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From fast to slow light in a resonantly driven absorbing medium
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We theoretically study the propagation through a resonant absorbing medium of a time-dependent perturbation
modulating the amplitude of a continuous wave (cw). Modeling the medium as a two-level system and linearizing
the Maxwell-Bloch equations for the perturbation, we establish an exact analytical expression of the transfer
function relating the Fourier transforms of the incident and transmitted perturbations. It directly gives the gain
and the phase shift undergone in the medium by a harmonic modulation. For the case of a pulse modulation, it
enables us to determine the transmission time of the pulse center of mass (group delay), evidencing the relative
contributions of the coherent and incoherent (population) relaxations. We show that the group delay has a negative
value (fast light) fixed by the coherent effects when the cw intensity is small compared to the saturation intensity
and becomes positive (slow light) when this intensity increases, before attaining a maximum that cannot exceed
the population relaxation time. The analytical results are completed by numerical determinations of the shape of
the transmitted pulses in the different regimes.
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I. INTRODUCTION

Convincing demonstrations of fast light in a linear homoge-
neous medium were performed in the 1980s by exploiting the
steep anomalous dispersion associated with a well-isolated,
narrow, and strong absorption line of the medium, leading to
negative values of the group velocity [1,2]. Ideally bell-shaped
pulses can then propagate moderately, distorted in such a way
that the maximum of the transmitted pulse occurs before that
of the incident pulse. Time advances exceeding 0.5 times the
half-duration at half-maximum of the pulse envelope have been
so evidenced in experiments involving a true shape detection
of the latter [2] (see also [3,4]). More generally, due to the
causality principle (leading to the Kramers-Kronig relations),
fast light is expected every time that the carrier frequency of
the pulses coincides with the bottom of a well-marked dip
in the medium transmission and the pulse distortion resulting
from the first-order variations of the transmission and of the
group velocity versus frequency cancels when this coincidence
is exact [5]. The dip in the transmission may be natural or
created in various arrangements involving electromagnetically
induced absorption [6,7], stimulated Raman [8], or Brillouin
[9] scattering, and so on. The literature on fast light is abundant
(for reviews, see, e.g., [10–13]), but it seems that the fractional
pulse advance with moderate distortion reported in [2] has not
been overtaken. This is easily explained by remarking that,
since the transmission dip at the carrier frequency must be
well pronounced, there are spectral regions where the overall
transmission of the system is much larger. For obvious reasons
of noise (no matter its origin), instability and hypersensitivity
to small defects in the incident pulse shape, the usable
transmission dynamics cannot be too large and this limits the
observable fast-light effects in any linear system [14]. The
dynamics actually involved in the fast-light experiments do
not exceed 45 dB and are often much lower. The situation
is quite different in the slow-light experiments where the
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medium transmission is maximal at the carrier frequency
and can be very low on both sides of this frequency, with
transmission-dynamics exceeding 1000 dB [15,16].

In the present article, we study the propagation in an
absorbing medium of a continuous wave (cw) whose amplitude
is pulse modulated with a low modulation index. The medium
is modeled as a homogeneously broadened two-level system
(TLS) [17] with a resonance frequency ω0 and a relaxation
time T1 (T2) for the population difference (the coherence). We
assume that the cw is on exact resonance and we are interested
in the propagation of the pulsed part of the wave (the pulse)
whose optical spectrum is centered on ω0 and maximum at
this frequency. The pulse may thus be seen as a continuous
superposition of fields symmetrically detuned from the cw
field (sidebands) that probe the changes of the TLS properties
induced by the cw. The propagation in a strongly driven TLS
of two symmetrically detuned fields is a basic problem in
nonlinear optics [18,19]. When the sidebands are associated
with an amplitude modulation, it has been experimentally
evidenced [20] and theoretically demonstrated [18,21] that
the transmission of the modulation presents a maximum on
resonance for strong enough cw intensities. According to
our general analysis, the pulse propagation may be slow in
such conditions. On the other hand, when the cw intensity is
small compared to the saturation intensity, the TLS behaves
linearly both for the cw and the pulse, the propagation of
which is not modified by the presence of the cw (fast light
regime). Our main purpose is to analyze how the transition
from a fast to a slow light regime takes place when the cw
intensity increases. Our calculations take full account of the
depletion of the cw intensity during the propagation and are
made for arbitrary values of the relaxation times T1 and T2.
The corresponding results (mainly analytical) are new and it
seems that the possibility of switching from fast to slow light
in a TLS by simply adding a resonant cw to the pulses has not
been previously considered.

