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Effect of depolarization on temporal coherence within a focused supercontinuum
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Under the conditions of vectorial diffraction, an increase in refraction at the extremities of the lens rotates
the incident polarization state which transfers energy from the initial state to the orthogonal transverse field
and the longitudinal field, which is known as depolarization. Since the field is a vectorial field containing three
polarization components, the theory for the degree of coherence is first extended to incorporate cross-correlation
effects within these vectorial components which are calculated through a coherency matrix. The use of this matrix
provides an insight into interesting correlation effects between copropagating vectorial fields such as the coupled
modes (linear polarized modes) of the supercontinuum generated by a photonic crystal fiber. An investigation
is presented on the coherence times for the supercontinuum field generated by cross coupling into the photonic
crystal fiber. The coherence times under cross-coupling conditions show that the degree of coherence of the two
coupled modes from the fiber are different, which is due to the differences in phase. For a supercontinuum with
a linear polarization state, the coherence times along the x, y, and z axes are different, with the most significant
change occurring along the optical axis (z) where the coherence time changes by an order of magnitude when
the numerical aperture is increased from 0.1 to 1.
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I. INTRODUCTION

The diffraction of a polychromatic wave can be determined
by the vectorial diffraction theory using the Debye approx-
imations [1]. The superposition of planes waves originating
from the diffraction aperture forms points of singularity
where the phase is discontinuous [2,3]. The interaction
of the incoming electromagnetic field and these points of
singularity redistributes the bandwidth [3], which effects the
fields temporal coherence [4]. It has been shown that with
an increase in numerical aperture (NA), the singularities
no longer exist in particular directions [2]. Coherence, the
ability of two fields to maintain a constant phase relation,
is important in optics and is the governing principle behind
optical interference [5,6], which can be used to quantify
changes in the temporal, spectral, and phase relationship of
the vectorial field components. When an electromagnetic field
is focused by a high-NA lens energy is transferred from the
incident polarization state to the transverse orthogonal and the
longitudinal field components, which is called depolarization.
The transfer of energy due to depolarization is related to
a change in coherence, which physically can be quantified
through the coherence time of each vectorial component and
the coherence time of the cross-correlation between vectorial
components. The theoretical treatment of the coherence effects
of a vectorial field have been previously investigated by Wolf
in 2003 [7] and by Dennis in 2004 [8]. However, these
studies only investigated the frequency dependence of an
incident polychromatic wave. The extension that is made in
this article is to investigate how these correlations influence
the temporal aspect of a propagating polychromatic wave such
as a supercontinuum (SC) in the focal region of a high-NA
lens.
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Over the past decade applications which involve diffraction
or interference have evolved due to the development of
SC [9–12] generation by a microstructured optical fiber
[13,14]. An SC is the source of choice for many of these
applications because of its broadband characteristics and
temporal structure. When an ultrashort pulse is coupled into
a photonic crystal fiber (PCF) it is influenced by the balance
between the nonlinearity induced by the Kerr effect [15] and
the designed dispersion [16] introduced by the photonic crystal
structure. Under the condition of the anomalous dispersion
[14], the pulse initially compresses and forms a high-order
soliton. At a particular point in the evolution the phase
shift on the high-order soliton becomes unstable and breaks
into many fundamental solitons, known as soliton fission
[17,18]. With increasing length, the third order and other
higher-order dispersion effects begin to dominate and what
forms is a complex temporal and spectral electromagnetic
field.

Physically, the spatial and temporal phase coupling which
was presented in [4] is not restricted to scalar fields and
would manifest as a cross-phase coupling between vectorial
field components. Birefringence is an important property of
a PCF because it allows the capability of maintaining the
polarization state by creating both strong modal guidance
and spectrally dependent vectorial field components. The
complicated temporal phase associated with the birefringent
modes of the SC couples with the spatial phase from the
diffraction by the lens [4], which would produce interesting
correlations under vectorial diffraction conditions.

