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Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited
states and spontaneous emission noise
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We study the dynamics of an optically injected quantum-dot laser accounting for excited states. Mapping of
the bifurcations in the plane frequency detuning vs. injection strength shows that the relaxation rate scales the
regions of locking and single- and double-period solutions, while the capture rate has a minor effect. Within
the regions of time-periodic solutions, close to the saddle-node bifurcation boundary, we identify subregions
where the output signal resembles excitable pulses as a result of the bottleneck phenomenon. We show that such
emission is determined mainly by fluctuations in the occupation of the excited states. The interpulse time follows
an inverse square root scaling law as a function of the detuning. In a deterministic system the pulses are periodic
regardless of the detuning, but in the presence of noise, close to the locking region, the interpulse time follows a
positively skewed normal distribution. For a fixed frequency detuning, increasing the noise strength can shift the
mean of the interpulse time distribution and make the pulsations more periodic.
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I. INTRODUCTION

Optical injection in quantum-well (QW) semiconductor
lasers has been shown to be an attractive configuration
for the fundamental bifurcation study of nonlinear optical
systems [1–3] and provides a potential means of improving
laser performance [4–6]. Recent experimental studies on
optically injected quantum-dot (QD) lasers have revealed the
existence of regions in the parameter space (defined by
the frequency detuning from the slave laser frequency and
the injection strength) where the laser responds to the injected
optical signal in a form of single or double excitable pulses [7].
A system is excitable if, for a sufficiently strong perturbation,
it can leave its rest state and fire a spike associated with a large
excursion of the system’s variables in the phase space [8].
Excitable pulses at positive detuning [7] and at both positive
and negative detuning [9] have been observed. Excitability is
not limited to optically injected QD lasers and such dynamics
have already been reported for a variety of laser systems
including lasers with optical feedback [10,11] and lasers with
a saturable absorber [12]. In optically injected QW lasers
excitable dynamics have been predicted theoretically [13,14]
and very recently observed experimentally [15]. Detailed
experimental study on the dynamics of excitable pulses in
optically injected QD laser shows that they are dependent on
the detuning so that the pulses become more frequent and more
periodic as the detuning increases [9].

One of the features that distinguishes QD lasers from
their QW counterparts is a more complicated dynamics of
carriers, which, being captured from the wetting layer into the
dots, achieve lasing states by successive transitions through
excited states. This process is characterized by the capture
and the relaxation times, respectively. Both time constants
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have been shown to influence the performance of QD lasers in
terms of modulation bandwidth and threshold current [16–18].
An important question, which has not yet been investigated,
concerns the impact of the two time constants on the dynamics
of optically injected QD lasers. To answer this question we
extend the model presented in [7] to account for the excited
states and map the bifurcations of the system dynamics in
the plane detuning vs. injection strength. Within the regions
of time-periodic solutions we identify subregions of self-
pulsations, where the laser deterministically, that is, without
the addition of perturbation or noise, fires a time-periodic
sequence of pulses resembling excitable ones. Such regions
appear for both positive and negative detuning. We show
that these self-pulsations are associated with the so-called
bottleneck phenomenon [19]. We identify the role of the
excited states in the emission of self-pulsations. We further
study the dynamics of self-pulsations in the presence of
spontaneous emission noise to compare it with the dynamics
experimentally reported for excitable pulses [9]. In particular,
we investigate how the interpulse time distribution changes as
a function of the detuning and the noise strength.

The structure of the paper is as follows. In Sec. II we
describe the theoretical model that we use in our calculations.
In Sec. III we present the results on the influence of the
relaxation and capture rates on the dynamics of optically
injected QD lasers. In Sec. IV we focus on deterministic
self-pulsations and then investigate their dynamics in the
presence of spontaneous emission noise in Sec. V.

II. THEORETICAL MODEL

To account for the excited states of QDs we extended the
theoretical model presented in [7]. In our approach, carriers
from the wetting layer are first being captured into the excited
state and then relax to the ground state [17]. The complete set
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of equations reads:
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Here fWL, fES, and fGS describe the occupation probabili-
ties, that is, the number of carriers in the wetting layer, excited
state, and ground state, respectively, normalized to the product
of the number of QDs and the degeneracy of the respective
states. |E|2 represents the intensity. The model contains
four main time constants, namely, the carrier decay rate
γn = 1 ns−1, the photon decay rate γs = 590 ns−1, the capture
time tc, and the relaxation time to. The linewidth enhancement
factor is α = 1.2, the linear optical gain coefficient is g0 =
72 cm−1, and the interaction cross section is σ = 0.6 nm2.
The pump current I is normalized to the number of QDs.
The frequency of the master laser amounts to ω = 1.45 ×
1015 s−1. The remaining parameters represent the group
velocity vg = 0.833 × 108 m/s, the electric charge q, and the
Planck constant h̄. The frequency detuning � (the difference
between the slave and the master laser frequency) and the
energy density of the field injected from the master laser
Sm define the parameter space. Enoise = √

