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Deterministic source of a train of indistinguishable single-photon pulses
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We present a mechanism to produce indistinguishable single-photon pulses on demand from an optical cavity.
The sequences of two laser pulses generate, at the two Raman transitions of a four-level atom, the same
cavity-mode photons without repumping of the atom between photon generations. Photons are emitted from the
cavity with near-unit efficiency in well-defined temporal modes of identical shapes controlled by the laser fields.
The second-order correlation function reveals the single-photon nature of the proposed source. A realistic setup
for the experimental implementation is presented.
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I. INTRODUCTION

Deterministic sources of high-quality single-photon (SP)
states are of great importance for quantum-information pro-
cessing [1]. A basic requirement for many quantum optics
applications, including quantum computing with linear optics
[2,3], quantum cryptography [4], and entanglement swapping
[5], is to have single photon pulses with well-defined identical
shapes, frequency, and polarization, as these schemes based on
photon-interference effects are very sensitive to the parameters
of SP pulses and their repetition rate. A good source has to en-
sure a pure SP state without mixture from both the multiphoton
and zero-photon states, as well as prevent the entanglement
between the photons, which degrades the purity of the SP
state. Since the individual photons are usually emitted during
the spontaneous decay of atomic systems, the SP sources
must be immune to the environmental effects that induce the
dephasing of atomic transitions. Most of the schemes proposed
earlier to produce single photons on demand from solid-state
single emitters [6], organic molecules [7,8], and quantum
dots [9,10] are confronted with this difficulty. Besides, they
do not offer a high efficiency because of the isotropic nature of
fluorescence, which prevents photon collect, not to mention the
spectral dephasing and inhomogeneity of solid-state emitters.
Deterministic sources of single photons are realized also in
cold atomic ensembles with a feedback circuit [11,12]. But
these schemes are not suitable for generating SP train with an
arbitrary repetition rate because of strong temporary bounds
caused by the feedback and write-read processes.

At present, all these requirements can be achieved together
with a �-type atom trapped in high-finesse optical cavities
[13–16], where the single photons are generated via vacuum-
stimulated Raman scattering of a classical laser field into
a cavity mode. These systems not only provide a strong
interaction between a photon and an atom but also support
very high collection efficiency because the photons leave the
cavity through one mirror with a transmissivity incomparably
larger than that of the opposite one. By carefully adjusting
the parameters of the laser pulse one can also easily control
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the wave form of output single photons. However, the main
disadvantage of these schemes is the necessity to use a
repumping field to transfer the population of the atom to its
initial state after the generation of a cavity photon and only then
to generate the next one. In this paper we propose a scheme
featuring a double-Raman atomic configuration, which is able
to deterministically generate a stream of identical SP pulses
without using the repumping field, while maintaining the high
generation efficiency, as well as providing simple control of
the output photon wave forms. The removal of the repumping
field is a principal task, because its usage strongly restricts
the process: The repetition rate of emitting photons is limited
by the acting time of the repumping field. Unlike this, our
mechanism allows us to freely change the repetition rate of
the single-photon pulses up to zero, because even in this case
nonentangled single photons are generated. One of the most
important applications of this property is to generate Fock
states with a programmable number of photons. Moreover, in
the good-cavity limit (atom-cavity mode coupling is larger than
the cavity decay rate) our scheme can serve as an one-atom
laser with a controllable statistics of generated photons that
allows the quantitative study of the quantum-to-classical tran-
sition in our system raised with gradual change of parameters.
It is worth noting that a similar scheme without repumping
field was employed in [17] for generating a sequence of single
photons of alternating polarization.

This paper is organized as follows. In the next section we
present the generic atomic system and derive the basic equa-
tions for the time evolution of the atomic state amplitudes and
the cavity field. Here we find the analytic solutions for the flux
and numbers of output photons and discuss the main features of
the model. Then, in Sec. III we consider the generation of cav-
ity photons under more realistic conditions when all relevant
atomic levels and the spontaneous decays are taken into ac-
count. In Sec. IV the results for the correlation between cavity
photons are presented, demonstrating the single-photon nature
of the source. Our conclusions are summarized in Sec. V.