The aim of this article is to provide a detailed theoretical
description of the temporal coherence of an SC under vectorial
diffraction conditions. We present the coherence relationship
between the field components produced by depolarization
under high-NA diffraction and the relationship between the SC
fields produced by highly birefringent PCF when diffracted by
a lens of high NA.
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II. THREE-DIMESIONAL VECTORIAL
DIFFRACTION MATRIX

For a circular symmetric incident field the diffraction of the
field with a horizontal polarization direction can be shown to
be given by [1,19]

Eh(v,u,ψ,ω) =
⎡
⎣Ex(v,u,ψ,ω)

Ey(v,u,ψ,ω)
Ez(v,u,ψ,ω)

⎤
⎦

= iω

2c

⎡
⎣ [I0 + cos (2ψ)I2]

sin (2ψ)I2

2i cos (ψ)I1

⎤
⎦ , (1)

and for the vertical polarization state is given by

Ev(v,u,ψ,ω) =
⎡
⎣Ex(v,u,ψ,ω)

Ey(v,u,ψ,ω)
Ez(v,u,ψ,ω)

⎤
⎦

= iω

2c

⎡
⎣ sin (2ψ)I2

[I0 − cos (2ψ)I2]
2i sin (ψ)I1

⎤
⎦ , (2)

where ⎡
⎣ I0

I1

I2

⎤
⎦ =

∫ α

0
Ei(ω) cos1/2 θ sin θ

×
⎡
⎣ (1 + cos θ )J0(v sin θ/ sin α)

(sin θ )J1(v sin θ/ sin α)
(1 − cos θ )J2(v sin θ/ sin α)

⎤
⎦

× eiu cos θ/ sin2 αdθ. (3)

Here u and v represent the normalized axial and radial
dimensionless parameters of the imaging system given by
u = kz2 sin2 α and v = kr2 sin α. ω is the frequency, c is the
speed of light, k is the wave number, ψ is the azimuthal angle,
and α is the maximum angle of diffraction. What essentially
occurs is the incident polarization rotates slightly to increase
the strength of the orthogonal transverse and longitudinal
field polarization states. Throughout this article, the results
of the analysis of the dimensions of the focal region are
presented using the dimensionless coordinates u0 and v0.

The longitudinal coordinate is given by u0 = 2πz2
λ0

sin2 α and

the transverse coordinate is given by v0 = 2πr2
λ0

sin α. For an
arbitrary polarization angle the diffraction by a lens under
conditions of vectorial diffraction is given by

E = aEh + bEv, (4)

where a and b represent the polarization coefficients for the
horizontal and vertical polarization states, respectively.

The characterization of the degree of coherence for a
vector field E(V,t) begins with the coherency matrix, which is
calculated by

g1
mn(V,τ ) = 〈E∗

m(V,t)En(V,t + τ )〉
[〈|Em(V,t)|2〉〈|En(V,t)|2〉]1/2

, (5)

where m and n are the polarization states in the spatial
directions x,y, and z, where V represents the collective
dimensions of the diffraction volume. For m and n = x, g1

represents the autocorrelation of the electric field component in
the x direction. For m �= n, g1 represents the cross-correlation
of the vector components of the field. Physically, this matrix
quantifies the transfer of energy between field components and
provides the ability to analyze the polarization properties of
the degree of coherence for the focal region.

The components of the field for a linear polarization state
with an arbitrary polarization angle under vectorial diffraction
can be determined by the theoretical formulas by Richards and
Wolf in 1959 [19]. When combined these equations form the
following set of equations

Ex(V,t) = iω

2c
{aI0(V,t)

+ [a cos(2ψ) + b sin(2ψ)]I2(V,t)}, (6)

Ey(V,t) = iω

2c
{bI0(V,t)

+ [a sin(2ψ) + b cos(2ψ)]I2(V,t)}, (7)

Ez(V,t) = iω

2c
{2i[a cos(ψ) + b sin(2ψ)]I1(V,t)}. (8)

The vectorial field components, which contribute to the
degree of coherence for the x, y, and z axes, are shown in
Table I. The degree of coherence for a linear polarization state

TABLE I. Contributions to the field E for the x, y, and z axes.

axis ψ Eh (units of iω/2c) Ev (units of iω/2c) E (units of iω/2c)

z 0◦ Eh
x = I0(z,t) + I2(z,t) Ev

x = 0 Ex = aI0(z,t) + aI2(z,t)

Eh
y = 0 Ev

y = I0(z,t) − I2(z,t) Ey = bI0(z,t) − bI2(z,t)

Eh
z = 0 Ev

z = 0 Ez = 0

y 90◦ Eh
x = I0(y,t) − I2(y,t) Ev

x = 0 Ex = aI0(y,t) − aI2(y,t)

or Eh
y = 0 Ev

y = I0(y,t) + I2(y,t) Ey = bI0(y,t) + bI2(y,t)

270◦ Eh
z = 0 Ev

z = 2iI1(y,t) Ez = b2iI1(y,t)

x 0◦ Eh
x = I0(x,t) + I2(x,t) Ev

x = 0 Ex = aI0(x,t) + aI2(x,t)

or Eh
y = 0 Ev

y = I0(x,t) − I2(x,t) Ey = bI0(x,t) − bI2(x,t)

180◦ Eh
z = 2iI1(x,t) Ev

z = 0 Ez = a2iI1(x,t)
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with an arbitrary polarization angle in the directions x,y, and
z can be determined in terms of the field components I0,I1,
and I2.