2βspγnfGSNQDς

constitutes the spontaneous emission noise term, in which ς

is a white noise of unitary variance and 0 mean value, while
NQD is the volume density of QDs. The strength of the noise
term is driven by the spontaneous recombination factor βsp.

We have rewritten Eqs. (1)–(4) in a dimensionless form
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t1 = tγn, as the normalized time. The resulting equations are
as follows:
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In our calculations the normalized pump current is fixed at
Jn = 6.25.

III. INFLUENCE OF THE RELAXATION AND CAPTURE
TIMES ON THE DYNAMICS OF THE OPTICALLY

INJECTED QUANTUM-DOT LASER

We first investigate the influence of the two main time
constants that determine the QD laser dynamics, namely,
the capture and relaxation times. To this aim we use the
continuation and bifurcation software AUTO-07P [20]. The
results for the relaxation rate are presented in Fig. 1. All
three bifurcation maps contain a saddle-node (SN) bifurcation
curve, a Hopf bifurcation (HB) curve, a homoclinic (HOM)
bifurcation curve, a period-doubling (PD) bifurcation curve,
and a curve corresponding to a SN bifurcation of limit cycles
(LPC). The locking region is bordered by parts of the SN
bifurcation and HB curves for a negative detuning and a branch
of the SN bifurcation curve that verges with the region of a
limit cycle (LC) for a positive detuning.

Comparing the bifurcation maps one can conclude that
the relaxation rate strongly influences the size of regions of
solutions emerging from the respective bifurcations. When the
transitions from the excited states to the ground states are fast
enough, our model recovers the results presented in [7]. A
lower relaxation rate results in a broader locking region and
shifts the position of point G1, where the SN and HB curves
are tangent, to a lower injection strength. It is demonstrated in
the next section that the laser behavior for negative detuning
outside the locking region is different on both sides of
point G1. The capture time turns out not to influence the
dynamics of the system in the investigated range, that is,
1–10 ps.

In Fig. 1(a) the HOM bifurcation overlaps with parts of the
SN bifurcation curve that border the locking region. However,
at certain values of the injection strength, the HOM curve
leaves the SN curve and forms the so-called homoclinic tooth
(HOM), which penetrates into the locking region. It has been
shown in [14,21] and [22] that HOM bifurcation is associated
with self-pulsations and excitability and constitutes a boundary
between these two dynamics. As a result, close to the HOM
curve, before the onset of self-pulsations, the laser is excitable;
that is, sufficiently strong perturbation can force the system to
fire pulses. Excitability in close proximity to the HOM tooth
is associated with the SN HOM orbit bifurcation [21]. It has
been shown in [7] that optically injected QD lasers can fire
single or double excitable pulses, the latter being related to a
nearby PD. Examples of triggered single and double excitable
pulses are shown in Figs. 2(a) and 2(b). We triggered the
laser by suddenly changing its variables (the duration of such
perturbation is 0.1 ns) so that the laser is kicked out from the
attractor corresponding to a locked state and makes a quick
excursion along the unstable manifold of the saddle [13] back
to the attractor. Both fixed points emerge from a nearby SN
bifurcation. Inside the HOM tooth the laser either can be locked
or can exhibit self-pulsations associated with the attracting LC.
An unperturbed laser remains in the locked state and, therefore,
to observe self-pulsations inside the HOM tooth, the system
needs to be kicked out of the attractor corresponding to the
locked state to the vicinity of attraction of the LC. Such bistable
behavior is presented in Fig. 2(c).

As shown in Figs. 1(b) and 1(c), at lower relaxation rates
additional teeth arise and mostly fill the region bordered by the
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FIG. 1. (Color online) Bifurcation map of equilibria and limit
cycles (LCs) when the normalized relaxation rate R is equal to
(a) 1020, (b) 500, and (c) 200. The normalized current amounts
to Jn = 6.25. Solid, light-gray curve (HB), Hopf bifurcation; dotted
gray (blue) curve (SN), saddle-node bifurcation; solid black curve
(PD), period-doubling bifurcation; dashed gray (red) curve (HOM),
homoclinic bifurcation; solid gray (orange) curve (LPC), saddle-node
bifurcation of LCs. G1: saddle-node Hopf bifurcation point.

