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Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity
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We investigate spatial optical solitons propagating in a medium with a saturable but adjustable nonlinearity
and a fixed degree of nonlocality. We employ nematic liquid crystals in a planar cell with optical properties
tuned by an external voltage and solitons excited in the near infrared. We also demonstrate soliton self-bending
versus excitation due to nonlinear variations in walk-off. A theoretical model accounting for the longitudinal
derivatives is employed to compute the refractive index distribution and is found in excellent agreement with the
experimental data.
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I. INTRODUCTION

The concept of spatial solitons, nonlinear wave packets
preserving their transverse profile while propagating in space,
is a unifying one in nonlinear physics [1]. In optics, spatial
solitons are formed when linear diffraction is balanced by the
lens-like character of either a self-induced index well or a
region with enhanced parametric interaction [2–4]. Since the
pioneering work by Chiao and collaborators on self-focusing
in Kerr media [5], first-order optical bright solitons (i.e.,
bell-shaped self-localized waves) have been observed via
various nonlinear mechanisms such as photorefractivity [6],
second-order interactions (χ (2)) [7–11], thermo-optic response
[12,13], and reorientation [14–18]. In the latter case, with
particular reference to nematic liquid crystals (NLC), several
basic functions for all-optical signal processing have been
demonstrated, including wavelength-free guidance of low-
power signals [14,19], voltage-controlled steering [20,21],
deflection by boundaries [22,23], and all-optical logic gating
[24–26]. In addition, issues relating to combined variations of
nonlinearity and nonlocality [27] and their external control
have been addressed in NLC with emphasis on individual
soliton (or nematicon [28]) propagation and soliton-soliton
interactions [22,29–36].

In this paper we investigate, both experimentally and
theoretically, solitary wave propagation in NLC with various
degrees of nonlinearity; we achieve this nonlinear tuning by
modifying the distribution of the molecular director through
the application of a low-frequency electric bias in a planar cell
as detailed in Ref. [37]. We address the role of nonlinearity
in self-trapped beam propagation by analyzing trajectory and
waist versus z: These two parameters suffice to describe the
evolution of Gaussian-shaped optical solitons in a highly
nonlocal dielectric such as NLC [17,38]. In addition, owing
to a sample geometry which allows adjusting both linear
and nonlinear properties, we observe soliton self-routing via
nonlinear changes in walk-off, previously observed under
modulational instability [39] and more recently reported
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with reference to individual nematicons [40] and interacting
counterpropagating pairs [41]. Previous experimental ob-
servations of soliton self-deflection have been based upon
boundary effects on the self-induced waveguides in highly
nonlocal media [42,43], photoinduction of an anisotropic
charge distribution in photorefractives [44,45] or walk-off
mismatch between fundamental and second harmonics in
parametric media [9,11,46,47]. At variance with other optical
dielectrics often exploited for spatial soliton investigation,
such as thermal media where the nonlinearity cannot be
easily tuned over a wide range through a macroscopic control
parameter [48,49], reorientationally nonlinear NLC allow
controlling their molecular response via a low-voltage bias
and, additionally, monitoring the soliton evolution through
light scattering [14,20], thereby permitting a complete study
during propagation. Other examples of externally modulated
nonlinearity in physics include, for example, Bose-Einstein
condensate solitons by means of Feshbach resonances, where
both sign and magnitude of the scattering length, and conse-
quently the potential due to interactions between atoms, can
be changed [50,51], and sound propagation in heterogeneous
material systems where the nonlinearity can be altered by
external magnetic fields [52].

Hereby, we experimentally (as well as theoretically) inves-
tigate the role of nonlinearity in the formation and propagation
of spatial optical solitons in a reorientational nonlocal medium
such as NLC [20,33,53,54]. Noteworthy, at variance with
previous work on nematicons [14,17,30], the geometry we
employ allows decoupling nonlinearity and nonlocality, the
latter being related here to the minimum cell size [23] and
independent of the applied voltage. To confirm such features
and interpret the data, we develop a two-dimensional (2D)
model which is effective in describing the nonlinear optical
propagation of a beam in a highly nonlocal medium; we
demonstrate that, while the nonlinear refractive index profile
in three dimensions is linked to the light intensity through
a Poisson-like equation, in an equivalent two-dimensional
scenario the pertinent equation is a screened Poisson or
Yukawa equation, with screening depending on the minimum
cell size. This model can be applied to every highly nonlocal
material, including solid [13] and liquid [55] thermo-optic
media, atomic vapors [56], and soft matter [57] among
others.
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Finally, we explain the observed phenomena with the aid
of numerical simulations, addressing for the first time the role
of longitudinal nonlocality [58,59] in spatial soliton physics.