The set of coherence functions can be used to determine
the coherence times of the focus under conditions of vectorial
diffraction, which are given by

τ c
mn (V ) =

∫ ∞

−∞

∣∣g1
mn (V,τ )

∣∣2
dτ. (9)

For a horizontal polarization state (a = 1, b = 0), the coher-
ence times for the x, y, and z axes are determined by the nonzero
components τ c

xx(x), τ c
xz(x), τ c

zx(x), τ c
zz(x), τ c

xx(y), and τ c
xx(z).

The rest of the components of the coherence times are equal
to zero, which is caused by the polarization coefficient b = 0.
When the NA is below 0.7 the effects of depolarization can be
neglected and the terms I1 and I2 = 0. Under these conditions
the field E reduces to a scalar field determined by I0, where
the degree of coherence and the coherence time are given by

g1
mn(V,τ ) = g1

xx(V,τ )

= 〈I0(V,t)I0(V,t + τ )〉
[〈|I0(V,t)|2〉〈|I0(V,t)|2〉]1/2

, (10)

τ c
xx(V ) =

∫ ∞

−∞

∣∣g1
xx(V,τ )

∣∣2
dτ, (11)

respectively.
Consider the general case of a hyperbolic secant with a pulse

duration of 0.1 ps. The coherence time for an NA = 0.1 under
the vectorial diffraction conditions is shown in Fig. 1, which
gives an identical result to the coherence time produced by the
Fresnel diffraction [4]. Under high-NA vectorial diffraction
conditions the coherence of the field is no longer effected
by the point of destructive interference, which is due to
depolarization.

The final mathematical analysis involves an incident field
with a polarization orientation at 45◦. The diffraction by the

(τ
c  −

 τ
0)/

τ 0
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FIG. 1. A comparison between the coherence times for a lens of
NA = 1 and 0.1 with hyperbolic secant ultrashort pulse with a width
of 0.1 ps.

lens under vectorial diffraction conditions is given by

E45 = Eh + Ev = 1√
2

⎡
⎢⎣

Eh
x

Eh
y

Eh
z

⎤
⎥⎦ + 1√

2

⎡
⎢⎣

Ev
x

Ev
y

Ev
z

⎤
⎥⎦ . (12)

When diffracted by a high NA the degree of coherence
for the field E45 becomes complicated. For this investigation
the degree of coherence is calculated for only the optical axis
where the coherence matrix is given by

g1(z,τ ) =
[

g1
xx(z,τ ) g1

xy(z,τ )

g1
yx(z,τ ) g1

yy(z,τ )

]
. (13)

The coherence times generated by the degree of coherence for
E45 is given by

τ c
mn (z) =

[
τ c
xx(z) τ c

xy(z)

τ c
yx(z) τ c

yy(z)

]
. (14)

III. VECTORIAL DIFFRACTION
OF A SUPERCONTINUUM

A. Supercontinuum generation

The mathematical method used to simulate the SC field [20]
uses the coupled-mode nonlinear Schrödinger equation. The
dipsersion and the nonlinear properties of the nonlinear PCF
have been modeled previously and can be obtained from
Chick et al. [20]. The numerical procedure of calculating
the SC field is the split-step Fourier method [21] using an
adaptive propagation step size implemented through a local
error method. The typical temporal window used to contain
the SC wave was 6 picoseconds with a resolution of 213. The
input power and pulse width of the incident pulse were 3000 W
and 0.1 ps, respectively. The numerical approach is consistent
with well-known articles on SC generation [17,21] and has
been presented in a previous article by Chick et al. [20]

