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Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface
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We theoretically characterize the collective radiative behavior of N classical emitters near an interface between
different dielectrics that supports the transfer of surface plasmon modes into the far-field of electromagnetic
radiation. The phenomena of superradiance and surface plasmons can be combined to amplify the emitted
radiation intensity S as S = AN2S0 compared to a single emitter’s intensity S0 in free space. For a practical case
study within the article A = 240, compared to A = 1 in free space. We furthermore demonstrate that there are
collective modes for which the intensity of the emitted radiation is suppressed by 2 orders of magnitude despite
their supperadiant emission characteristics. A method to control the emission characteristics of the system and
to switch from super- to subradiant behavior with a suitably detuned external driving field is devised.

DOI: 10.1103/PhysRevA.82.023827 PACS number(s): 42.25.Bs, 73.20.Mf, 41.60.−m

I. INTRODUCTION

Observing light spontaneously emitted from a system of
atoms or molecules is a versatile tool to determine the system’s
dynamics and has a number of important applications. In
atomic physics it can generally be used to learn about the
state of atoms and molecules [1]. In quantum information it
helps to detect entanglement between ions or atoms [2,3]. In
biophysics it is used to identify and track chemical compounds
in biological tissues. While spontaneous emission is well
understood for isolated emitters, emission from a system of
emitters varies extensively with their interaction, depending on
the state of nearby emitters and the surrounding media. Only
by understanding the role of interactions in light emission
can the state reliably be determined. The process of the
collective decay rate being coherently increased is known
as superradiance [4] and has received renewed interest with
the development of nanotechnologies [5]. In quantum optics,
superradiance can be used to create entanglement between
atoms and light [6]. Entanglement within a superradiant
system is also being used to understand phase transitions
in quantum systems [7]. For this reason there is strong
interest in methods that affect the interactions in cooperative
emission.

A simple method to influence the interaction strength is to
place the system near a metal interface that supports surface
plasmon modes [8]. Surface plasmons are charge-density
waves confined to a very small region close to the interface.
The field of surface plasmons is consequently very large.
This effect has long been used in techniques such as surface-
enhanced Raman spectroscopy [9,10]. In quantum information
science, surface plasmon modes on a nanowire are proposed
to create single-photon sources and transistors [11,12] and to
enhance the emission properties of light-emitting diodes [13].
Furthermore, the coupling of emitters to surface plasmon
modes allows the collective excitation of superradiant surface
plasmons [14].

In this article we show how superradiance and surface
plasmons can be combined to increase the interaction strength
between matter and light by several orders of magnitude.
We consider emitters near a planar metal interface in the
Kretschmann configuration for attenuated total reflection [15]

(see Fig. 1). In this situation, surface plasmons induce a
greater coupling of radiation into the far field for a certain
direction (the surface plamon resonance angle) where the flux
of radiation is 2 orders of magnitude larger [16]. Furthermore,
the increased radiation energy density in the near field of
surface plamons leads to a stronger coupling between different
emitters [17] so that superradiance is further increased. We
characterize the collective radiative eigenmodes of a set of
oscillating emitters and demonstrate how their emission can
be manipulated from super- to sub radiant behavior.

After a brief review of superradiance and surface plasmons
in Sec. II and our model assumptions in Sec. III, we consider
harmonically oscillating emitters that are driven by a light field
in Sec. IV. We demonstrate that their collective dynamics can
be changed from super- to subradiant behavior by changing
the frequency of the field. In Sec. V we study the collective
decay of initially excited harmonic oscillators and give a
detailed description of super- and subradiant decay modes and
their decay rates and emission patterns, and we discuss how
well superradiant emission is realized in these modes. Three
appendices contain details of our derivations.

II. BACKGROUND

Superradiance is a cooperative effect in which the radiation
emitted by N scatterers is substantially enhanced compared
to that of isolated scatterers [4]. For this effect to occur the
distance between the emitters needs to be much smaller than
the wavelength of the radiation. The field amplitudes of the
emitters then interfere constructively so that the radiation
intensity is increased by a factor of N2 compared to that
of a single emitter. Furthermore, light emitted by one of the
scatterers can induce stimulated emission for another scatterer
so that the collective decay rate is enhanced by a factor of N if
all emitters are initially excited. These two defining properties
of superradiant emission are consequences of phasing and
radiation reaction which can occur both in classical and in
quantum systems [18]. Radiation reaction is generally affected
by any surrounding dielectric material. In particular, when
atom-sized dipolar emitters are placed within a wavelength of
a metal interface, surface plasmons can be generated.
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FIG. 1. Kretschmann configuration of a thin metal film interface
between a prism and a vacuum used to couple emitters to surface
plasmon modes. Region 1 consists of a prism (

√
ε1 = 1.51), region

2 corresponds to a thin metal film (
√

ε2 = 0.08 + 4.8i), and region 3
is a vacuum.

Surface plasmons consist of electromagnetic fields that
accompany electron density oscillations (the plasmon) on
the surface of a metal. Because the surface plasmon is
confined within a nanometer-sized region on the interface
the electromagnetic field is concentrated. This concentration
depends strongly on the geometry and the dielectric properties
of the interface. Because of the increased intensity of surface
plasmon fields, an emitter reacts strongly with surface plasmon
modes when placed near a metal film and the radiative
properties of the emitter are significantly affected [19]. In
the following we study in detail how surface plasmons affect
superradiance of emitters near a planar interface.