II. NONLINEAR OPTICAL PROPAGATION
IN NEMATIC LIQUID CRYSTALS

Liquid crystals exhibit properties intermediate between
those of solids and liquids. In the nematic phase their elongated
organic molecules are distributed in space with a sizable degree
of orientational order and a lack of long-range positional
order [60], thereby exhibiting uniaxial symmetry, with optic
axis (or director) n̂ associated to the largest refractive index.
Their large birefringence makes NLC an ideal workbench for
the investigation of anisotropy and related effects, such as
walk-off [20]. Additionally, their anisotropy mediates a strong
coupling with electric fields at every frequency, with a torque
acting on the molecules to change their orientation and yielding
both a large electro-optic response and a large reorientational
nonlinearity for extraordinary (e-) waves with electric field E
polarized such that E · n̂ �= 0; conversely, ordinary waves (with
E⊥n̂) are subjected to the so-called Freedericksz threshold
and, at low intensities, have no reorientational effect on the
medium [53,54,60,61]. The nonlinearity permits the excitation
of solitons at mW power or below [14,25], whereas the
nonlocality stemming from the intermolecular links stabilizes
(2 + 1)D solitons [17], otherwise prone to catastrophic collapse
in local Kerr media [2,5].

Let us consider a bell-shaped extraordinarily polarized
beam propagating forward in NLC (e.g., in a cell as sketched
in Fig. 1 or otherwise shaped), with peak wave vector parallel
to ẑ. If the director n̂ belongs to the plane yz, its distribution is
fully described by the angle θ (x,y,z) it forms with ẑ, with θ0 the
orientation in the absence of optical excitation. The elements
of the NLC dielectric tensor ε are then εjk(θ ) = ε⊥δjk +
εanjnk (j,k = x,y,z), where nj (j = x,y,z) are Cartesian
components of n̂ and ε⊥ (ε‖) is the eigenvalue of ε normal
(parallel) to the optic axis, with εa = ε‖ − ε⊥ the dielectric
anisotropy. We introduce the walk-off δ(θ ) = arctan (εyz/εzz)
and the e-refractive index n2

e(θ ) = (εyy − ε2
yz/εzz)/ε0. Naming

FIG. 1. (Color online) Sketch of a light beam traveling in a planar
(unbiased) NLC cell, the latter unlimited in the plane yz and of
thickness L along x. The anchoring conditions at the boundaries
(glass interfaces) induce a homogeneous director distribution, with
n̂ · ẑ = cos θ0 and n̂ · x̂ = 0. (a) A low-power e-polarized Gaussian
beam launched with wave vector parallel to z diffracts, its Poynting
vector walking-off at an angle δ0 with respect to z; (b) an e-beam of
sufficient power induces self-confinement but no changes in walk-off:
the soliton propagates along the previous (linear) Poynting vector.

θb(z) the angle θ computed on the beam axis, we define
the e-wave component of the magnetic field along x̂ as
Hx = Aeik0n

(b)
e z, with A the envelope, k0 the wave vector in

vacuum, and n(b)
e = ne(θb) the refractive index of the carrier.

In the paraxial approximation, Hx is the dominant component
over those along ŷ and ẑ. In the highly nonlocal case [17], the
evolution of Hx along z is ruled by the anisotropic nonlinear
Schrödinger equation:

2ik0n
(b)
e

(
∂A

∂z
+ tan δb

∂A

∂y

)
+ Dy

∂2A

∂y2

+ ∂2A

∂x2
+ k2

0�n2
eA = 0, (1)

where δb = δ(θb), Dy = [ε0/εzz(θb)]n2
e(θb) is the diffraction

coefficient in yz and �n2
e = n2

e(θ ) − n2
e(θb) is the nonlinear

change in index responsible for light self-confinement. A
pointwise reference system xts can be defined at each z by
rotating xyz by an angle δb around x̂; in this moving frame in
yz, ŝ is the “local” Poynting vector and the electric field can be
expressed by Et ≈ ( ∂Hx