PD bifurcation curve. Contrary to the main HOM tooth, the
consecutive HOM teeth are not tangent to the SN bifurcation
curve. Detailed study of this issue is outside the scope of this
paper.

FIG. 2. Examples of triggered (a) single-pulse excitability (� =
6.55 GHz, Sm = 4 × 10−4 J/m3) and (b) double-pulse excitability
(� = 8.04 GHz, Sm = 5.33 × 10−4 J/m3). (c) Bistability between
the attractor corresponding to the locked state and the attracting limit
cycle associated with self-pulsations inside the homoclinic tooth:
Sm = 4.5 × 10−4 J/m3, � = 7.0 GHz.

The slave laser is also excitable away from the HOM
tooth, in close proximity to parts of the SN curve that
overlap with the HOM curve. Excitability there is related to
a SN-on-LC bifurcation [21]. As such parts exist for both
positive and negative detuning, the laser can exhibit this type
of excitability on both sides of the locking region. This has been
shown experimentally in [9]. Because the HOM constitutes a
boundary between excitability and self-pulsations, one can
expect that outside the locking region, close to the SN
bifurcation curve, the slave laser will exhibit self-pulsations.
We investigate this issue in Sec. IV.

IV. SELF-PULSATIONS DUE TO THE BOTTLENECK
PHENOMENON

So far we have analyzed bifurcation maps computed with
AUTO. This software allows us to continue steady and time-
periodic solutions of a dynamical system and to detect their
stability changes and, therefore, bifurcations. An alternative
approach for detecting bifurcations is to analyze intensity time
traces obtained from direct numerical integration for different
values of a bifurcation parameter. Therefore, to calculate

023807-3



OLEJNICZAK, PANAJOTOV, THIENPONT, AND SCIAMANNA PHYSICAL REVIEW A 82, 023807 (2010)

FIG. 3. (Color online) Map of bifurcations for an optically
injected quantum-dot laser obtained by analyzing time traces of |F |2
for a relaxation rate R = 1020. Inside LC the laser exhibits period 1
time-periodic oscillations associated with the limit cycle; inside the
period-doubling (PD) bifurcation, period 2 time-periodic oscillations.
C1 and C− correspond to single-pulse self-pulsations for positive
and negative detuning, respectively; C2 corresponds to double-pulse
self-pulsations; 4T corresponds to period 4 time-periodic oscillations;
mT corresponds to chaotic oscillations. Region CX corresponds to a
set of injection parameters bordered by the PD bifurcation curve in
Fig. 1(a). Inside this region the slave laser exhibits quite diversified
dynamics including period 1 and period 2 time-periodic and chaotic
oscillations. Dotted gray (blue) line (SN), saddle-node bifurcation;
solid light-gray curve (HB), Hopf bifurcation. G1: saddle-node Hopf
bifurcation point.

complete bifurcation maps such as those presented in Fig. 1,
one needs to run many computations starting at different
points in the (�,Sm) plane. We use this method to analyze
the behavior of the slave laser outside the locking region but
in close proximity to branches of the SN curve that border
the locking region. The resulting map is presented in Fig. 3
[the parameters are consistent with those used to calculate
the bifurcation map presented in Fig. 1(a)]. It should be
stressed here that this bifurcation map accounts only for stable
solutions. Similarly to Fig. 1(a), we can distinguish regions of
time-periodic solutions (LC), double-period solutions (PD),
and locking. The new information brought by Fig. 3 is the
presence of regions C−, C1, C2, 4T, mT, and CX. The first
three regions correspond to deterministic single-pulse (C−, C1)
and double-pulse (C2) self-pulsations. They are not associated
with a new bifurcation but with a change of the waveform,
and to highlight the difference they are bordered by gray
dashed curves in Fig. 3. Regions 4T and mT correspond to
period 4 time-periodic and chaotic oscillations, respectively.
Region CX corresponds to a set of injection parameters
bordered by the PD bifurcation curve in Fig. 1(a). As shown
later, inside this region the slave laser exhibits quite diversified
dynamics including period 1 and period 2 time-periodic and
chaotic oscillations. To characterize all the new regions we
compute the bifurcation diagrams showing different extrama
(maxima and minima) in the time traces of |F |2 as a function
of the detuning. A bifurcation diagram crossing the regions C1,
CX, and C− along arrow Ā and the corresponding time traces
are presented in Figs. 4(a) and 4(b), respectively. The top