II. THE GENERIC FOUR-LEVEL ATOM

Our scheme, illustrated in Fig. 1, involves a four-level atom
trapped in a one-mode high-finesse optical cavity. The two
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FIG. 1. (Color online) Schematic setup. (a) A single atom trapped
in a high-Q cavity is driven by two laser pulses. (b) Relevant atomic
level structure in an external magnetic field. Shown is the case when
the Landé gL factors of the ground and excited states have opposite
signs. (c) Sequence of laser pulses and generated cavity output single
photons.

ground states 1 and 2 and two upper states 3 and 4 of the
atom are Zeeman sublevels [Fig. 1(b)], which are split by a
magnetic field acting perpendicular to the cavity axis. The
atom is initially prepared in one of the ground states, for
instance, in state 1 of magnetic quantum number m = 0, and
interacts in turns with a sequence of two pumping fields as
shown in Fig. 1(a). At first, a coherent σ+ polarized field of
Rabi frequency �1 applied between ground state 1 and excited
state 4 transfers the atom to ground state 2 while creating a
cavity-mode Stokes photon. Then, after a programmable delay
time τd , which is larger as compared to the pump pulse duration
T , the σ− polarized pump pulse �2 generates the anti-Stokes
photon at the 3 → 1 transition and transfers the atom back
to ground state 1. The Stokes and anti-Stokes photons have
identical frequencies, so that the cavity is coherently coupled
to the atom on both transitions 4 → 2 and 3 → 1 with the
coupling constants g1 and g2, respectively, resulting in the
generation of linearly polarized cavity photons in both cases.
The laser fields are tuned to the two-photon resonance, while
the one-photon detunings are very large compared to the cavity
damping rate k and the Larmor and Rabi frequencies: �i � k,

�(g,e)
B ,gi,�i, i = 1,2, where �(g,e)

B = g(g,e)
L µBB is Zeeman

splitting of atomic levels in the magnetic field B with g(g,e)
L the

Landé factor of the ground and excited states and µB the Bohr
magneton. This condition makes the system robust against
the spontaneous loss from upper levels and dephasing effects
induced by other excited states. More importantly, in the off-
resonant case the Raman process with effective atom-photon
coupling Gi = gi�i/�i,i = 1,2, can be made much slower
than the cavity field decay: Gi � k. This ensures that a gener-
ated photon leaves the cavity long before the next cavity photon
is emitted and, hence, no entanglement between the photons
will be created, if we also take into account that the coherence
between atomic ground states is always zero. Therefore, we
can construct identical wave packets for outgoing photons
independently from each other, as they are entirely determined
by the temporal shape of the corresponding pump pulse. A
remarkable feature of our scheme is that, despite the smallness

of G1,2, it is able to produce cavity photons with near-unit
efficiency, as discussed in more detail in the following.

Despite of its simplicity, the four-level scheme is realized,
for example, in the atom of the lithium isotope 6Li (or 40Ca+)
with the ground states 2S1/2(F = 1/2,mF = ∓1/2) and exited
states 2P1/2(F ′ = 1/2,mF ′ = ∓1/2) as the states (1,2) and
(3,4) in our scheme, respectively. The central drawback of this
scheme is that the spontaneous decay of upper states into the
ground state 2S1/2(F = 3/2) constitutes a loss channel that
moves the system outside the considered level configuration.
However, we show that even in this case, for reasonable values
of parameters, the atom can generate about 70 identical SP
pulses before falling into the ground F = 3/2 state. To restore
the generation a repumping field must be applied to transfer the
atom into the initial state. For continuous generation of single
photons, a closed system can be used by employing cycling
transitions, for example, of the D2 line in the 87Rb atom with
5S1/2(F = 2) and 5P3/2(F ′ = 3) as the ground and excited
states. In this case, the only limitation is the atom lifetime
in cavities, which amounts to at most one minute [16]. When
analyzing this system all Zeeman sublevels participating in the
interaction with the laser pulses must be taken into account.
However, we show in the next section that owing to the fact
that no coherence is created between the Zeeman sublevels
the results of four-level scheme is easily generalized to this
complicated case. In this sense the four-level atom serves as a
generic scheme for multilevel atoms.

Here we derive the equations for atomic and cavity field
operators in the case of a four-level atom. Using analytical
solutions of these equations, we calculate the number and
flux of cavity photons, which determine the SP detection time
distribution or the shape of SP wave packets.