III. OSCILLATING EMITTERS NEAR
A METAL INTERFACE

We consider the behavior of N atomic dipoles that are
located near a thin metallic interface that supports surface
plasmon modes (see Fig. 1). To simplify the considerations
we study an infinite planar interface so that the prism, which
is needed in experiments for phase matching, can be replaced
by an infinite half-space filled with a nonabsorbing dielectric.
The dipoles are located at positions r (1), . . . ,r (N) in region 3
above the interface.

To describe the system of emitters we model each dipole
as a charged classical harmonic oscillator with charge q,
mass m, and a resonance frequency of ω0. The restoring
force associated with the harmonic motion originates from
the attraction by a stationary charge distribution of opposite
sign (the “nucleus”) located at the point r (i). Charge i oscillates
about the point r (i) with an amplitude x(i) that is of the order of
Bohr’s radius and much smaller than the individual separation
distance between emitters �x. The equation of motion for
the harmonic oscillators affected by an external electric field
E(r,t) is derived in Appendix A,

ẍ(j )
0 + ω2

0 x(j )
0 = q

m

[
E(r (j ),t) +

N∑
i=1

E(i)(r (j ),t)

]
. (1)

The term in parentheses can be interpreted as the local electric
field at the position r (j ) of the j th oscillator. It consists of the
external applied field E(r (j ),t) in region 3 (e.g., a laser beam)
plus the superposition of the fields E(i)(r (j ),t) that are created

by the emitter i. Due to the presence of the interface the latter
part of the contribution is more involved and is conveniently
expressed by

E(j )(r,t) = −µ0q

∫ ∞

−∞
dt ′G(r,r (j ),t − t ′) ẍ(j )(t ′), (2)

The dyadic retarded Green’s function G describes the
propagation of electromagnetic fields in the presence of the
interface and takes into account the corresponding boundary
conditions. It is frequently used to describe radiative systems
with boundary conditions [20–22] despite the fact that its
explicit form is rather involved (see Appendix B). This is
because the Green’s function contains all information about the
propagation of electromagnetic waves between two arbitrary
points in the presence of the interface, which is necessary
to analyze emitters at different positions. Alternatively one
could use an expansion of the electromagnetic field in terms
of radiative field modes [23] which has been shown to be
equivalent [24].

Within the Green’s function formalism, the effect of surface
plasmons is included through the Fresnel coefficients, that is,
the complex ratio of the reflected (RTM

i,i−1) or transmitted (T TM
i,i−1)

electric field and the incident field, where i is the region in
consideration and i − 1 is the neighboring region. Here “TM”
refers to transverse magnetic polarization, which is necessary
to generate surface plasmons. The Fresnel coefficients appear
explicitly in the Green’s function (see Appendix B); surface
plasmons generate characteristic resonances in these coeffi-
cients.

The dispersion relation for a surface plasmon at a single
vacuum-metal interface,

c2k2
sp =

(ω

c

)2 ε0ε2

ε0 + ε2
, (3)

can be derived from the condition that there is no reflected field,
RTM

3,2 = 0 [19]. Here ksp is the surface-plasmon wave-vector
component parallel to the interface. For a single interface
between only two different dielectric media the dispersion
relation corresponds to the poles of the Green’s function
in frequency space. Even though the inclusion of a second
interface changes the dispersion relation, Eq. (3) is often pre-
sented within the context of both single and double interfaces
[25]. This approximation suffices to determine the surface
plasmon resonance angle in attenuated total reflection for thin
films. However, it omits complex valued contributions to the
wave-vector component ksp [19,26], most notably complex
contributions that would correspond to radiative coupling to
the prism (i.e., the third medium needed in attenuated total
reflection). For the Kretschmann configuration the narrow
resonance angle of surface plasmons results in an increased
radiation density which can be used to increase the coupling
between emitters and radiation by several orders of magnitude.
It is the combination of this effect with superradiance that is
at the center of our attention.

IV. SUPER- AND SUBRADIANT EMISSION
BY DRIVEN OSCILLATORS

If the emitters are driven by an external electric field of
the form E(r,t) = E0e

ik·re−iωt , they will eventually settle
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FIG. 2. (Color online) The amplitude response in z direction of
two emitters in (a) free space and (b) placed at a distance of �z =
100 nm from the metal interface and separated a distance �x from
each other. Both emitters are driven in the z direction by an electric
field that is detuned by δω from a resonance frequency of ω0 = 2.36 ×
1015 s−1.

into a state where each dipole oscillates with the frequency
ω of the driving field, so that x(t) = x0e

−iωt .1 It is shown
in Appendix A that this ansatz transforms Eq. (1) into the
algebraic equation2

E(i)
0 = e−ik·r

[
m

q

(
ω2

0 − ω2
)
δij1 − ImG(r (i),r (i),ω)

× δij

µ0ω
2q

2π
− µ0ω

2q

2π

N∑
j �=i

G(r (i),r (j ),ω)

]
x(j )

0 (4)

and forms a set of 3N coupled equations for the Cartesian
components of N oscillators. The indices i and j run from 1
to N and 1 denotes the unit matrix in three dimensions. To
find the total electric field emitted by all N sources we need
to solve these equations for x(i) and then superpose the fields
produced by all sources.

