so the effective

noise should be a factor of 1/
√

6.3 = 1/2.5), implying an
rms noise of 400 nm/2.5 = 160 nm. We can therefore take
δrms = 100 nm as a lower limit. In operating the experiment [2],
the problems with tilt noise were about an order of magnitude
worse than those in our present experiment, consistent with
relative size of the rms position fluctuations as discussed here.

Only angular fluctuations at frequencies below the swinging
mode frequency will contribute significantly to the relative
separation fluctuation between the plates because the magnetic
damper tends to stabilize the relative position of the plates. On
the other hand, vibrations that cause a net translational motion
of the system couple in a different way, and frequencies above
the mode frequency can contribute. The angular noise domi-
nates so I neglect translational vibrations in this discussion.

Let us now consider the combined effect of Fe(d) and Fc(d)
for either the plasma or Drude models of permittivity. The
correction to the force is given by Eq. (2) as

Fa(d) − F (d) = 1
2 [F ′′

e (d) + F ′′
c (d)]δ2

rms. (6)

It is easy to calculate F ′′
e (d), while F ′′

c (d) can be numerically
evaluated. The plasma model and Drude model forces were
calculated using tabulated Au properties, with the interesting
result that the second derivative of the Drude model is about
twice as large, in the 0.5-to-1-µm range, as that for the plasma
model, which is not too surprising as the Drude model force
falls off more rapidly in this region. It should also be noted
that F ′′

e ∝ 1/d3, so there is a constant offset for large d, when
the correction is multiplied by d3, as shown in the graph.

The results are shown in Fig. 1, where it is clear that
the Drude model has much better agreement. Furthermore,
both the large and the small distance data agree with the
theory, unlike the case of any other model. As an aside, a
remeasurement of the radius of curvature of the spherical plate
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FIG. 1. (Color online) Results taking δrms = 100 nm. Horizontal
green line, perfect conductor, zero temperature; solid red (first line
from the top), plasma model with distance fluctuations; dashed red
(second line from the top), plasma model without distance fluctuation
correction; solid blue (third line from the top), Drude model with
distance fluctuations; dashed blue (fourth line from the top), Drude
model without distance fluctuation correction. Reduced χ2 = 6.17
(probability <10−5, 6 degrees of freedom) for the plasma model
with distance correction, while χ 2 = 1.75 for the Drude model with
distance correction (probability 10%, 6 degrees of freedom).

used in [2] shows R = 12.4 ± 0.1 cm, which has lower error
than the number reported in the erratum [2].

The agreement can be made better by allowing δrms to vary
with distance. It is reasonable to assume that the runs which
attained the lowest separation were obtained when the system
and environment was particularly quiet. For example, if we let
δrms =√

d
3µm µm, then χ2 = 0.79 for the Drude model, while

χ2 = 6.9 for the plasma model.
Discussion and conclusion. By assuming that the relative

separation between the plates of a Casimir experiment is
fluctuating on a short time scale, the results given in [2]
can be brought into agreement with theory. The required
rms fluctuations appear as large, of the order of 100 nm,
but such a level is not unreasonable. Given that the total
pendulum length is nearly 1 m, a tilt of 10−7 rad is all
that is required to generate the required fluctuations. Such
level of tilt is easily generated by air currents moving past
the apparatus and by unavoidable oscillations of the floor.
It should be noted that the rms position fluctuations are due
mainly to angle fluctuations with a frequency of less than about
0.5 Hz, the natural frequency of the pendulum’s swinging
mode. Measurements with our new apparatus as Yale shows
less than 50 ± 20-nm rms fluctuations; however, the pendulum
is only a few cm in length. A full analysis of the pendulum and
how various tilts and vibrations affect the relative positions
of the plates is a tedious but elementary exercise. I do note,
however, that within the feedback bandwidth (which is greater
than the measurement bandwidth), the system compensates
for a tilt by adjusting the torsion pendulum angle in order to
keep the differential capacitor balanced. Thus, for frequencies
below about 0.1 Hz, a tilt position offset is approximately
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doubled for the interplate separation. Indeed, the extreme
sensitivity of the apparatus to tilt and vibration was readily
apparent; in order to take sensible data, the experiment could
only be operated between 11 p.m. and about 5 a.m., and
the air-conditioning ducts into the room had to be blocked.
The required rms position fluctuation of 100 nm is below the
minimum plate separation of 600 nm and falls into what can
be considered a reasonable range. The angular fluctuations
appeared as a very slow drift, causing a change in the distance
offset between the plate, which was of order 1 µm/h. On top
of this slow drift, according to the calculations here, were
rapid fluctuations with periods up to 2 s (the frequency of the
pendulum swinging mode) with rms deviations of order 10−7

rad in the 0.01-to-0.5-Hz bandwidth.
It appears that δrms = 100 nm gives close to a best fit and

thus should be considered as an adjustable parameter, the value
of which is verified by other means described in this brief
report. Also to be noted is that other contributions to δrms can be
included by adding all contributions in quadrature. Of course,
other systematic effects can contribute, such as a contact
potential that varies with distance. The contact potential was
not measured as a function of distance in [2]; however, our
recent work with Au suggests that the contact potential is
nearly constant. This does not preclude the possibility that
there was such a variation in [2].

If δrms(d) depends on distance, which is a very distinct
possibility, it is easy to see that the the data can be brought
into better agreement with the Drude model in particular.
Certainly, δrms depends on time, and the data runs that attained
the closest separation were likely obtained when the system
and the environment were the quietest. This level of fine tuning
is beyond the scope of the brief analysis presented here and
beyond the scope of credibility.

Effects of vibration are important for all Casimir experi-
ments. Even in the absence of external perturbations, atomic
force microscope (AFM) cantilevers, for example, exhibit

Brownian motion and the effects of such need to be taken
into account. The implication is that very stiff springs should
be used. In the case of the torsion pendulum experiment,
feedback is used to keep the torsion angle fixed; this reduces
position fluctuations due to Brownian motion, but can make
the system more sensitive to vibrations and tilts, as discussed
earlier.

The apparent force due to the large 1/d electrostatic force
varies as 1/d3, with magnitude relative to the Casimir force
(perfect conductors) of βδ2

rms/2 = 1.2 µdyn µm3, about 3%
of the perfect conducting force.

Again, the work described in [2] was presented as a
demonstration; the analysis here shows that there is a possible
systematic effect that can lead to a substantial increase in the
apparent Casimir force. In this case, the large electrostatic
force, present for calibration, contributes substantially, par-
ticularly at large separations. Because its contribution scales
as 1/d3, it appears as a scale factor for the Casimir force
for distances around 0.5 µm. Recent work at Yale led to
the consideration of these effects and also appears to support
the Drude model for the permittivity. We hope to complete
these studies in the very near future.

Finally, it must be emphasized that [2] was intended
as a demonstration; the results presented here should not
be considered as a verification of the Boström-Sernelius
theory [5] or as evidence against the plasma model, but the
discovery of a systematic effect that brings the experimental
results into agreement with the theory described in [5]. It is
unclear whether additional systematic effects exist; however,
it seems likely that there are additional, possibly large
systematics [7].
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