The laser fields propagating perpendicular to the cavity axis
are given by

Ej (t) = Ej f
1/2
j (t) exp(−iωj t), j = 1,2. (1)

where f1(t) = ∑N
l=1f

l
1(t) and f2(t) = ∑N

l=1f
l
2(t − τd ) repre-

sent the sum of N well-separated temporal modes with profiles
f l

1(t) and f l
2(t − τd ) for the lth temporal mode in the pump

series 1 and 2, respectively. Ej is the peak amplitude of the
field j.

In the far off-resonant case, we can adiabatically eliminate
the upper atomic states 3 and 4 and write the effective
Hamiltonian in the rotating-wave approximation (RWA) as

H = h̄
[
G1f

1/2
1 (t)σ21 + G2f

1/2
2 (t)σ12

]
a† + H.c. (2)

with σij and a(a†) the atomic and cavity mode operators,
respectively. The peak Rabi frequencies of the laser fields are
given by �1 = µ41E1/h̄,�2 = µ32E2/h̄ with µij the dipole
matrix element of the i → j transition.

For �i and gi of the same order, the Stark shifts of the
atomic ground levels, of the form �2

i fi(t)/�i and g2
i /�i , are

negligibly small with respect to the cavity linewidth k in the
bad-cavity limit, Gi � k, as considered here.
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The system evolution is described by the master equation
for the whole density matrix ρ for the atom and cavity
mode [18]:

dρ

dt
= − i

h̄
[H,ρ] + dρ

dt

∣∣∣∣
rel

, (3)

where the second term in the right-hand side (r.h.s.) accounts
for all relaxations in the system. With the use of the Lindblad
operator L[Ô]ρ = ÔρÔ† − (Ô†Ôρ + ρÔ†Ô)/2 it is written
in the form

dρ

dt

∣∣∣∣
rel

= kL[a]ρ + �1(t)L[σ21]ρ + �2(t)L[σ12]ρ

− (�1,outσ11 + �2,outσ22)ρ. (4)

The first term on the r.h.s. of this equation represents the cavity
output coupling, while the second and third terms describe the
optical pumping (OP) to ground states 2 and 1 from the states
1 and 2, respectively, and give rise to noise of corresponding
rates

�1(t) = �2
1

�2
f1(t)γ42, �2(t) = �2

2

�2
f2(t)γ31. (5)

The last term of Eq. (4) introduces the losses of atomic
population due to the decay of upper atomic states 3 and 4
into states outside of the system with rates γ3,out and γ4,out,
respectively:

�1,out(t) = �2
1

�2
1

f1(t)γ4,out = �1,outf1(t), (6a)

�2,out(t) = �2
2

�2
2

f2(t)γ3,out = �2,outf2(t). (6b)

The spontaneous emission channel corresponding to the
cycling transition returning the atom back to the starting
state should be in principle included. However, in contrast to
the decays of Eqs. (5) and (6), this channel neither changes the
population of the system nor leads to any noises, and therefore
it can be ignored.

Our aim is to find the flux of the output photons,

dnout(t)

dt
= 〈a†

out(t)aout(t)〉, (7)

which describes the sequence of outgoing SP wave packets.
Here nout(t) is the mean photon number of the output
field aout(t) from the cavity which is connected with the
input ain(t) and intracavity a(t) fields by the input-output
formulation [18]

aout(t) − ain(t) =
√

ka(t) (8)

and satisfies the commutation relation [aout(t),a
†
out(t

′)] =
[ain(t),a†

in(t ′)] = δ(t − t ′). With the Hamiltonian (1), the
Heisenberg-Langevin equation for a(t) is given by [18]

ȧ = −iG1f
1/2
1 (t)σ21 − iG2f

1/2
2 (t)σ12 − (k/2)a −

√
kain(t).

(9)

In the bad-cavity limit, k � G1,2, we adiabatically eliminate
the cavity mode a(t), yielding

a = −2i

k

[
G1f

1/2
1 (t)σ21 + G2f

1/2
2 (t)σ12

] − 2√
k
ain(t). (10)

Upon substituting this solution into the Hamiltonian, for
the case of a vacuum input 〈a†

in(t)ain(t)〉 = 0, we eventu-
ally obtain from Eq. (3) the following equations for the
photon flux:

dnout(t)

dt
= α1f1(t)〈σ11(t)〉 + α2f2(t)〈σ22(t)〉 (11)

and for atomic variables i,j = 1,2; j 	= i,

〈σ̇ii(t)〉 = −[αifi(t) + �i(t) + �i,out(t)]〈σii(t)〉
+ [αjfj (t) + �j (t)]〈σjj (t)〉, (12)