Figure 2(a) shows the amplitude response x0,3, that is, the
z component of the amplitude vector x0 of the oscillators,
for two nearby emitters in free space driven by an electric
field polarized in the z direction. For separation distances
�x less than 50 nm, the resonance frequency begins to shift
considerably due to dynamic dipole-dipole coupling between
the emitters. Because in free space the dyadic Green’s function
is diagonal with respect to radiation polarization, and because
the emitters are only driven along the z-axis, there is only
coupling between the z components of oscillations.

Placing the two emitters close to the metal interface leads
to a dramatic change in the emitter dynamics. In Fig. 2(b) the

1To simplify the derivations we use a complex amplitude x(t) for
the oscillators. The use of complex solutions is possible because
for harmonic oscillators interacting via the electromagnetic field the
equations of motions are linear second-order differential equations.
Real and imaginary parts of x(t) then correspond to two linearly
independent, real solutions of the equations of motion. For the field
intensity we use the quantity |E|2, which is proportional to the
intensity for real oscillators’ amplitudes averaged over one cycle
2π/ω.

2Equation (4) corresponds to Eq. (A11) in the limit of stationary
amplitudes, that is, � = 0 in Eq. (A11).

FIG. 3. (Color online) The z amplitude x0,3 (a) and x amplitude
x0,1 (b) of two emitters near a metal film (solid line) and a perfect
mirror (dashed line). The emitters are driven by a field that is detuned
by δω. They are separated by �x = 80 nm from each other and
�z = 100 nm from the metal interface.

z amplitude of two scatterers that are a distance �z = 100 nm
away from the interface is displayed. It has an overall shape
similar to that of the amplitude response in free space, but an
additional narrow resonance peak appears on the tail of the
primary resonance. This narrow feature is more prominent in
Fig. 3(a), which displays the same quantity for a fixed distance
�x = 80 nm between the scatterers.

The origin of the secondary resonance is the reflection
of light emitted by one oscillator from the interface and
its subsequent absorption by the other oscillator. In free
space light emitted by one oscillator necessarily has the
same polarization as the external driving field. Therefore,
the emitters are collectively oscillating along the z direction.
However, light that is reflected by the interface can have
a different polarization. In the case under consideration it
induces a coupling between the x and z components of the
oscillators; mathematically this is related to the G13 terms in
Eq. (4).

Figure 3(b) indicates that at the secondary resonance the
dipole orientation changes from normal to almost parallel to
the interface. Because the two dipoles are nearly antiparallel to
each other their emitted radiation interferes destructively. This
implies that the system changes from superradiant behavior
around the primary resonance to a subradiant behavior around
the secondary resonance. Figure 4 displays the electric

FIG. 4. (Color online) Electric field lines in the near field of
two dipoles driven on the primary resonance (a) and the secondary
resonance (b) near a metal interface at z = 0. The bold arrows indicate
the dipole location and orientation of the emitters.

023827-3



CHOQUETTE, MARZLIN, AND SANDERS PHYSICAL REVIEW A 82, 023827 (2010)

near-field and the dipole orientation at the two resonances. An
intuitive explanation of the secondary resonance can be given
as follows. For most driving field frequencies the coupling
between the x and z components of the oscillators is weak.
However, at the resonance frequency of subradiant modes this
coupling can transfer most of the energy of the oscillator from
the z to the x components because the latter only lose very
little energy energy through radiative emission and thus decay
slowly. The secondary resonance therefore has to be narrow
because its linewidth is inversely proportional to the large
decay time of the x oscillations.

To improve our understanding we compare in Figs. 3(a)
and 3(b) a numerical evaluation of the oscillation amplitudes
for two emitters near the metal film with a corresponding
calculation for two emitters near a perfect mirror. The latter
case can be described by taking the dielectric constant ε2 of
the metal film to be infinite, which corresponds to a perfect
conductor. While the mirror images explain the qualitative
features very well, the narrow resonance is greater in the case
of the mirror. We attribute this difference to the existence of
surface plasmons, which are not present in the case of a perfect
mirror. The dispersion and decay of surface plasmons cause the
emitter energy to be dissipated quicker and this is represented
by a corresponding decrease and broadening in the narrow
resonance.

With increasing distance from the interface the narrow
resonance falls off exponentially because of the decreasing
strength of the reflected near field at the interface. Presumably
for the same reason the resonance frequencies are shifted by a
larger amount near the metal film.

V. COLLECTIVE DECAY OF CLASSICAL EMITTERS

We model the collective decay of initially excited oscillators
near the interface by assuming that there is no driving field and
that the emitters perform a simple damped harmonic motion
x(j )(t) = x(j )(0)e−iωt−�t , with ω and � being the collective
oscillation frequency and decay rate, respectively. Using the
results of Appendix A again we can transform Eq. (1) into
a transcendental equation for the collective parameters ω

and �,

[
(� + iω)2 + ω2

0

]
x(j )(t) = −µ0q

2

m
(� + iω)2

N∑
i=1

x(i)(t)

× G(r (j ),r (i),ω − i�). (5)

For optical emission it is safe to assume that � � ω.
Because G(r (j ),r (i),ω) is a meromorphic function of � in the
lower half plane, and because its poles are determined by the
properties of the metal interface and are unrelated to �, we can
approximate G(r,r (j ),ω − i�) by G(r,r (j ),ω − iε), where
ε > 0 is infinitesimally small. This reduces the transcendental
equation (5) to a linear eigenvalue problem:[

(i� + δ)1 − µ0q
2ω0

2m

N∑
i=1

G(r (j ),r (i),ω)

]
x(i)(0) = 0, (6)

with frequency shift δ ≡ ω0 − ω � ω0. The decay parameter
� and the frequency shift δ relate to the imaginary part and the

real part of the eigenvalue problem (6), respectively. Generally,
� characterizes the collective decay rate of all the oscillators.