FIG. 4. (a) Bifurcation diagram for Sm = 10−4 J/m3 (inset:
bifurcation diagram for Sm = 0.5 × 10−4 J/m3) when sweeping the
detuning either from negative to positive (top) or from positive to
negative (bottom) values. (b) Examples of time traces along arrows
A and A′ in Fig. 3: (1) � = 4.2 GHz; (2) � = −6.177 GHz;
(3) � = −5.5 GHz; (4) � = −4.5 GHz; (5) � = −3.2 GHz.

plot in Fig. 4(a) corresponds to the sweeping of the detuning
from negative toward positive values, whereas the bottom plot
corresponds to the opposite direction of sweeping.

We first describe the bifurcation diagram for positive
detuning. As can be concluded from a comparison between
the top and the bottom plots in Fig. 4(a), it is indifferent
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to the sweeping direction. At a large value of detuning the
laser exhibits period 1 time-periodic oscillations (LC). When
the detuning decreases, in region C1 the waveform of these
periodic oscillations changes [see the time trace in Fig. 4(b)–1,
corresponding to gray circle 1 in the top plot in Fig. 4(a)] so
that it resembles single excitable pulses in Fig. 2(a). Inside
C1 the algorithm used to analyze time traces of |F |2 detects
two additional local extrema between those corresponding to
an unbroken limit cycle associated with periodic oscillations
in LC [both plots in Fig. 4(a)]. These additional extrema
correspond to strongly damped, low-amplitude oscillations
that follow the main spike [see Fig. 4(b)–1]. Below C1, close
to the SN curve, the laser can fire excitable pulses related to a
SN-on-LC bifurcation. We, therefore, classify solutions in C1

as deterministic single-pulse self-pulsations.
For negative detuning the bifurcation diagram reveals a

strong dependence on the sweeping direction. In addition,
Fig. 3 shows that the behavior of the slave laser for negative
detuning should vary on different sides of the point G1. On its
high-injection-strength side the locking region is bordered by
the HB curve. In the top plot in Fig. 4(a), when the HB curve
is approached from a large, negative value of detuning, the
laser first exhibits period 1 time-periodic oscillations (LC)
and then enters the region CX. To describe its behavior
inside CX, we divided this region into subregions X1–X3.
Inside X1 the waveform of periodic oscillations from LC
undergoes a PD cascade to chaos [see Fig. 4(b)–2 for the
chaotic time trace corresponding to gray circle 2 in the top
plot in Fig. 4(a)]. Consecutively, in the narrow range of the
detuning corresponding to X2, the laser again exhibits period
1 time-periodic oscillations and then, in subregion X3, period
2 time-periodic oscillations as in Fig. 4(b)–3. At still smaller
detuning, close to the boundary of CX, there is a region of
bistability [see Fig. 4(a)]. In this region, when sweeping the
detuning from negative toward positive values, the system fires
pulses followed by damped, low-amplitude oscillation as in
Fig. 4(b)–4. This shows that the dynamics of the system is
influenced by the SN bifurcation. Indeed, as shown in Fig. 1(a),
the SN curve first crosses the HB curve at point G1 and
then it enters the unlocked region. The region of bistability,
therefore, extends to the injection strength reached by the
SN curve in the unlocked region. The alternative solution
in the region of bistability corresponds to period 1 time-
periodic oscillations (not shown). Such behavior is possible
when the detuning changes from positive toward negative
values. On the low-injection-strength side of point G1,
the locking region is bordered by the SN bifurcation. The
bifurcation diagram along arrow Ā′ in Fig. 3 is shown in
the inset in the top plot in Fig. 4(a). Inside C− the laser
fires pulses as demonstrated in Fig. 4(b)–5. We consider
these pulses to be deterministic self-pulsations for negative
detuning.

A bifurcation diagram along arrow B̄ in Fig. 3 is presented
in Fig. 5(a). The limit cycle first undergoes PD bifurcation
[see also the time trace in Fig. 5(b)–1] and then enters regions
4T and mT of period 4 time-periodic and chaotic oscillations,
respectively [see time traces in Figs. 5(b)–2 and 5(b)–3].

In region C2 the laser exhibits double-pulse self-pulsations
(see also the time trace for the amplitude of the electric field in
Fig. 7) resembling the double-pulse excitability in Fig. 2(b).