The arrangement of our paper is as follows. In Sec. II,
we specify the system under consideration and we establish
an exact analytical expression of its transfer function for the
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time-dependent part of the field envelope. This expression
directly gives the gain and the phase shift undergone in the
medium by a harmonic modulation, examined in Sec. III. The
propagation of pulses is studied in Sec. IV, with a special
attention paid to the transmission delay of their center of
mass (identified to the group delay). The analytical results
are completed by numerical determination of the envelope
of the transmitted pulses. We finally conclude in Sec. V by
summarizing the main results.

II. TRANSFER FUNCTION OF THE MEDIUM

As previously mentioned, we consider the case where the
cw is exactly resonant. The amplitude modulation is then an
eigenmode of modulation in the sense that it is conserved
during the propagation [22–24]. We denote � the thickness
of the medium, α its unsaturated absorption coefficient on
resonance for the intensity, and z (0 < z < �) the direction of
propagation of the wave assumed to be plane and polarized
along the x axis. We write the x component of the electric
field as

Ex(z,t) = Re[eiω0t Ẽ(z,t)], (1)

where Ẽ(z,t) is the slowly varying field envelope. As in all the
following, t is a local time, that is, the real time minus n0z/c,
c being the velocity of light in vacuum and n0 the refractive
index around ω0 of the eventual host medium. Denoting µ the
dipole matrix element for the transition (chosen real), R(z,t) =
µẼ(z,t)

h̄
the Rabi frequency, N (z,t) the population difference

per volume unit (N0 its value at equilibrium), and P̃ (z,t) the
envelope of the electric polarization induced in the medium;
it is convenient to introduce the dimensionless quantities
D = N

N0
, P = i P̃

N0µ

√
T1
T2

, and E = µẼ

h̄

√
T1T2 = R

√
T1T2. Note

that all these quantities are real for the resonant case considered
here and that I = E2 is the intensity normalized to the
saturation intensity. In such conditions, the Maxwell-Bloch
(MB) equations governing the system evolution take the simple
form

∂E

∂z
= −α

2
P, (2)

T2
∂P

∂t
= DE − P, (3)

T1
∂D

∂t
= −PE + (1 − D). (4)

These equations are easily solved when only the cw is present.
In the following we denote the corresponding values of E, P ,
D, and I by the index cw. Combining Eqs. (3) and (4), we find
Dcw(z) = 1/ [1 + Icw(z)] and Pcw(z) = Ecw(z)/ [1 + Icw(z)].
Replacing this result in Eq. (2), we get

∂

∂z
[Icw(z) + ln Icw(z) + αz] = 0, (5)

Iout + ln Iout = Iin + ln Iin − α�, (6)

where Iout and Iin are short-hand notations of Icw(�) and
Icw(0). When a small time-dependent perturbation δEin(t)
(also real for an amplitude modulation) is added to the
constant amplitude Ein = √

Iin of the field of the incident
cw, we search for solutions of the MB equations under the

form E(z,t) = Ecw(z) + δE(z,t), D(z,t) = Dcw(z) + δD(z,t)
and P (z,t) = Pcw(z) + δP (z,t). Taking into account the cw
solution, we get at the first order of perturbation

∂(δE)

∂z
= −α

2
δP, (7)

T2
∂(δP )

∂t
= EcwδD + DcwδE − δP, (8)

T1
∂(δD)

∂t
= −EcwδP − PcwδE − δD. (9)

These linear equations can be solved by introducing the Fourier
transforms �E(z,�), �P (z,�), and �D(z,�) of δE(z,t),
δP (z,t), and δD(z,t) [25]. From Eqs. (8) and (9), we get

�P (z,�) = [1 + i�T1 − Icw(z)] �E(z,�)

[1 + Icw(z)] [(1 + i�T1) (1 + i�T2) + Icw(z)]
.