〈σ̇21(t)〉 = −1

2

2∑

i=1

[αifi(t) + �i(t)]〈σ21(t)〉, (13)

which are subjected to initial conditions 〈σ11(−∞)〉 = 1,

〈σ22(−∞)〉 = 〈σ21(−∞)〉 = 0. Here

αi = 4G2
i /k,i = 1,2. (14)

Thus, in the bad-cavity limit the problem is reduced
to the solution of the dynamical equations for the atom.
Equations (12) are easily solved analytically. However, the
final solutions are lengthy and will be given here only
graphically. We first discuss some properties of Eqs. (11)–(13).
It is seen that state 1 (and similarly state 2) is populated in two
ways: (i) via cavity-photon generation with the rate α1(2)(t)
and (ii) by optical pumping of rate �1(2)(t), which gives for
the signal-to-noise ratio Rsn = 4g2

1(2)/(kγ42(31)), which must
be quite large: Rsn � 1. The second observation is that the
overall population of the atom after a total of n pulses of two
laser sequences for αiT � 1 decreases as

〈σ11(t) + σ22(t)〉|t�(n−1)τd+T = (1 − n�out/α). (15)

Here it is assumed that �1out = �2out = �out, α1 = α2 = α.
Thus, the population leakage is negligibly small until
nα/�out < 1. Further, the ground-state coherence is always
zero: 〈σ21(t)〉 = 0, as expected due to the spontaneous nature
of Raman transitions. Finally, from the explicit expression
of the flux calculated from Eq. (7) for one pump pulse and
considering that for �out = 0

dnout(t)

dt
= α1f1(t)e−α1

∫ t

−∞ f1(t ′)dt ′ , (16)

we conclude that the wave form of the emitted single photon is
simply related to the shape of the pump pulse and, thereby,
is much easier to control compared to schemes proposed
so far in literature, where this dependence is in integral
form [14,19,20]. From this equation one finds nout(t) = 1 −
exp[−α1

∫ t

−∞ f1(t ′)dt ′], showing that our system is able to
produce photons with near-unit efficiency, if

αiT � 1. (17)

In Fig. 2 the calculated flux and total number of output
photons, as well as the populations of atomic ground states,
are shown for the case when each laser sequence contains
four Gaussian-shaped subpulses with duration T = 1 µs cor-
responding to a linewidth of 1 MHz. The atom is initially
in the ground state 1. We present the results for cavity-
photon generation with wavelength λ ∼ 671 nm on the D1
line transition 2P1/2(F ′ = 1/2) → 2S1/2(F = 1/2) in the 6Li
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FIG. 2. (Color online) Flux in the units of k (a), total number of
output field photons (b), and population of atomic ground states 1
(solid) and 2 (dashed) (c) as a function of time (in units of k−1), in
the case when four identical pulses of each laser beam [red-dashed
and blue-dotted in (a)] are applied with delay time τd = 3 µs. For the
rest of the parameters see the text. The scale of output pulses in (a) is
increased by a factor of 3.

atom obtained with the following parameters: �1,2 = 2π × 10
MHz = 0.1�(�1 � �2 = �), (g1,2,k,γsp)/2π = (10,3,5.87)
MHz, and γ3,out = γ4,out ∼ γsp, γsp being the natural linewidth
of Li atom. A magnetic field of 10 G produces the Zeeman
splitting �B/2π = 7 MHz. These parameters are within
experimental reach and ensure the fulfillment of all the
necessary conditions indicated here. The results demonstrate
two important features of the scheme. The photons are
generated deterministically at the leading edge of each pump
pulse with identical duration Tcav ∼ T/2 and time-symmetric
wave packets. The efficiency of one-photon generation by each
pump pulse is close to 100% [see Fig. 2(b)]. As one can
see in Figs. 2(a) and 2(c), the peak values of the generated
SP pulses and of the atomic populations display a slight
decrease in time caused by population losses through the
channel 2P1/2(F ′ = 1/2) → 2S1/2(F = 3/2). Because of this
fact the total number of emitted photons does not reach its
maximum value of 8 [Fig. 2(b), solid line]. Nevertheless, from
Eq. (15) it follows that about nout ∼ α/�out � Rsn � 70 cavity
photons are generated before the losses become significant. For
comparison, nout is shown also for the lossless case of �out = 0
[Fig. 2(b), dashed line].