A. Decay rate

It is instructive to first study the decay of a single oscillator
x(t) at position r . In free space the Green’s function takes the
form [27]

G(r,r,ω) =
(

G′ + i
ω

6πc

)
1. (7)

The real part G′ is related to the Lamb shift of atomic
resonance lines. It is formally divergent and would need to be
renormalized [28]. However, because we are only interested
in the decay rate, we can ignore the line shift and assume it is
absorbed in the definition of the detuning. Because the Lamb
shift is much smaller than the optical resonance frequency, this
will result in an excellent approximation for the decay rate. As
in free space the matrix in Eq. (6) is proportional to the identity.
The corresponding eigenvalue problem is trivially solved and
yields the well-known decay rate of a single oscillator,

�0 = µ0q
2ω0

2m
ImGµµ(r,r,ω0) (8)

= µ0q
2ω2

0

12πmc
. (9)

The decay rate near the interface can be derived in a similar
way as long as � is much smaller than the optical frequency and
varies little for frequency variations on the order of the Lamb
shift. These assumptions should be satisfied as long as the
emitter is not too close to the interface. We remark, however,
that these approximations are not universally valid and fail
in the case of photonic band gap materials [29], for instance.
The Green’s function Gµν(r,r,ω) evaluated at a single point
r near the interface is diagonal in Cartesian coordinates
(cf. Appendix B). We therefore can use Eq. (8) to find the
decay rate.

Figure 5 depicts the decay rate of an emitter as a function of
the distance �z of the emitter from the metal film (cf. Fig. 1).
It demonstrates that the decay rate is enhanced (suppressed) if
the emitter oscillates perpendicular (parallel) to the interface,

FIG. 5. The decay rate of a single oscillator placed within the
vicinity of a thin metal film, at a separation distance of �z. The decay
rates are given for a dipole oriented parallel (solid) and perpendicular
(dotted) relative to the plane of the interface.
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FIG. 6. Four different collective eigenmodes: (a) superradiant
mode, (b) subradiant mode, (c) and (d) are suppressed superradiant
modes for which all real dipole moments are in phase but all mirror
images are out of phase. Shown is the orientation of the dipole moment
for real emitters (above the interface) and their mirror images (gray,
dashed, below the interface).

respectively. This can be understood using the concept of
mirror images with each emitter considered as an electric
dipole (see Appendix A). If a dipole is oriented perpendicular
to the interface, its mirror image is in phase and thus can
enhance the emission of the dipole. On the other hand, dipoles
that oscillate in the plane of the interface have mirror images
that are 180◦ out of phase so that the radiation reaction causes
damping of the dipole. Hence, if the mirror images were
composed of real charges these two situations would just
correspond to superradiant and subradiant collective emission
of two emitters, respectively.

We now turn to the collective decay of N > 1 emitters. In
this case there are 3N eigenstate solutions of Eq. (6). Figure 6
displays 4 out of 24 numerically determined eigenmodes
for N = 8, each of which are examples for a particular
collective behavior. In free space, a state where all emitters
oscillate in phase and in the same direction is superradiant.
The presence of the interface breaks the axial symmetry and
oscillations in the plane of the interface are suppressed because
the corresponding mirror images trigger subradiant behavior.
Figure 6(a) shows the superradiant mode where the emitters
oscillate in phase along the z axis. In this case their mirror
images are also in phase and enhance the radiation intensity.
Figure 6(b) shows a subradiant mode where the emitted fields
of the individual emitters interfere destructively. Figures 6(c)
and 6(d) display very different states, which we call suppressed
superradiant states. All oscillators are in phase and in free space
these states would be superradiant. However, the mirror images
are out of phase so that the intensity of the emitted radiation
is strongly reduced as compared to the superradiant state. In
Fig. 8(a), which is discussed later, we display the collective
decay rate of these modes as a function of the number of
oscillators.

B. Far-field radiation

A simple way to learn about the dynamics of a collection
of emitters is to observe their emission pattern in the far field.

The radiation intensity is determined by the (time-averaged)
Poynting vector

S(r,t) = 1

2µ0c
|E(r,t)|2 r̂. (10)

The electric field of each emitter is determined by Eq. (2)
and the total field E(r,t) is the superposition of the individual
fields. To evaluate Eq. (2) in the far field we have to compute the
radiative Green’s function (B1) in the far-field limit, kr → ∞,
which can be accomplished using the method of stationary
phase described in Appendix C.

For a source in the region z′ > d and observation of the field
at position r in the region z < 0, the dyadic Green’s function
can be approximated as

Gµν(r,r ′,ω) = i

2π

(
k1

r

z

r

)
eik1re−ik1 sin φ(cos θx ′+sin θy ′)

× G̃µν(k1 sin φ cos θ,k1 sin φ sin θ,ω; z′),
(11)

with the unwieldy coefficients G̃µν defined in Eqs. (B11)–
(B19). A similar expression can be derived for an observation
point in region 3. The direction from the emitters to the
observation point is given by (sin φ cos θ, sin φ sin θ, cos φ).
The radiation profiles are determined from the positive
frequency components of the electric field in the far field. For
emitters that are equidistant from the interface, the Poynting
vector can be represented as

|S(r,t)| = µ0ω
4

8π2c

(
kz

r2

)2

× |G̃µν(ki sin φ cos θ,ki sin φ sin θ,ω; z′)|2

×
∣∣∣∣∣

N∑
i

e−ik sin φ(cos θx(i)+sin θy(i))e−�tx(i)

∣∣∣∣∣
2

, (12)

with j = 1 and 3 for the observation point in region 1 or 3,
respectively.