∂z
+ tan δb

∂Hx

∂y
)/(−iωε0n

2
e cos δb), with

ω the angular frequency. In the paraxial regime Et ≈ −
[Z0/(n(b)

e cos δb)]Hx , with Z0 the vacuum impedance.
To obtain the θ -dependent parameters appearing in Eq. (1)

we need to calculate the spatial distribution of θ (i.e., the
director angle) via a reorientation equation which, based on our
previous assumptions and the single-constant approximation
for elastic NLC deformations [53,54,61], reads

∇2θ + γ |Et |2 sin[2(θ − δb)] = 0, (2)

with γ = εa/(4K) and K the elastic (Frank) constant [60].
Since the derivatives along z are included in Eq. (2), we
are accounting for nonlocality also along the propagation
direction, at variance with models previously employed for
spatial solitons [13,17,20,57,62–68]. We set θ = θ0 + ψ , with
θ0 the director angle fixed by the boundary conditions [60]
and ψ the light-induced reorientation. Assuming θ0 to be
homogeneous across the NLC volume, Eq. (2) gives

∇2ψ + γ |Et |2 sin[2(θ0 + ψ − δb)] = 0, (3)

with ψ zero at the NLC boundaries owing to strong anchoring
[60]. Equation (2) [or equivalently Eq. (3)] nonlinearly links
the intensity I ∝ |A|2 of the electromagnetic wave to the
optically induced perturbation ψ . Therefore, it is not solvable
through the Green function formalism, but retains its validity
for every regime of the reorientational nonlinearity, including
saturation (when n̂ becomes nearly parallel to Et [60]) and
nonlinear changes in walk-off [27]. In the limit ψ � θ0, Eq. (3)
reduces to the linear Poisson equation because reorientation in
the second term can be neglected [43]. The solutions of this
linearized version of Eq. (3) depend on the specific geometry,
the latter defining—in turn—a specific Green function [69]:
otherwise stated, the nonlocality varies with the cell geometry.
As it can be easily shown with a perturbative approach [43],
such considerations hold valid in every applicable regime of
Eq. (3).
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Let us now discuss the nonlinear response in the low-
perturbation regime. As clear from Eq. (1), �n2

e = �n2
e(|Et |2);

consistently with our assumptions, we write

�n2
e = 2ne(θ0)�ne = 2ψ (|Et |2)ne(θ0)

∂ne

∂θ

∣∣∣∣
θ=θ0

, (4)

where ∂ne

∂θ
= sin(2θ)

2 ( 1
ε⊥

− 1
ε‖

)( cos2 θ
ε⊥

+ sin2 θ
ε‖

)−3/2 and ψ is given
by

ψ = γ sin[2(θ0 − δ0)]

×
∫ ∫ ∫

G(x,y,z,x ′,y ′,z′)|Et (x
′,y ′,z′)|2dx ′dy ′dz′, (5)

in which we set δ0 = δ(θ0) and accounted for the finiteness of
the cell [23]; hence, for an assigned G, it is natural to introduce
a figure of nonlinearity n2 as

n2(θ0) = 2γ sin[2(θ0 − δ0)]ne(θ0)
∂ne

∂θ

∣∣∣∣
θ=θ0

, (6)

which yields

�n2
e = n2(θ0)Pg(x,y,z), (7)

having introduced the normalized field u as Et = √
Pv and

g = ∫∫∫
G|v|2dx ′dy ′dz′.

Noteworthy, by using ne(θ0) tan δ0 = ∂ne/∂θ |θ=θ0 we find
for n2 the alternative expression,

n2(θ0) = 2γ sin[2(θ0 − δ0)]n2
e(θ0) tan δ0, (8)

The coefficient γ depends on material parameters and is zero
for null birefringence (εa = 0) or when the intermolecular
forces are very high (K → ∞). The two remaining terms in
Eq. (6) depend on θ0, therefore, n2 can be tuned by changing
the distribution of the director n̂ at rest. In particular, n2 is zero
when either θ0 = 0 owing to the Freedericksz threshold [60]
or θ0 = π/2 owing to saturation as Et and n̂ are parallel
to one another. Figure 2 shows plots of n2 versus θ0: for
a low anisotropy, the nonlinearity reaches its maximum for
θ0 slightly larger than π/4, with a moderate asymmetry
with respect to the peak due to uniaxiality. For large εa , n2

becomes markedly asymmetric [Fig. 2(a)] with a maximum
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FIG. 2. (Color online) Plots of (a) nonlinearity n2, (b) walk-off
δ0, and (c) refractive index ne(θ0) versus director angle θ0 at rest;
each line corresponds to a different value of n‖ = √