FIG. 5. (a) Bifurcation diagram for Sm = 4.2 × 10−4 J/m3.
(b) Examples of time traces along arrow B in Fig. 3: (1) � =
11.0 GHz; (2) � = 8.8 GHz; (3) � = 8.0 GHz.

We would like to stress that the self-pulsations in regions
C1,2,− are observed deterministically, without the need for
an additional perturbation, unlike the self-pulsations that
appear inside the HOM tooth (and shown in Fig. 2(c)). These
self-pulsations result from the so-called bottleneck [19]. In
this mechanism, after the SN bifurcation a saddle remnant (or
“ghost”) can continue influencing the system, although the two
fixed points involved in the bifurcation annihilate. In Fig. 6(a)
we show the phase diagrams corresponding to the regions
below C1 and inside of C1 (coordinates of the fixed points
have been calculated by DSTOOL [23]). Indeed, inside C1 the
shape of the attractor is influenced by the “ghost” of a saddle.
In Fig. 6(b) we show the time difference between consecutive
pulses in region C1 as a function of the detuning. It follows an
inverse square root law that is characteristic of the bottleneck
phenomenon [24]. In the deterministic system [the noise term
in Eq. (1) is neglected], the pulses are periodic regardless of the
detuning. The repetition rate on the edge between C1 and LC
is of 0.5 GHz. The same behavior can be observed in regions
C− and C2. We would like to mention that the repetition rate of
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FIG. 6. (a) Phase diagram for Sm = 10−4 J/m3 and (left) � =
3.6 GHz and (right) � = 3.9 GHz. (b) Time difference (and
corresponding frequency, f ) between consecutive pulses in region
C1 as a function of the detuning.

experimentally observed excitable pulses also increases when
the detuning is increased [9].

An important question here is how the QD excited state
contributes to the emission of self-pulsations. Temporal
changes in the occupation of the respective energy levels for
a laser exhibiting double-pulse self-pulsations (C2) are shown
in Fig. 7. With the parameter setting used in the model, the
ground state, which is represented by the dot-dashed curve, is
saturated. The excited state, represented by the dotted line,
is far from saturation and it seems that the shape of the
emitted signal is determined mainly by moderate changes
in the occupation of this state. Its fluctuations influence the
occupation of the ground state through the Pauli blocking
term in the expression of the relaxation term. However, the
amplitude of these oscillations is much lower than it is the
case for the excited level.

V. EFFECT OF SPONTANEOUS EMISSION NOISE
ON THE DYNAMICS OF SELF-PULSATIONS

Excitable pulses can exist only if a perturbation is present
in the system, for example, noise, so that the excitability
threshold can be overcome. As characterized in Sec. IV,
self-pulsations are, however, possible in the absence of noise
and they resemble the excitable pulses in Figs. 2(a) and 2(b).
In experiments noise is inherent to the lasing emission and it

FIG. 7. Temporal changes in the occupation probabilities of the
respective energy levels when the laser exhibits double-pulse self-
pulsations. � = 9.4 GHz, Sm = 6 × 10−4 J/m3.

is therefore difficult to distinguish between excitability and
self-pulsation by looking only at the intensity waveforms.
To make our analysis complete, in this section we show that
the self-pulsations, when accounting for spontaneous emission
noise in the model, moreover, have statistical characteristics
similar to those observed experimentally for the excitable
pulses [9].

Examples of time traces for different values of the detuning
in the presence of noise are shown in Fig. 8. Compared to the
case without noise, the time between consecutive pulses for a
fixed value of the detuning is no longer constant. Nevertheless,
the repetition rate still increases with the detuning. Interpulse
time distributions for two values of the detuning corresponding
to the edge between locking and C1, and between C1 and LC,
are presented in the inset in Fig. 8. In the former case (black
distribution) the interpulse time follows a positively skewed
normal distribution. In the latter case (gray distribution) the
distribution is sharp, while its mean is shifted toward smaller
values. This behavior is consistent with that reported in [9] in
the regions considered to be excitable.

The interpulse time distribution for double-pulse self-
pulsations is shown in Fig. 9. Two, well-resolved peaks
correspond to the time between consecutive double-pulse
self-pulsations and to the time between spikes within a single
double-pulse self-pulsation. Analyzing the number of peaks
of such a distribution has been proposed as a way to detect
and distinguish different types of multipulse excitabilities in
an experiment [13]. It can be concluded from the inset in
Fig. 9 that the noise can break the regularity of self-pulsations
as, for example, in the time slot between 492 and 495 ns,
where a double pulse is lost at the expense of more periodic
oscillations.