The last term is the relevant phasing term which determines
the N2 gain in intensity that is associated with superradiance.
The superradiant decay modes must be in phase, that is,
k sin φ(cos θx(i) + sin θy(i)) + arg(x(i)

µ ) = ni2π for each emit-
ter i, then the sum becomes proportional to N2. In other words,
constructive interference between the emitted radiation of all
emitters is one condition for observing superradiance.

The transmitted radiation profile (12) for the superradiant
state in the plane of the emitters (θ = 0) is illustrated in
Fig. 7 for a linear arrangement of eight emitters periodically
separated within a distance of λ/2, with λ = 800 nm and
ω = 2πc/λ. The dashed curve shows the emission pattern in
free space. For perfect superradiance its maximum intensity
(along the horizontal axis) should scale like S = AN2S0, with
S0 being the maximum intensity for a single emitter in free
space and with the superradiance prefactor A = 1 in free space.
Because the outermost oscillators are a distance λ/2 apart so
that their emitted fields are out of phase, the N2 scaling is only
roughly fulfilled.

For emitters near the interface (solid curve in Fig. 7) surface
plasmons lead to the narrow but extremely large peaks in the
lower half of Fig. 7 at the plasmon resonance angle with a
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FIG. 7. (Color online) The far-field emission pattern of eight
oscillators in the superradiant mode at a distance of �z = 200 nm
from the interface (solid) and in free space (dashed). Shown is the ratio
of the radiation intensity S and the maximum intensity S0 produced
by a single emitter in free space. The emitters are placed parallel to
the horizontal axis.

width of about 0.01 rad. Emission into the radiative modes
around this peak is superradiant (see below) with A ≈ 240.
The value of A depends on the separation distance of the
emitters from the interface and the Fresnel coefficient T̃ TM

3,2
defined in Appendix B. A will decrease exponentially as the
separation distance between emitter and interface increases
due to decreased near-field coupling of the emitter to surface
plasmon modes. For given dielectric constants εi and emission
wavelength λ, there is an optimum film thickness for which A

is maximized. The values used in this article correspond to an
optimum film thickness of 56 nm for λ = 800 nm. Hence, the
radiation from multiple emitters transmitted into the surface
plasmon resonance angle (the spikes in Fig. 7) combines
the enhancement A and the N2 gain of superradiance. For the
case N = 8, the peaks have a maximum of almost 15 000 times
the maximum intensity S0 for a single emitter in free space.

C. Suppressed superradiance

We conclude this section with a discussion of the main
indicators for superradiance in the superradiant and the
suppressed superradiant states. In Fig. 8(a) we display the
scaling of the collective decay parameter with the number of
oscillators, which is a measure for how strongly light emitted
from one oscillator can drive emission from another oscillator.
Because of the growing size of the arrangement of oscillators,
which varies from 50 nm for N = 2 to 550 nm for N = 12,
we expect superradiant phenomena to decrease with N . This
is indeed the case for the superradiant state (circles), but for
the suppressed superradiant states collective decay (� ∼ N )
(triangles and squares) is preserved.

Interestingly, we observe the opposite situation with respect
to the N2 dependence of the peak intensity at the surface
plasmon resonance angle, which is shown in Fig. 8(b). For the
superradiant state the peak intensity can well be described

FIG. 8. (Color online) (a) Scaling of the collective decay rate with
the number N of oscillators. Circles correspond to the superradiant
mode, squares and triangles to the suppressed superradiant modes
displayed in Figs. 6(c) and 6(d), respectively, and diamonds to
the subradiant mode displayed in Fig. 6(b). The distance between
adjacent oscillators is 50 nm. Each oscillator is a distance �z =
100 nm away from the interface. (b) Scaling of the maximum intensity
of the peak at the surface plasmon resonance angle with the number
N of oscillators. In the superradiant case the results are reduced by a
factor of 10 for presentational purposes.

by S ≈ AN2S0, indicating constructive interference of the
emitted radiation despite the growing size of the sample. For
the suppressed superradiant states the ability to constructively
interfere depends on the dipole orientation: the N2 scaling
is significantly affected only if the dipoles are aligned as in
Fig. 6(c).

Clearly the two suppressed superradiant states fulfill the
criteria for superradiance as well, or better, than the superradi-
ant state itself. We use the notion “suppressed” to characterize
their behavior because their decay rate is reduced by a factor of
6 and their peak intensity by a factor of 25 as compared to the
superradiant state. We can understand suppressed superradiant
behavior by considering each dipole and its mirror image
as one entity. The dipole moment of this entity vanishes,
but it can emit (a weaker) quadrupole radiation. Because
all N quadrupoles are in phase their emitted fields interfere
constructively and the intensity scales like N2. Furthermore,
similar to how a neighboring dipole in phase can increase the
decay rate, a quadrupole can drive the neighbor when in phase.
Hence, the suppressed superradiant state can be considered a
superradiant state for quadrupoles.