ε‖/ε0, from 1.6
(bottom line) to 2 (top line) in 0.1 steps. (d) The dotted (solid) line is
θ0 versus n‖ corresponding to the maximum of n2 (maximum of δ0).
Here, n⊥ = √

ε⊥/ε0 = 1.5.

monotonically increasing with εa [Fig. 2(d)]. Clearly, in the
nonperturbative regime each angle θ0 corresponds to a distinct
saturating behavior because of the sine term in Eq. (6), as
we shall prove by numerically solving the system of Eqs. (1)
and (3).

The NLC nonlocal response, in contrast to local Kerr [70],
does not impose a critical power for soliton formation [20,57];
hence, self-guided waves exist and are stable over a large
range of intensities (infinitely extended in unbounded media)
[18,38,66]. Owing to the continuous interplay between light
spreading via diffraction and self-focusing via reorientation,
soliton waist in NLC changes versus propagation (i.e., nemati-
cons breathe according to excitation power and initial spot
size [18,38,71]). Moreover, due to the high nonlocality, soliton
profiles are nearly Gaussian, which makes the knowledge of
(just) their waist and position along z sufficient to fully describe
their propagation [17,23].

To derive soliton trajectories we define the averaged po-
sition defined as rb(z) = ∫∫

r|A|2dx dy/
∫∫ |A|2dx dy (r =

xx̂ + yŷ). From the Ehrenfest’s theorem applied to Eq. (1) we
get the evolution equation along z [72]:

d2rb

dz2
= ne(θ )

n2
e(θb)

∇xyne(θ )

∣∣∣∣
rb

+ ∂ tan δb

∂z
ŷ, (9)

where ∇xy = x̂∂/∂x + ŷ∂/∂y and we compute the
right-hand side in the highly nonlocal limit. Finally,
we calculate the waist w in ξ (ξ = x,y) as w =
2
√∫∫

(ξ − ξb)2|A|2dx dy/
∫∫ |A|2dx dy.

III. PLANAR CELLS

Let us consider planarly aligned NLC in flat and planar
sandwich-like cells (see Fig. 1), infinitely extended in yz and
of thickness L along x, with x = 0 at the bottom boundary.
We can write

ψ(x,y,z) =
∞∑

n=1

ψn(y,z) sin

(
πn

x

L

)
. (10)

Substituting Eq. (10) into Eq. (3) and considering a highly
nonlocal response we obtain

∇2
yzψn −

(πn

L

)2
ψn + γ sin[2(θ0 + ψ − δb)]|xb

In(y,z) = 0,

(11)

for every positive integer n, having exploited the orthogonality
of sine functions and let In = (2/L)

∫ L

0 |Et |2 sin (πnx/L)dx.
Equation (11) is an infinite set of screened Poisson equations,
with screening lengths Ln = L/(nπ ); their Green functions are
modified Bessel functions of the second kind K0(ρ/Ln), with
ρ =

√
(y − y ′)2 + (z − z′)2. Thus, the nonlinear perturbation

ψ is

ψ(x,y,z) = γ

2π

∞∑
n=1

sin

(
πn

x

L

)

×
∫ ∫

K0(ρ/Ln) sin [2(θ0 + ψ − δb)]|xb
In(y ′,z′)dy ′dz′,

(12)

with nonlinearity expressed by ψ on the right-hand side.
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For a small perturbation (i.e., small ψ), g(x,y,z) =
1

2πP

∑∞
n=1 sin(πn x

L
)
∫∫

K0(ρ/Ln)In(y ′,z′)dy ′dz′ and the
Green function is

G(x,x ′,ρ) = 1

2π

∞∑
n=1

K0(ρ/Ln) sin

(
πn

x

L

)
sin

(
πn

x ′

L

)
.

(13)

The shape of the three-dimensional (3D) Green function above
depends on x ′ owing to the finite x boundaries which break the
translational symmetry [23,42,43]. Equation (13) also implies
a nonlocality determined by L1 = L/π , consistently with
Ref. [43] where the case ∂2ψ/∂z2 = 0 was addressed.