B. Linear polarization

For a linear polarization state the degree of coherence and
the coherence time are determined by the previous theoretical
derivations. It is expected that the coherence times for
the autocorrelation of the electric field in the direction of
the incident polarization state Ex would be influenced by the
points of destructive interference. The coherence time for the
SC diffraction by a lens is shown in Fig. 2 for the x,y, and
z axes. The input polarization state to the PCF is in the x

direction and the analysis is for the autocorrelation of the
field component Ex determined by Eq. (9). Figure 2 shows
three key effects: the influence of the spatial phase through the
points of destructive interference on the field; the reduction
of the coherence time with increased NA; and a lateral
(x and y axes) and a longitudinal (z axis) shift in the coherence
time. The gradual shift inward (y) and outward (x) is due to
the change in superposition of the wave as it passes through
the lens. The modification of the field by the spatial phase
associated with the lens changes the field Ex to become slightly
asymmetric, which is only seen under higher-NA conditions.
Along the optical axis a more significant change occurs and
is due to the superposition condition no longer forming points
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FIG. 2. (Color online) The coherence time for the diffraction by a lens of varying NA along the (a) x, (b) y, and (c) z axes. These coherence
times are calculated for the autocorrelation of the electric field in the direction of the Ei (Ex). (d) The coherence times for the diffraction by a
lens of NA = 1 along the x axis, which contains the autocorrelation and cross-correlation coherence times with respect to the Ex and Ez fields.

of destructive interference under higher-NA conditions. The
coherence time for a NA = 0.1 is identical to the coherence
time obtained for the stationary observation frame shown by
Chick et al. [4].

For the transverse axis x, the field component Ez �= 0
leading to a coherency matrix containing cross-coupling
correlation terms between Ex and Ez. Figure 2(d) shows
the coherence times simulated using Eq. (9). The interesting
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FIG. 3. The mean coherence time of an SC as a function of NA
for the x,y, and z axes.

observation is that the coherence time generated by the
cross coupling of the field components (mn = xz) is not a
simple superposition of the coherence times generated by
the autocorrelations (mn = xx and mn = zz). This effect is
understandable because the correlation is dependent on the
phase structure of each component of the incident field and
the transfer energy due to depolarization. Effectively, the
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FIG. 4. (Color online) The coherence time of the autocorrelation
of the diffraction by a lens of NA = 1 the electric field Ex with
variation in the fiber length.
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FIG. 5. (Color online) The power dependence of coherence time
in the focus of a NA = 1 lens for input fields generated by the
nonlinear PCF of varying input power. The coherence time is for a
linear polarized field orientated along the x direction.

coherence time formed by the cross coupling between the
polarization states is a measure of the longevity of the elliptical
polarization produced by depolarization.

The influence of the NA can be quantified by calculating the
mean of the coherence time as a function of NA and is shown
in Fig. 3. By increasing the NA, there exists a redistribution of
energy within the Ex component from the y axis to the x axis,
which alters the degree of coherence of the field. Along the
optical axis the change in the degree of coherence is different
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FIG. 7. The coherence time for the autocorrelations and cross-
correlations calculated for the diffraction by a lens of NA = 1 along
the optical axis.

as there no longer exists points of destructive interference,
leading to a change in the mean coherence time by an order of
magnitude from low NA (0–0.4) to the high NA (1).

Since the SC field is generated by an accumulation of
phase associated with nonlinearity and dispersion, it becomes
important to assess how the degree of coherence changes with
phase under vectorial diffraction conditions. A method for
analyzing this change is by calculating the diffraction of the
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FIG. 6. (Color online) The PCF output field for an incident polarization state at 45◦. Figure (a) the horizontal (x) polarization state, (b) the
vertical (y) polarization state, (c) the horizontal (x) polarization state as a function of fiber length, and (d) the vertical (y) polarization state as
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FIG. 8. (Color online) The coherence time for the autocorrela-
tions and cross-correlations calculated for the diffraction by a lens
of NA = 1 as a function of fiber length along the optical axis.
(a) Coherence time produced by the autocorrelation of Ex ;
(b) coherence time produced by the cross-correlation Ex and Ey ;
and (c) coherence time produced by the autocorrelation of Ey .

SC produced by a variation in fiber length (Fig. 4) along the
optical axis of the focal region of a lens of NA = 1 and is
shown in Fig. 4. As the initial ultrashort pulse travels through
the optical fiber it accumulates phase which changes the
spectral and temporal components. There exists a point in the
evolution where the temporal coherence dramatically changes
which is due to the formation and annihilation of a high-order
soliton.

The degree of coherence is dependent on the input power
to the PCF and is shown in Fig. 5. For low input powers the
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FIG. 9. (Color online) The coherence time for the autocorrela-
tions and cross-correlations calculated for the diffraction by a lens of
NA = 1 as a function of the input power along the optical axis.
(a) Coherence time produced by the autocorrelation of Ex ;
(b) coherence time produced by the cross-correlation Ex and Ey ;
and (c) coherence time produced by the autocorrelation of Ey .

variation in coherence time is low, which occurs because the
phase on the pulse is dominated by dispersion effects. With
increased power, the coherence time is expected to change
since with the increased dominance of nonlinearity. The higher
input power increases the initial order of the soliton which then
after fission changes the degree of coherence, which enhances
the coherence time.