In Fig. 10 the influence of spontaneous emission noise
on the standard deviation σ [Fig. 10(a)] and the mean 〈T 〉
[Fig. 10(b)] of the interpulse time distribution for different
values of the detuning is presented. For a detuning of 3.8 GHz,
which is at the SN bifurcation curve bordering the locking
region for positive detuning, the noise influences both σ and
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FIG. 8. Time traces for different values of the detuning in the
presence of spontaneous emission noise, Sm = 10−4 J/m3. Inset:
Distribution of the interpulse time for detunings of 3.8 GHz (black
curve) and 4.5 GHz (gray curve).

〈T 〉. Although, for a very small noise, when βsp < 10−8, the
pulses are periodic [see also the time trace in Fig. 10(c)–1], this
periodicity is rapidly broken at a slightly larger noise value.
At βsp = 10−7, σ achieves its maximum and then decreases
with increasing noise. The mean of the distribution decreases
monotonously with increasing noise—after, however, a sharp
decrease for βsp < 10−6. Such behavior indicates that close to
the locking region, the spontaneous emission noise influences
the dynamics of self-pulsations in the same way as the detuning
does for a fixed value of noise; that is, it shifts the mean
toward smaller values and makes the pulsations more and more
periodic [Figs. 10(c)–3 and 10(c)–4]. In contrast, for a detuning
of 3.9 GHz the noise seems not to influence the mean. The
standard deviation increases for βsp < 10−6 and then saturates.
For βsp = 10−4 the output signal becomes very noisy so that
both the mean and the standard deviation approach 0 [see
Fig. 10(c)–5].

FIG. 9. Statistics of the interpulse time for double pulses. � =
9.6 GHz, Sm = 6 × 10−4 J/m3.

FIG. 10. (a) Standard deviation σ and (b) mean 〈T 〉 of the inter-
pulse time distribution as a function of the spontaneous recombination
noise strength. Sm = 10−4 J/m3. (c) Examples of time traces at the
detuning of 3.8 GHz and (1) βsp = 0, (2) βsp = 10−7, (3) βsp = 10−6,
(4) βsp = 5 × 10−6, and (5) βsp = 10−4.

VI. CONCLUSIONS

We have expanded a theoretical model for optically injected
QD lasers to account for the excited states and intradot
transitions of carriers. The model allows us to check the
influence of the main time constants, namely, the capture
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and relaxation times. Our results show that the dynamics of
optically injected QD lasers are determined mainly by the
relaxation time. Among other things, it scales the regions
of locking and single- and double-period solutions. The
capture time has a minor impact on the dynamics. Bifurcation
maps calculated with continuation and bifurcation software
have been compared with the bifurcation map obtained
by analysis of the intensity time traces. With the latter
method, within the regions of periodic solutions we are
able to identify subregions where the laser deterministically
fires a time-periodic sequence of single or double pulses
resembling excitable ones. These are C1, C2, and C− in Fig. 3.
We refer to these solutions as deterministic self-pulsations
resulting from the bottleneck phenomenon [19,24]. Regions
of single-pulse self-pulsations appear for both positive and
negative detuning. Our results suggest that such emission is
mainly determined by fluctuations in the occupation of excited
states.

To make a complete comparison between the dynamics of
self-pulsations and excitable pulses, we have accounted for the
spontaneous emission noise in the model. The results presented
in this paper refer mainly to self-pulsations existing inside C1

but they hold for C− and C2 as well. In both deterministic
and stochastic systems the interpulse time changes with the
detuning according to an inverse square root scaling low.
However, in a deterministic system the pulses are periodic

regardless of the detuning, which is not the case in the presence
of noise. In this case, close to the SN curve the interpulse
time follows a positively skewed normal distribution. The
distribution becomes sharp for higher values of the detuning
when the unbroken LC is being approached. The behavior
described is consistent with the experimental observations for
excitable pulses [9].

Finally, we show that in the closest proximity to the
SN curve, the noise strength influences the dynamics of
self-pulsations in the same way as the detuning does when
the noise is fixed. For larger values of detuning, in a given
range of realistic spontaneous emission noise levels, the mean
and the standard deviation saturate so that the dynamics of
self-pulsations seems not to be affected by the noise. A
noise-induced resonance of the time between pulses has not
been observed when accounting only for spontaneous emission
noise. Whether another external additive noise source (such as
one added to the injection current) can bring the system to
a coherence or stochastic resonance behavior [25,26] is an
interesting question for future work.
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