(10)

Replacing this result in Eq. (7) and integrating on z, we
finally obtain the transfer function H (�) relating �Eout(�)
and �Ein(�), the Fourier transforms of δEout(t) = δE(�,t)
and δEin(t). It reads as

H (�) = exp

(∫ �

0
f (z,�) dz

)
, (11)

where

f (z,�) = α

2

Icw(z) − (1 + i�T1)

[1 + Icw(z)] [(1 + i�T1) (1 + i�T2) + Icw(z)]
,

(12)

is the complex gain factor at the abscissa z. By means of
Eq. (5), the integration on z in Eq. (11) can be transformed in
an integration on Icw. We get

H (�) = exp

[
1

2

∫ Iout

Iin

1 + i�T1 − Icw

Icw [(1 + i�T1) (1 + i�T2) + Icw]
dIcw

]
,

(13)

and finally

H (�) = exp

[
1 + i �T2

2

1 + i�T2
ln

(
Iin + (1 + i�T1) (1 + i�T2)

Iout + (1 + i�T1) (1 + i�T2)

)
− ln

√
Iin/Iout

(1 + i�T2)

]
, (14)

where Iout and Iin are related by Eq. (6). This expression of
H (�) is the central result of our paper. In the limit Iin � 1,
Iout ≈ Iin exp(−α�), and H (�) is reduced to exp(− α�

2(1+i�T2) ),
which as expected, is the transfer function of a linear medium
with a Lorentzian absorption line [5]. Quite generally, we see
that the poles of H (�) are in the half-plane Im (�) > 0 and
that H (−�) = H� (�). This ensures that the impulse response
h(t), the inverse Fourier transform of H (�), cancels for t < 0
and is real, confirming that the system is causal [25] and that the
amplitude modulation is an eigenmode of modulation. At the
first order of perturbation considered here, we finally remark
that

I (z,t) = [Ecw(z) + δE(z,t)]2 ≈ Icw(z) + 2δE(z,t)
√

Icw(z).

(15)
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FIG. 1. The driving wave (cw) at ω0 can modify the propagation
of the pair of sidebands at ω0 ± �.

This means, in particular, that a quadratic detection, as
currently used in optics, will deliver a time-dependent signal
δIout(t) proportional to δEout(t) and that the instantaneous
modulation indices for the intensity and for the field are such
that δI (z,t)

Icw(z) = 2 δE(z,t)
Ecw(z) in every point.

III. TRANSMISSION OF A HARMONIC MODULATION

When the amplitude modulation is harmonic of frequency
� (� > 0), the optical field has two sidebands at ω0 ±
� that both act as probes of the system driven at ω0

(Fig. 1). The modulus G(�) and the argument 	(�) of H (�)
are then, respectively, the gain and the phase shift of the
output amplitude modulation with respect to the input one.
The gain coefficient g(z,�) = Re [f (z,�)] and the phase-
shift coefficient ϕ(z,�) = Im [f (z,�)] are the corresponding
quantities per unit length. Due to the depletion of the cw
intensity Icw during the propagation, these latter quantities
depend on z. Note that the expression of g(z,�) derived from
Eq. (12) is consistent with the results given in [18,21], also
as in [20] for the particular case T1 = T2. Figures 2 and 3
show a set of profiles g(�) and ϕ(�) obtained for T2 = 2T1

(purely radiative relaxation) with various cw intensities. For
Icw � 1 (fully linear case), we obviously retrieve the gain and
dispersion profiles g(�) = − α

2(1+�2T 2
2 ) and ϕ(�) = α�T2

2(1+�2T 2
2 )

associated with a Lorentzian absorption line.
The gain coefficient (Fig. 2) keeps negative as long as Icw <

1. It cancels at � = 0 when Icw = 1 (absolute cw intensity
equal to the saturation intensity). Beyond, it becomes positive
in the frequency range � < �g =√

(I 2
cw−1)/(IcwT1T2+T 2

1 ), attain-
ing an absolute maximum α/16 for Icw = 3. When Icw � 1,
�g tends to the Rabi frequency associated with the cw field.
We also note that g(�) being an even function, g(0) = α(Icw−1)

2(Icw+1)2
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FIG. 2. Gain coefficient g(�) in α/2 units as a function of �

in 1/T1 units for T2 = 2T1. The different curves are labeled by the
corresponding value of the normalized intensity Icw.
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FIG. 3. Same as Fig. 2 for the phase-shift coefficient ϕ(�) in α/2
units.

is always an extremum of the gain coefficient. This extremum
is flat for Icw = b ±

√
b2 − T2/T1 with b = 3/2 + T1/T2 +

T2/2T1, that is, Icw = 3 ± √
7 when T2 = 2T1. Despite some

common points, the profiles g(�) significantly differ from
those obtained by using a probe independent of the driving
field [18,26–29]. They are a bit simpler, probably because
the amplitude modulation is an eigenmode of modulation
(contrary to the single sideband modulation). On the other
hand, the refractive index experienced by the optical probe
field, well defined for the single sideband case [30], is not
defined for the case of an amplitude modulation where the
probe field has two frequency components at ω0 ± � that are
not independent.