The fully nonlinear case in the highly nonlocal limit can be
dealt with by taking the nonlinear perturbation ψ [on the RHS
of Eq. (12)] on beam axis, (i.e., x = xb and y = yb). Equation
(12) can be solved iteratively as a 3D Poisson equation,
taking a forcing term sin{2[θ0 + ψb(z) − δb(z)]}In(y,z), with
ψb(z) = ψ |xb,yb

. Thus, the degree of nonlocality is always
ruled by Eq. (13), even though the perturbation amplitude
has a nonlinear dependence on soliton power due to the sine
term [23]. According to Eq. (13), the director distribution does
not vary on length scales much smaller than L in any direction,
in contrast to the case when the second derivatives along z

are neglected, that is, without (low-pass) spatial filtering of
the director changes along z. Remarkably, this result holds
valid for an arbitrarily highly nonlocal nonlinearity in a finite
geometry (along at least one direction), provided the width of
the Green function is comparable with the smallest size.

IV. TWO-DIMENSIONAL MODEL

Equations (1)–(11) completely model the 3D propagation
of spatial solitons in NLC. Since we are mainly interested in
soliton propagation in the cell midplane x = L/2 (i.e., xb =
L/2 for every z), where the forces exerted by the boundaries
balance out [23], it is convenient to resort to a simpler 2D
description which encompasses all the main features of the 3D
model in the previous section.

Setting A = X(x,z)u(y,z) in (1) and integrating along x

yields

2ik0n
(b)
e

(
∂u

∂z
+ tan δb

∂u

∂y

)
+ Dy

∂2u

∂y2
+ k2

0

(
�n2

e

)
eq

u = 0,

(14)

where we defined (�n2
e)eq = ∫ ∞

−∞ X�n2
edx/

∫ ∞
−∞ Xdx. In

the highly nonlocal limit we use (�n2
e)eq = �n2

e |x=L/2

in Eq. (11) and obtain In(y,z) = |u(y,z)|2(2/L)∫ L

0 |X|2 sin(πnx/L)dx = I x
n (z)Iyz(y,z), with I x

n (z) = (2/L)∫ L

0 |X|2 sin(πnx/L)dx and Iyz = |u|2. Therefore, for re-
orientation in the midplane,

ψ(x = L/2,y,z) =
∞∑

n=1

sin(πn/2)I x
n (z)ψ2D

n (y,z), (15)

with each ψ2D
n (y,z) satisfying the corresponding equation:

∇2
yzψ

2D
n −

(
πn

L

)2

ψ2D
n + γ sin[2(θ0 + ψ − δb)]|yb

Iyz = 0.

(16)
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FIG. 3. (Color online) (a) Values of I x
n for w/L = 0.01 (blue

crosses), 0.05 (red stars), 0.1 (black circles), and 0.5 (green squares).
(b) σ versus normalized waist w/L; as expected, σ is maximum for
small waists and tends to unity for large spot sizes.

If X(x) is even with respect to x = L/2 [i.e. X(L/2 − a) =
X(L/2 + a) with a < L/2] with a single-hump profile,
for odd n only the ψ2D

n are nonzero, with sin[π (2m +
1)/2]I x

2m+1(z) = |I x
2m+1(z)|∀ m ∈ N. Therefore, to a first ap-

proximation, nonlinear optical propagation in the midplane
is described by the two-dimensional model Eqs. (14) and
(16), the latter taken for n = 1 with an equivalent intensity
Ieq such that I = σIeq, with I = n(b)

e /(2Z0 cos δ)|Et |2 the
actual beam intensity and σ a fit parameter. We estimate
σ using Eq. (15); assuming equal amplitudes of all ψ2D

2m+1,
we get

σ ≈
∞∑

m=0

|I x
2m+1|/|I x

1 |. (17)

Thus, it must be σ > 1. Figure 3 shows σ as com-
puted with Eq. (17) for a Gaussian profile along x, that
is, X(x) = exp [−(x − L/2)2/w2]; in this case I x

n (x/L) ≈
(
√

πw/L) sin(πn/2)e−( πnw
2L

)2
[23].