III. CONTINUOUS GENERATION OF SP PULSES
FROM ALKALI ATOMS

The continuous generation of SP pulses of identical polar-
ization is possible on the cycling transitions of alkali atoms
with F ′,F 	= 0. As an example we consider the transition
5S1/2(F = 2) → 5P3/2(F ′ = 3) in the 87Rb atom where the
state 5P3/2(F ′ = 3) is well isolated from other hyperfine levels.
Using the fact that Zeeman coherence is always 0, the results of

the previous section are easily generalized to this case, leading
to an expression for the photon flux of

dnout(t)

dt
= f1(t)

F−1∑

mF =−F

α1,mF
〈σmF

(t)〉

+ f2(t)
F∑

mF =−F+1

α2,mF
〈σmF

(t)〉, (18)

where σmF
(t) is the population of the ground Zeeman sublevel

|F,mF 〉, while α1,mF
and α2,mF

are the probabilities of two-
photon transitions |F,mF 〉 → |F,mF + 1〉 and |F,mF 〉 →
|F,mF − 1〉 with absorbing one laser photon from the σ+ and
σ− pump pulses and emitting one cavity photon, respectively.
They have the same form as the probabilities α1,2 obtained in
Eq. (14) for the four-level system.

The equation for the Zeeman sublevel populations takes the
form

〈σ̇mF
(t)〉 = A

(1)
mF −1(t)〈σmF −1(t)〉 + A

(2)
mF +1(t)〈σmF +1(t)〉

− [
A(1)

mF
(t) + A(2)

mF
(t) + �

(1)
mF ,mF +2(t)

+�
(2)
mF ,mF −2(t)

]〈σmF
(t)〉 + �

(1)
mF −2,mF

(t)〈σmF −2(t)〉
+�

(2)
mF +2,mF

(t)〈σmF +2(t)〉, (19)

where

A(1)
mF

(t) = f1(t)α1,mF
+ �

(1)
mF ,mF +1(t), (20)

A(2)
mF

(t) = f2(t)α2,mF
+ �

(2)
mF ,mF −1(t). (21)

The expression (19) includes all OP rates, where �
(1)
mF ,mF +1(t)

and �
(1)
mF ,mF +2(t) describe the OP from |F,mF 〉 into the states

|F,mF + 1〉 and |F,mF + 2〉, respectively, induced by the
�1 pump pulse and similarly �

(2)
mF ,mF −1(t) and �

(2)
mF ,mF −2(t)

represent the OP caused by the �2 pulse. The first term on the
r.h.s. of Eq. (18) describes the generation of cavity photons
by the �1 field initialized from the Zeeman sublevels −F �
mF � F − 1. Similarly, the flux of output photons generated
by �2 from corresponding Zeeman levels is determined by the
second term in Eq. (18). A remarkable feature of multilevel
Zeeman systems is that more than one cavity photon per laser
pulse can be emitted. This is achieved for sufficiently high
laser power, when the atomic population prepared initially, for
example, in the state |F, − F 〉 is completely transferred to
the extreme right state |F,F 〉, ensuring the maximal number
of output photons, nout = 2F . This property can be used to
produce Fock states with a given number of photons. Thus,
to guarantee single-photon emission in our scheme, the laser
power has to be appropriately chosen, in contrast to the case of
the four-level atom, where the condition (17) simply imposes
a minimum laser intensity.

Figure 3 presents the time dependence of the flux and the
total number of output photons generated on the transition
5S1/2(F = 2) → 5P3/2(F ′ = 3) in the 87Rb atom in the case
of four Gaussian-shaped laser subpulses. To provide the
single-photon generation, the duration and intensity of laser
subpulses are taken as half the values of those used in Sec. II.
Two important features are readily seen. First, Fig. 3(a) shows
that the first few SP pulses are different from the next ones.
This is due to the asymmetry of the initial conditions. As a
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FIG. 3. (Color online) Flux (a) and total number (b) of output
cavity photons versus the time (in units of k−1) generated on the
cycling transition 5S1/2(F = 2) → 5P3/2(F ′ = 3) in the 87Rb atom.
The atom is initially in the state |F, − F 〉. The laser subpulses have
a duration T = 0.5 µs and the same delay time as in Fig. 2.

consequence, the number of initially generated output photons
[Fig. 3(b)] per pump pulse is not constant. However, after the
first few photons, a stable generation of identical SP pulses
occurs (from kt �100). Second, in contrast to Fig. 2, the SP
pulses are generated at the center of each pump pulse with
identical duration Tcav ∼ T and time-symmetric wave packets.
The efficiency of one-photon generation by each pump pulse
is again close to 100%, as seen from Fig. 3(b).