The different behavior of the states of Fig. 6 can be
understood by considering the mirror images as real charges.
For suppressed superradiant states the spatial size of each
quadrupole, 2�z = 200 nm, is larger than the distance �x =
50 nm between adjacent quadrupoles. Hence, they interact with
their respective near field so that cooperative decay can still
grow like N . On the other hand, for the superradiant state each
dipole interacts with the far field of other dipoles so that the
deviation from the linear scaling with N is more pronounced,
albeit the overall interaction energy is much larger.

The N2 scaling of the peak intensity can be understood
by taking into account that the maximum peak appears at the
surface plasmon resonance angle, that is, in a direction that is
different from the axis along which the oscillators are aligned.
Generally, surface plasmons can only be generated in the
direction of the polarization of the emitted radiation because
it is the latter’s electric field that generates electron density
oscillations. For the suppressed superradiant state shown in
Fig. 6(c), there are significant deviations from the N2 law
because the dipoles oscillate in the plane of the interface
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parallel to the x axis. This means that most radiation is emitted
into a surface plasmon mode that propagates in the x direction,
but in this direction phase variations have a very pronounced
effect. For the suppressed superradiant state, Fig. 6(d), as
for the superradiant state, most radiation is emitted into a
plasmon that propagates in the y direction, that is, parallel to
the alignment of emitters. Therefore their emitted radiation
fields can still constructively interfere.

VI. CONCLUSION

In this article we give a detailed account of how super-
and subradiant emission by oscillating dipoles is affected by
surface plasmons. It is shown that the interface generates an
indirect coupling between the emitters through light that is
reflected by the interface. In the superradiant mode the peak
intensity of the emitted radiation is 2 orders of magnitude
larger than a similar arrangement of emitters in free space.
The decay rate of the system is increased by the presence of
mirror dipoles at the interface. Applying a driving field to the
emitters can induce super- and subradiant emitter modes by a
suitable choice of frequency.

The collective decay eigenmodes of initially excited oscilla-
tors show that certain modes, which naively would be expected
to behave in a subradiant fashion, are actually superradiant
modes, albeit with a strongly suppressed overall intensity.
These suppressed superradiant modes are also a consequence
of the additional coupling between oscillators that is generated
by the interface. An intuitive picture explains this effect as
superradiance of quadrupole radiation.

Our results will help to improve the characterization of the
radiative response of entangled atoms or ions in quantum in-
formation and of surface-enhanced spectroscopy of molecular
excitations. A detailed study of photon entanglement in the
presence of surface plasmons is currently under way.
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APPENDIX A: DERIVATION OF THE
DYNAMICAL EQUATION

The propagation of an electric field E(r,t) in the presence
of multiple interfaces is solved using a Green’s function
approach. The electric field due to a current source of j (r,t)
is determined by the well-known differential wave equation

[
1

c2
ε(r)

(
∂

∂t

)2

+ ∇ × ∇ ×
]

E(r,t) = −µ0
∂

∂t
j (r,t), (A1)

where ε(r) is the complex relative permittivity of a di-
electric. We assume here for simplicity that the permit-
tivity of the interfaces does not depend on the radiation
frequency, which is the case for the interface that we are

studying.3 The constants c and µ0 are the speed of light
and permeability of free space, respectively. The solution to
Eq. (A1) in terms of the dyadic Green’s function G(r,t ; r ′,t ′)
is

E(r,t) = −µ0

∫ ∫
dt ′d3r ′G(r,t ; r ′,t ′)

∂

∂t ′
j (r ′,t ′). (A2)

We assume that each emitter consists of a charge q (the
“electron”) that performs small oscillations of amplitude
x(j )(t) around a fixed position r (j ) at which a charge −q (the
“nucleus”) is placed. The current density j (r ′,t ′) produced by
emitter j can then be written as

j (r ′,t ′) = qδ(r ′ − r (j ))ẋ(j )(t ′). (A3)

This current density contains the complete information about
the radiation field produced by both the electron and the resting
nucleus and determines the radiative electric field through
Eq. (A2). In addition one generally needs to include the electric
Coulomb field of a charge distribution. However, because
the oscillation amplitudes of the electron are small and the
total charge of the emitter is zero, each oscillator essentially
describes a point dipole with dipole moment p = qx(t). We
then can ignore the Coulomb contribution so that each emitter
can be thought of as an oscillating point dipole. Inserting
Eq. (A3) into Eq. (A2) then yields the electric field (2)
produced by emitter j .

The radiative Green’s function G(r,t ; r ′,t ′) is a retarded
solution to[

1

c2
ε(r)

(
∂

∂t

)2

+ ∇ × ∇ ×
]

G(r,t ; r ′,t ′)

= Iδ(r − r ′)δ(t − t ′). (A4)

The Green’s functions in frequency domain and Cartesian
coordinates are derived from the equation[

∂

∂rγ

∂

∂rµ

− δγµ

(
� + ω2

c2
ε(r,ω)

)]
Gµν(r,r ′,ω)

= δγ νδ(r − r ′), (A5)

where the indices indicate the appropriate Cartesian coordi-
nates. Considering that the sources are located in region 3, the
solution to Eq. (A5) is [24]

Gµν(r,r ′,ω) =
[
k−2

3

∂

∂rµ

∂

∂rν

+ δµν

]
eik3|r−r ′|

4π |r − r ′| , (A6)

where k3 = √
ε3

ω
c

. The Green’s functions corresponding to
the reflected and transmitted fields are obtained by solving the

3We remark that our methods have a much broader range of
validity. The central Eqs. (4) and (6) of our investigation can also be
derived using a temporal Laplace transform by exploiting the relation
FT(f )(ω) = limη→0 LT(f )(η − iω) between the Fourier transform
FT of a function f (t) and its Laplace transform LT. Equation (4) is
then valid for an arbitrary frequency dependence of the permittivity.
Equation (6) holds for a frequency dependend permittivity provided
the Green’s function varies little over the frequency range of the
radiation pulse. This is the case if the medium is not resonant within
this frequency range.
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homogeneous equation[
∂

∂rγ

∂

∂rµ

− δγµ

(
� + ε3

ω2

c2

)]
Gµν(r,r ′,ω) = 0. (A7)

The solution to these equations with applied boundary condi-
tions are found in Appendix B.