The phase-shift coefficient ϕ(�) (Fig. 3) has a maximum
ϕmax = α/4 (phase advance) at � = 1/T2 for Icw � 1 and
an absolute minimum ϕmin ≈ −0.078 α (phase lag) at � ≈
1.14/T1 for Icw ≈ 3.3. On the other hand, the slope dϕ

d�
|�=0

at the origin is also maximal for Icw � 1. This slope is half-
maximum, cancels, and attains its (negative) minimum for Icw,
respectively, equal to 0.135, 1/2, and 5/4.

Representative profiles of the (overall) gain G(�) and
phase shift 	(�) are shown Figs. 4 and 5 for α� = 10, with
various intensities Iin chosen according to criteria analog
to those used Figs. 2 and 3. The optical thickness retained
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FIG. 4. Gain G(�) as a function of � in 1/T1 units for T2 = 2T1

and α� = 10. The different curves are labeled by the corresponding
value of the normalized intensity Iin.
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FIG. 5. Same as Fig. 4 for the phase shift 	(�). The maximum
and minimum phase shift are, respectively, α�/4 = 2.5 rad at � =
1/T2 for Iin � 1 and −0.56 rad at � = 1.68/T1 for Iin ≈ 11.5.

is of the order of that actually used in [2]. When Iin � 1,
G(�) = exp[− α�

2(1+�2T 2
2 ) ], and 	(�) = α��T2

2(1+�2T 2
2 ) . Except for

this fully linear case, Eqs. (11) and (12) show that G(�)
and 	(�) are strongly affected by the depletion of the cw
intensity in the medium, often not taken into account in
the literature. This point is illustrated Fig. 6 where we give
the profile G(�) = exp [�g(�)], which would be obtained
by neglecting the cw depletion (i.e., by taking Icw(z) = Iin

everywhere). The depletion obviously forces one to use larger
incident cw intensities to obtain similar gain profiles and the
maximum gain is smaller. The difference is more important
when the optical thickness α� is very large. From Eqs. (6)
and (14), we find that the maximum gain then tends to√

α�/2 whereas it equals exp [α�/16] when the depletion is
neglected. There are obviously similar effects on the phase
shift 	(�).

The previous results take a very simple form in the limit
case where T2 is negligible compared to T1. The MB equations
are then reduced to the rate equations [17] that provide a good
description of the propagation of light in numbers of saturable
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FIG. 6. Same as Fig. 4 when the depletion of the driving wave is
not taken into account.

absorbers [31–36]. Putting T2 ≈ 0 in Eqs. (12) and (14), we
get

f (z,�) = − α

2 (1 + Icw)
+ αIcw

(1 + Icw)2

(
1

1 + i �T1
1+Icw

)
, (16)

H (�) =
√

Iout

Iin

(
1 + Iin + i�T1

1 + Iout + i�T1

)
. (17)

Apart from the term − α
2(1+Icw) independent of �, the complex

gain factor f (z,�) is identical to that of a Lorentzian gain
line of half-width at half-maximum (1 + Icw) /T1 with a gain
coefficient on resonance αIcw/ (1 + Icw)2 for the amplitude.
During the propagation in the medium, the modulation index
is magnified whereas the phase of the modulation is delayed
[35–38]. The magnification K(�) of the modulation index and
the phase lag L(�) = −	(�) for both the amplitude and the
intensity modulations are easily deduced from Eq. (17). We
get

K(�) = G(�)

√
Iin

Iout
=

√
(1 + Iin)2 + �2T 2

1

(1 + Iout)2 + �2T 2
1

, (18)

L(�) = tan−1

(
�T1 (Iin − Iout)

(1 + Iin) (1 + Iout) + �2T 2
1

)
. (19)