IV. PHOTON CORRELATIONS

The probability of a joint detection of two photons produced
in the train is given by the intensity correlation function

G(2)(t,τ ) = 〈a†
out(t)a

†
out(t + τ )aout(t + τ )aout(t)〉, (22)

where τ is the time delay between the two photon detections.
By applying the quantum regression theorem [18,21] and
using the input-output relation (8), the second-order temporal
correlation function G(2)(t,τ ) is reduced to

G(2)(t,τ ) = k[α1(t + τ )Z1(t,τ ) + α2(t + τ )Z2(t,τ )], (23)

where Zi(t,τ ) = 〈a†(t)σii(t + τ )a(t)〉,i = 1,2, as a function
of τ , obey equations similar to Eq. (11) with initial val-
ues Z1(t,0) = α2(t)〈σ22(t)〉/k and Z2(t,0) = α1(t)〈σ11(t)〉/k.
Since we are interested in the total probability of a joint
detection as a function of the time delay τ , we have to integrate
Eq. (23) over t . The results of numerical calculations for
G(2)(τ ) = ∫ ∞

−∞ G(2)(t,τ )dt are shown in Fig. 4. The temporal
structure of G2)(τ ) reveals the characteristics of a pulsed source
of light: The absence of a peak at delay time τ = 0 is evidence
of the single-photon nature of the source, and the individual
peaks are separated by the pump pulses’ delay. The decrease
in the peak amplitude of the probability of joint detection
for increasing delay time results from having a finite train of
emitted photons.

400 200 0 200 400
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0.5
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1.5

2.0

kτ

G
2

τ

FIG. 4. Intensity correlation integrated over the single-photon
train as a function of time delay τ between the two photon detections.
The parameters are the same as in Fig. 2.

V. CONCLUSIONS

In conclusion, we have proposed a robust and realistic
source of indistinguishable single photons with identical
frequency and polarization generated on demand in a well-
defined spatio-temporal mode from a coupled double-Raman
atom-cavity system. We have considered two cases of four-
level systems (6Li or 40Ca+) and atoms with many Zeeman
sublevels and have shown that in the first case the number
of generated SP pulses is limited by the decay of atomic
states outside of the system, while in the second one the
continuous SP generation is achievable (e.g., in 87Rb atoms).
The high efficiency and simplicity of the scheme, free from
such complications as a repumping process and environmental
dephasing, makes the generation of many SP identical pulses
feasible. We have shown the ability of our scheme to produce
a sequence of narrow-band SP pulses with a delay determined
only by the pump repetition rate. Such a controlled scheme may
pave the way to single-photon-based quantum-information
applications, such as deterministic all-optical quantum com-
putation and quantum communication.

Our scheme allows us, as well, to generate Fock states by
two different mechanisms. As is mentioned in Sec. III, Fock
states containing a fixed number of photons can be generated
from each pump subpulse if multilevel atoms with ground
state F � 1 are used and laser fields are sufficiently strong. In
the second mechanism, the generation of Fock states with a
programmable number of photons is possible with overlapped
weak pump pulses even in the case of four-level systems such
as 6Li atoms or 40Ca+ ions. These questions will be addressed
in future publications.

ACKNOWLEDGMENTS

This research has been conducted in the scope of the
International Associated Laboratory IRMAS. We also ac-
knowledge the support from the French Agence Nationale
de la Recherche (project CoMoC), the Marie Curie Initial
Training Network Grant No. CA-ITN-214962-FASTQUAST,
the Scientific Research Foundation of the Government of the
Republic of Armenia (Project No. 96), Armenian SCS Grant
No. A-07, NFSAT Grant No. ECSP-09-85, and ANSEF Grant
No. PS-1993. Yu.M. thanks the Université de Bourgogne for
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