Let us now assume that emitter j oscillates according to

x(j )(t) = x(j )(0)e−iωt−�t (A8)

for some frequency ω and a real, positive decay parameter
� � ω. Equation (2) then becomes

E(j )(r,t) = −µ0q

∫ ∞

−∞
dt ′G(r,r (j ),t − t ′)

× (� + iω)2x(j )(0)e−iωt ′−�t ′

= −µ0q(� + iω)2 e−iωt−�t

× G(r,r (j ),ω − i�) x(j )(0), (A9)

where G(r,r (j ),ω − i�) is the analytic continuation of the
temporal Fourier transform of G(r,r (j ),t) into the lower half
plane.

Noting the pole at ω1 = ω − i� and applying calculus of
residues, the electric field is then

E(j )(r,t) = − µ0qG(r,r (j ),ω − i�)(� + iω)2x(j )(0)e−iωt−�t .

(A10)

Inserting Eq. (A10) and Eq. (A8) into Eq. (1) gives[
(� + iω)2 + ω2

0

]
x(j )(t)

= q

m

[
E(r (j ),t) − µ0q

N∑
i=1

G(r (j ),r (i),ω − i�)

× (� + iω)2x(i)(t)

]
. (A11)

APPENDIX B: GREEN’S FUNCTIONS OF A
THREE-LAYER DIELECTRIC

Using the method of Ref. [30] (see also Ref. [31]) the dyadic
Green’s functions of a multiple-layered planar dielectric are
solved. Due to the translational invariance of the problem of a
planar dielectric interface, it is useful to decompose the Green’s
function into transverse and normal components through the
Fourier transform

Gµν(r,r ′,ω) =
∫

d2kp

(2π )2
eikp ·(rp−r ′

p)G̃µν(kp,ω; z,z′), (B1)

where kp is the wave-vector component tangential to the
interface and rp is the corresponding position component.

For sources located in region 3 (z′ > d) and z > d the
elements of G̃µν(kp,ω; z,z′) are

G̃xx = 1

k2
p

e−iβ3(z+d)
[−k2

xR̃
TM
3,2 Zxx(kp,z′) + k2

yR̃
TE
3,2Zyy(kp,z′)

]
,

(B2)

G̃xy = − kxky

k2
p

eiβ3(z−d)[R̃TM
3,2 Zxx(kp,z′) + R̃TE

3,2Zyy(kp,z′)
]
,

(B3)

G̃xz = − kx

kp

R̃TM
3,2 Zxz(kp,z′)eiβ3(z−d), (B4)

G̃yx = G̃xy, (B5)

G̃yy = G̃xx, kx ↔ ky, (B6)

G̃yz = G̃xz, kx ↔ ky, (B7)

G̃zx = kx

β3
R̃TM

3,2 Zxx(kp,z′)eiβ3(z−d), (B8)

G̃zy = ky

β3
R̃TM

3,2 Zxx(kp,z′)eiβ3(z−d), (B9)

G̃zz = kp

β3
R̃TM

3,2 Zxz(kp,z′)eiβ3(z−d), (B10)

and for z < 0 the terms are

G̃xx = 1

k2
p

e−iβ1z
[
k2
xS̃

TM
3,1 Zxx(kp,z′) + k2

yS̃
TE
3,1Zyy(kp,z′)

]
,

(B11)

G̃xy = kxky

k2
p

e−iβ1z
[
S̃TM

3,1 Zxx(kp,z′) − S̃TE
3,1Zyy(kp,z′)

]
, (B12)

G̃xz = kx

kp

S̃TM
3,1 Zxz(kp,z′e−iβ1z), (B13)

G̃yx = G̃xy, (B14)

G̃yy = G̃xx, kx ↔ ky, (B15)

G̃yz = G̃xz, kx ↔ ky, (B16)

G̃zx = kx

β3
S̃TM

3,1 Zxx(kp,z′)e−iβ1z, (B17)

G̃zy = ky

β3
S̃TM

3,1 Zxx(kp,z′)e−iβ1z, (B18)

G̃zz = kp

β3
S̃TM

3,1 Zxz(kp,z′)e−iβ1z, (B19)

where

Zxx(kp,z′) = iβ3

2k2
3

eiβ3|d−z′ |, (B20)

Zyy(kp,z′) = i

2β3
eiβ3|d−z′ |, (B21)

Zxz(kp,z′) = ikp

2k2
3

eiβ3|d−z′| , (B22)

with βi =
√

k2
i − k2

p and ki = √
εi

ω
c

.