The phase lag, always positive for this “incoher-
ent” case, attains its maximum Lmax = tan−1[(Iin −
Iout)/2

√
(1 + Iin)(1 + Iout)] for �T1 = √

(1 + Iin)(1 + Iout).
We remark that Lmax < π/2, the upper limit being approached
when Iin � 1 and Iout � 1, that is, for α� → ∞. Consequently
the time delay of the output modulation can never exceed a
quarter of the modulation period T = 2π/� (about an eighth
for α� = 10). Since the work reported in [39], numerous slow-
light experiments performed in saturable media have been
analyzed by invoking hole burning via coherent population
oscillations (CPO), resulting in a reduction of the group
velocity. In fact, a more direct analysis is provided by the
basic model of saturable absorber [33] and, as shown in
detail in [36], the signals observed in most CPO experiments
can be perfectly reproduced by means of Eqs. (18) and
(19), eventually extended to take into account inhomogeneous
effects.

IV. PULSE PROPAGATION

Strictly speaking, a harmonic modulation does not contain
any information and a time-delay of T/8 as considered at the
end of the previous section can also be seen as a time advance
of 7T/8. Unambiguous demonstrations of fast or slow light
require one to use pulses of finite duration and energy. An
important parameter to characterize the propagation is then the
transmission time of the center of mass of the pulse envelope.
Following the use in signal theory [25], we define the center
of mass of a signal y(t) of normalized area as

∫ ∞
−∞ ty(t)dt .

A direct application of the moment theorem [25] shows then
that the transmission time of the center of mass of the pulse
envelope is equal to the group delay τg = − d	

d�
|�=0 , whatever

the pulse distortion may be [5]. On the other hand − dϕ

d�
|�=0

appears as the transmission delay or group delay per unit
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length, equal in our local time picture to 1/vg − n0/c ≈ 1/vg ,
where vg is the group velocity. We emphasize that, due to
the cw depletion, vg is not uniform. From Eq. (14), we get
τg = τ1 + τ2 with

τ1 = T1

(
1

Iout + 1
− 1

Iin + 1

)
, (20)

τ2 = T2

(
1

Iout + 1
− 1

Iin + 1
− ln

√
1 + 1/Iout

1 + 1/Iin

)
, (21)

τ1 (τ2), proportional to T1 (T2), may be considered as the
contribution to the group delay of the incoherent (coherent)
effects. We see that the incoherent or population effects always
lead to a delay whereas the coherent ones mainly lead to a much
larger time advance (Fig. 7), at least when T2 is comparable
to T1 (the coherent effects obviously disappear in a saturable
absorber where T2 ≈ 0).

Before commenting further on Eqs. (20) and (21), consider
the simpler results obtained when the depletion of the driving
wave is neglected (Icw = Iin everywhere). From Eq. (12), we
then get

τ1 = T1
α�Iin

(1 + Iin)3 , (22)

τ2 = −T2
α� (1 − Iin)

2 (1 + Iin)3 , (23)

τ1/T1, negligible for Iin � 1, is maximum for Iin = 1/2
whereas τ2/T2 starts from the large negative value −α�/2
before attaining a small positive maximum for Iin = 2. The
total group delay cancels for Iin = T2/ (T2 + 2T1) and is max-
imum for Iin = (2T2 + T1) / (T2 + 2T1), that is, respectively,
for Iin = 1/2 and Iin = 5/4 when the relaxation is purely
radiative (see Fig. 3). As expected, taking into account the
depletion of the cw intensity does not modify the delays
for Iin � 1, but shifts the curves τ1(Iin) and τ2(Iin) to larger
Iin, dramatically spreads them, and reduces the amplitude of
their maximum (Fig. 7). Equation (20) shows that τ1 cannot
overtake T1, this value being approached when Iin � 1 and
Iout � 1, that is, for α� extremely large [35]. An estimate of
the maximum of τ1 for large but realistic values of α� can be
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FIG. 7. Normalized coherent and incoherent contributions to the
group delay as a function of the incident driving intensity Iin,
depending whether the cw depletion (α� = 10) is taken into account
or not.

obtained by anticipating that it is attained for Iout � 1. From
Eq. (6) we get then Iout ≈ Iin exp (Iin − α�) and

τ1 ≈ T1

(
1

Iin exp (Iin − α�) + 1
− 1

Iin + 1

)
. (24)