The results contained in this article, thus far, have been
in accordance with previous literature and are consistent with
a previously published article by Chick et al. in 2009 [4].
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For example, the coherence times shown in Figs. 1 and 3 are
consistent with the coherence times of the stationary reference
frame presented in Ref. [4]. The numerical procedure for the
SC is in agreement with scientifically accepted literature [17]
and is consistent with a previous article by Chick et al. in
2008 [20]. The methodology is now used to understand the
interaction between coupled modes in SC generation under
conditions of vectorial diffraction.

C. Coupled-mode propagation

So far the analysis has been restricted to a linear incident
polarization state, which emphasises the depolarization in-
herent from a high-NA lens. The coupled-mode nonlinear
Schrödinger equation allows the ability to simulate an SC
field with a polarization orientation at 45◦ which can occur
in highly birefringent PCF. The output spectrograms of the
SC field emerging from a highly birefringent PCF is shown
in Fig. 6. The field was generated using the dispersion and
nonlinear parameters discussed by Chick et al. [20] with a
pulse duration of 100 fs and a peak power of 2500 W. Also
shown is the propagation of the ultrashort pulse along the fiber
with a length of 0.15 m.

In the focal plane of the lens, these coupled modes
should affect the coherence matrix and the coherence times.
Figure 7 shows the coherence times produced from Eq. (14).
It is evident that the coherence time for the cross-correlation
between the modes is no longer the superposition between the
autocorrelated fields and occurs because of their nonconstant
relative phase.

The phase due to nonlinearity and dispersion can be
isolated along the fiber length to understand the influence
of polarization on the degree of coherence. Figure 8 shows
the polarization coherence times occurring due to the coupled
modes of the PCF along the optical axis as a function of the
fiber length. The autocorrelations behave in the same manner
as depicted in Figs. 4 and 5, the degree of coherence changes
with input phase. The cross-correlated degree of coherence in
Fig. 8(b) shows modulations which occur due to the differ-
ences in phase between the fibers modes. The soliton fisson
dynamics in SC generation contains spectral expansion and
contractions processes. The differences between the soliton
fluctuations of the fiber modes could be attributed to the
modulations shown in the cross-correlated degree of coherence
and the coherence time in Fig. 8(b). In both cases of a linear
polarized SC field and a 45◦ polarized SC field, the coherence
time has a greater variance after the formation of the soliton and
the rapid spectral expansion of the SC field. After this point,
the coherence within the focal region becomes dominated by
interference between dispersive waves and the fundamental
solitons.

The expansive spectral features of an SC can only be
obtained by coupling an ultrashort pulse of sufficient power
to instigate the formation of solitary waves. The effects of
temporal phase on the focal region can also be analyzed
by observing the change in coherence time as a function of
input power to the PCF (Fig. 9). At low input powers, the
output spectra of the PCF is dominated by the dispersion
of the fundamental solitons and under these conditions the
phase accumulated through propagation is relatively simple.
The cross coupling between the focused coupled modes in
this case is shown as a small change in coherence time.
With the increase in input power the SC is formed by the
amalgamation of nonlinear and dispersive processes, and as
expected rapidly expands the bandwidth. The cross coupling
between the focused coupled modes becomes complicated
because of the superposition of their differing phase, which
results in subtle changes in the coherence time [Fig. 9(b)].

IV. CONCLUSION

In summary, the optical field components occurring because
of depolarization by the diffraction of a high-NA lens reduce
the coherence time along the optical axis which is attributed to
the superposition of the wave front no longer forming points
of destructive interference. Under conditions of vectorial
diffraction, the mean coherence time will change by an order
of magnitude when the NA changes from a low NA (0–0.4) to a
high NA of 1. For the transverse axes the mean coherence time
increases and decreases in the x direction and y directions,
respectively, which is also due to depolarization.

When considering the case of a vectorial field, the
components of the field create interesting cross-coupling
characteristics, which are determined by a coherency matrix.
When the SC modes of a highly birefringent PCF are focused
by a high-NA objective, the coherence times produced by
their autocorrelations are different due to the phase differences
between the modes. In addition, the coherence time for the
degree of coherence between these two modes (cross-coupled
coherence time) is significantly different. In these cases of
autocorrelation and cross-correlation the temporal phase is
significantly contributing to the degree of coherence in the
focal region, to such an extent that the phase difference
between the two modes creates strong changes in the coherence
times.
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