The transmission and reflection of radiation at the interface
is characterized by the generalized Fresnel reflection and
transmission coefficients. Consider a series of interfaces,
where i increases for z increasing in z > 0. For reflection
in region i, from an interface between regions i and i − 1, the
generalized reflection coefficients are

R̃
TM/TE
i,i−1 = R

TM/TE
i,i−1 + R̃

TM/TE
i−1,i−2e

i2βi−1(di−1−di−2)

1 + R
TM/TE
i,i−1 R̃

TM/TE
i−1,i−2e

i2βi−1(di−1−di−2)
. (B23)
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The generalized transmission coefficients are

T̃
TM/TE
i,j =

i∏
m=j+1

T
TM/TE
m,m−1 eiβm(dm−dm−1)

1 + R
TM/TE
m,m−1R̃

TM/TE
m−1,m−2e

i2βm−1(dm−1−dm−2)
.

(B24)

These are expressed in the usual Fresnel coefficients:

RTM
i,i−1 = εi−1βi − εiβi−1

εi−1βi + εiβi−1
, (B25)

RTE
i,i−1 = βi − βi−1

βi + βi−1
, (B26)

T TM
i,i−1 = 2εiβi−1

εi−1βi + εiβi−1
, (B27)

T TE
i,i−1 = 2βi

βi + βi−1
. (B28)

APPENDIX C: STATIONARY PHASE METHOD

To evaluate the two-dimensional integral in Eq. (B1) we
use the stationary phase method (see, e.g., Ref. [32]). There
are two contributions to the phase of the integrand: the Fourier
transform term and the phase of the Green’s function itself,
which depends on the phase of the Fresnel coefficients and a
phase factor that depends on the position z′ of the source.
Because the film thickness d is much smaller than λ, the
Fresnel coefficients vary slowly with kp. For this reason we
need only to consider the position of the source. For brevity
we here only discuss the Green’s function for the observation
point r in region 1 and the source position r ′ in region 3.
Because of the general form of the Green’s function in this
case [see Eqs. (B11)–(B19)], integral (B1) can generally be
written as

Gµν(r,r ′,ω) =
∫

d2kp

(2π )2
eikp ·(r−r ′)e−iβ1zeiβ3|d−z′ |

×Dµν(kx,ky,ω), (C1)

where the coefficients Dµν(kx,ky,ω) are related to the Fresnel
coefficients and can be formally defined as Dµν(kx,ky,ω) =
G̃µν(kp,ω; z,z′)eiβ1ze−iβ3|d−z′ |. The phase term of interest is
then

� = kp · (r − r ′) − β1z + β3|d − z′|. (C2)

Recognizing that z′ > d and that kp = (kx,ky,0) is the same
in regions 1 and 3, we get

� = kx(x − x ′) + ky(y − y ′) − β1z + β3(z′ − d). (C3)

The phase is then expanded in powers of k1r . To do so we
introduce the quantities

sx = x

r
, sy = y

r
, (C4)

s ′
x = x ′

r
, s ′

y = y ′

r
, (C5)

p = kx

k1
, q = ky

k1
, (C6)

sz = z

r
= (

1 − s2
x − s2

y

)1/2
, (C7)

s ′
z = z′

r
= (

1 − s ′2
x − s ′2

y

)1/2
, (C8)

m = −β1

k1
= −(1 − p2 − q2)1/2, (C9)

m′ = β3

k1
= +

[ (
k3

k1

)2

− p2 − q2

]1/2

, (C10)

where (sx,sy,sz) determine the direction of the observation
point relative to the source, and p and q are rescaled integration
variables. We can then express the phase as

� = k1r[p(sx − s ′
x) + q(sy − s ′

y) + msz + m′s ′
z]. (C11)

The integral is evaluated in the limit of large k1r . The
stationary points are determined by setting the derivatives
∂�/∂p and ∂�/∂q to zero, which yields

sx − s ′
x

sz + s ′
z

m
m′

= p

m
and

sy − s ′
y

sz + s ′
z

m
m′

= q

m
. (C12)

Because r  r ′ we generally have s ′
i � si . This is not true if

we observe the far field very close to the z axis (so that sx ≈ s ′
x)

or very close to the plane of the interface (so that sz ≈ s ′
z).

Ignoring these special cases we can simplify the stationary
points to

sx

sz

= p

m
and

sy

sz

= q

m
, (C13)

which is the usual result of the far-field approximation that k
and r are parallel.

To determine the contribution of the critical points to the
integral the second-order partial derivatives at the stationary
points must be evaluated. These evaluated derivatives are

∂2�

∂x2
= −

[
1 +

(
sx

sz

)2 ]
, (C14)

∂2�

∂y2
= −

[
1 +

(
sy

sz

)2 ]
, (C15)

∂2�

∂x∂y
= − sxsy

s2
z

. (C16)

If we parametrize the stationary point as p = kx

k1
= sin φ cos θ

and q = ky

k1
= sin φ sin θ , the Green’s function in the stationary

phase approximation becomes

Gµν(r,r ′,ω) = i

2π

(
ki

r

z

r

)
eik1re−ik1 sin φ(cos θx ′+sin θy ′)

× e−iβ1zeiβ3|d−z′ |

×Dµν(k1 sin φ cos θ,k1 sin φ sin θ,ω). (C17)

The terms βj = kz,i are evaluated at kp = k1 sin φ, such

that βj =
√

k2
j − k2

1 sin2 φ. The effect of the stationary phase
method on the integral is a leading term that is proportional
to z. This results in the vanishing of terms near the boundary
with the exception of those tied to TE radiation. Expressing
Dµν in terms of G̃µν then yields Eq. (11).
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