The maximum is obtained for (Iin + 1)3 ≈ exp (α� − Iin).
For α� = 10 (Fig. 7), we find Iin ≈ 4.8 and, putting this
value in Eq. (24), we get max(τ1/T1) ≈ 0.80, in perfect
agreement with the exact result. By the same method we find
max (τ1/T1) ≈ 0.995 for α� = 200. An upper bound to the
total group delay can be obtained by using the method of
the Lagrange multipliers, perfectly adapted to the search of a
maximum under constraint, here fixed by Eq. (6). Following
the procedure exactly as exposed in the original work of
Lagrange [40], we find an extra relation between Iin and Iout

at the maximum of τg , namely

Iin

Iout
=

(
Iin + 1

Iout + 1

)3 [
2T1 + T2 (1 − 1/Iout)

2T1 + T2 (1 − 1/Iin)

]
(25)

A numerical exploration shows that the upper bound to the
group delay is attained when Iin is extremely large whereas
Iout keeps finite. Equation (25) takes then the form

(1 + Iout)
3 ≈ I 2

in [Iout − T2/ (2T1 + T2)] , (26)

which can be verified if and only if Iout ≈ T2/ (2T1 + T2).
Injecting this result in the general expression of τg , we finally
find

sup[max(τg)] = T1 + T2

2
− T2 ln

√
2

(
1 + T1

T2

)
. (27)

When T2 ≈ 0 (saturable absorber), we obviously retrieve
the upper bound T1 for τg whereas this upper bound is
(2 − ln 3) T1 ≈ 0.90T1 when the relaxation is purely radiative
(T2 = 2T1). For the latter case max

(
τg/T1

)
is only 0.68 for

α� = 10, significantly below its upper limit, and raises to 0.89
for α� = 200.
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FIG. 8. Normalized pulse envelopes obtained for α� = 10 and
T2 = 2T1, when the group advance −τg is maximum (solid line) and
half-maximum (dashed line). τp is chosen such that the fractional
advance of the pulse maximum −τm/τp is significant whereas
the distortion remains moderate (τp/T1 = 12.5). For the first case,
τm/τg = 0.88 and −τm/τp = 0.71. For the second case τm/τg = 0.91
and −τm/τp = 0.37. The envelope of the incident pulse is given for
reference (dotted line).
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FIG. 9. Same as Fig. 8 when the pulse durations are those
maximizing the fractional advance −τm/τp . For the solid line
τp/T1 = 4.1, τm/τg = 0.44, and −τm/τp = 1.1. For the dashed line
τp/T1 = 2.8, τm/τg = 0.38, and −τm/τp = 0.68.

As previously mentioned, the group delay τg is the trans-
mission delay of the pulse center of mass, as large as the pulse
distortion may be. On the other hand, the envelope δEout(t) of
the transmitted pulse is simply the inverse Fourier transform
of H (�)�Ein(�). When the duration τp of the incident
pulse is long enough, �Ein(�) is concentrated around � = 0
where H (�) ≈ √

Iin/Iout exp(−i�τg). We then get δEout(t) =√
Iin/IoutδEin(t − τg). The whole envelope is multiplied by√
Iin/Iout and time shifted by τg , without any distortion.

Strictly speaking, this solution is only valid for a very long
pulse and is not really interesting insofar as the time delay
is then negligible compared to the pulse duration. For finite
τp, there is always some pulse distortion whose importance
depends, in particular, on the transmission dynamics (as
defined in the Introduction). If, as usual, the incident pulse
is bell shaped and symmetric with a maximum at t = 0, the
envelope of the transmitted pulse will be dissymmetric with a
maximum at a time τm such that τm/τg < 1, its center of mass
keeping exactly at the time τg no matter the pulse duration.
The challenge in the slow or fast light experiments is to obtain
a fractional delay or advance |τm| /τp as large as possible,
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FIG. 10. Normalized pulse envelopes obtained for α� = 10 and
T2 = 2T1, when the group delay τg is maximum. For the solid line
τp/T1 = 2.27, τm/τg = 0.77, and τm/τp = 0.23. For the dashed line
τp/T1 = 1.44, τm/τg = 0.56, and τm/τp = 0.27. The envelope of the
incident pulse is given for reference (dotted line).
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FIG. 11. Same as Fig. 10 when T2 ≈ 0 (saturable absorber). For
the solid line τp/T1 = 2.0, τm/τg = 0.79, and τm/τp = 0.32. For the
dashed line τp/T1 = 0.44, τm/τg = 0.31, and τm/τp = 0.57.

with moderate distortion. τm and τg are then comparable. The
following figures are obtained by using standard techniques of
fast Fourier transform. The incident pulse is Gaussian and τp

is its half-duration at half-maximum.
Figures 8, 9, and 10 show typical shapes of the transmitted

pulse for T2 = 2T1 (radiative relaxation) and α� = 10.
Figures 8 and 9 are obtained for Iin = 0.001 and Iin = 1.9

leading, respectively, to a group advance −τg nearly equals
to its maximum α�T2/2 and the half of this value. The
corresponding transmission dynamics are, respectively, 43 and
26 dB. In Fig. 8, τp has been chosen in order that the fractional
advance −τm/τp is significant (respectively, 0.71 and 0.37)
and the distortion keeps moderate (τm/τg , respectively, equals
0.88 and 0.91). When the pulse duration is shortened, the
fractional advance increases, but not as much as one could
expect (respectively, up to 1.1 and 0.68) and this is paid by a
dramatic distortion of the transmitted pulse (Fig. 9).

Figure 10 is obtained for Iin ≈ 8.0, leading to the largest
normalized group delay (τg/T1 ≈ 0.68). The corresponding
transmission dynamics are small (7 dB). This explains, in part,
that even when the pulse duration is optimized (dashed line),
the fractional delay τm/τp does not exceed 0.27. Another
reason is that the coherent relaxation negatively contributes
to the group delay (see Fig. 7).

For a saturable absorber (T2 ≈ 0) of the same optical
thickness α�, the maximal group delay, now attained for
Iin ≈ 4.8, is upgraded to 0.80T1 (see Fig. 7) whereas the
transmission dynamics attains 15 dB. Figure 11 shows the
pulse envelopes obtained for two different pulse durations.
As expected, the maximum fractional delay, obtained for
τp ≈ 0.44T1 (dashed line), is significantly larger than for the
case of radiative relaxation (more than two times larger).
We, however, remark that the corresponding fall of the pulse
is considerably lengthened. An extensive study of the pulse
distortion in this particular system can be found in [35].

V. CONCLUSION

In their letter that appeared in 1982 and was soberly entitled
“Linear Pulse Propagation in an Absorbing Medium,” Chu
and Wong [1] paved the way for the now-called fast-light
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experiments. We have examined in the present article how the
propagation is modified when the absorbing medium is driven
by a cw. Modeling the absorbing medium as an ensemble of
two-level atoms, we have more specifically considered the case
where both pulses and cw are on exact resonance, a condition
simply realized by pulse modulating the cw amplitude, with a
low modulation index. This particular arrangement eliminates
the pulse distortion associated with the first-order variations
of the absorption and of the group delay versus frequency. The
basic result of our paper is the exact analytical expression
of the transfer function relating the Fourier transforms of
the incident and transmitted modulations for arbitrary values
of the coherent and incoherent relaxation times [Eq. (14)].
It shows the importance of the effects resulting from the
depletion of the cw intensity along the propagation. When the
modulation is only harmonic (as in numerous experiments),
it directly gives the gain and the phase shift undergone by
the modulation. They significantly depart from those obtained
with a unique probe field (single sideband modulation). When
the modulation is actually pulsed, the transmission delay of

the pulse center of mass, identified to the group delay, is
deduced from the transfer function by a simple calculation
of derivative. A remarkable point is that the group delay
is the sum of two terms, respectively, proportional to the
coherent and incoherent relaxation times. These two terms
being mainly of opposite sign and depending differently on the
cw intensity, this explains why the transmission delay, strongly
negative when the cw intensity is low, may become (slightly)
positive when the latter increases. Finally, the numerical
determination of the pulse shapes confirms a general property
of the fast-light and slow-light systems, namely that significant
advances or delays with moderate distortion can only be
obtained in media with a large transmission dynamics. Though
our study is only theoretical, it is illustrated for a realistic
value of the optical thickness, comparable to that actually
used in the microwave experiment reported in [2]. In the
optical domain, suitable optical thickness and time scale could
probably be obtained by using an ensemble of cold atoms.
We expect that our theoretical work will stimulate such an
experiment.
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