We numerically integrated our model Eqs. (14) and (16)
with an anisotropic beam propagator, using the beam profile
to calculate the director distribution in the plane yz via
an over-relaxed Gauss-Seidel scheme and iterating until
convergence [73]. For the boundaries in θ we assumed the
nonlinear changes at the grid edges to be zero (i.e., θ = θ0).
The grid size along y was such that its minimum distance
from the beam exceeded the nonlocality L. Analogously,
we used a grid along z twice wider than the propagation
distance (chosen to be 1.5 and 3 mm, respectively). Finally, in
Eq. (14) we inserted a loss term 2ik0n

(b)
e αu to better model the

experimental results; losses in our samples were mainly due to
Rayleigh scattering [60], measured to amount to α ≈ 5 cm−1

[for P (z) = P (z = 0)e−2αz].
Figures 4–6 show the results of our simulations for a

Gaussian input of waist 5 µm: in the linear regime the beam
diffracts owing to negligible reorientation. For each θ0 the
beam diffracts with a specific divergence due to Dy = Dy(θ0)
in Eq. (14) and a distinct walk-off (see Figs. 5 and 6,
respectively), in agreement with Fig. 2(b). As power increases,
the beam undergoes self-focusing (see the waist trend in Fig. 5)
until a soliton eventually forms; the effect is stronger for
θ0 = 40◦ and θ0 = 50◦, as predicted in Sec. II. We also note
that self-focusing at high powers is markedly more asymmetric

023806-4



PROPAGATION OF SPATIAL OPTICAL SOLITONS IN A . . . PHYSICAL REVIEW A 82, 023806 (2010)

FIG. 4. (Color online) Simulated nematicon evolution in the
plane yz for θ0 = 10◦ and Peq = 1 µW (first row), θ0 = 10◦ and
Peq = 5 mW (second row), θ0 = 50◦ and Peq = 5 mW (third row).
Left and right columns display perturbation ψ (in degrees) and
intensity |u|2 (in arbitrary units), respectively. Here, L = 100 µm,√

ε⊥/ε0 = 1.5, and
√

ε‖/ε0 = 1.7, corresponding to the NLC E7
at λ = 1064 nm.

with respect to θ0 = π/4, if compared with the theoretical
predictions stemming from Eq. (6); this is easily explained by
saturation in the reorientational response, previously neglected
in expression (6) which was derived for low reorientation (see
Sec. II).

The numerical results demonstrate that nematicon trajec-
tories depend on power via nonlinear changes in walk-off. In
fact, from Eq. (9) and since no effective index gradient acts
on the beam when launched in the midplane x = L/2 [43],
the direction of the local Poynting vector is determined by
the walk-off δb(z) which depends on θb(z) = θ0 + ψb(z) and,
thus, on optical reorientation ψb. For z � α−1, the soliton
angle with respect to z is given by the linear δ0(θ0) owing to the
exponential decay of ψ along z, as confirmed by Fig. 6 where it
is apparent that the soliton trajectories in z = 1.5 mm are
parallel regardless of the power. Furthermore, the variations
in δb at low powers follow Fig. 2(b): for θ0 < 40◦ (θ0 > 40◦)
the walk-off increases (reduces) with excitation. Both sign
and magnitude of the nonlinear changes match the theoretical
predictions: the soliton displacement (Fig. 6) is maximum for
θ0 close to either 0 or π/2, but small for θ0 = π/4; hence,
the displacement has an opposite trend with respect to the
nonlinear Kerr figure [see Fig. 2(a)]. This counterintuitive
result stems from the interplay between nonlinearity and
walk-off sensitivity versus θ .

V. GEOMETRY OF THE TUNABLE SAMPLE

The nonlinearity in NLC depends on the rest angle of
the director. In standard planar NLC cells [20] the director
distribution in the absence of external excitation is determined
by anchoring at the glass-NLC interfaces. A low-frequency
voltage bias across x produces an index well across the NLC
thickness, causes solitons to propagate out of the plane yz [74],
and changes the effective nonlocality [18]. In our experiments,
conversely, we used a planar cell as in Ref. [37], where an
electric bias can alter the NLC conditions at the boundaries.
Two interdigitated comb electrodes in transparent indium tin
oxide (ITO) are deposited on each of the two glass-NLC
interfaces (parallel to yz) (see Fig. 7), with comb-teeth
orthogonal to z; in the plane yz, adjacent teeth of distinct
electrodes are spaced by � − l along z and extend l in width.
A voltage V applied between them originates an alternating
electric field ELF with period 2� along z. For � � L,
the dominant component of ELF is along z and molecular
reorientation takes place in the plane yz; thus, the dielectric
properties of the NLC are simply determined by the angle θ

of the director with z, governed by

∂2θ

∂x2
+ ∂2θ

∂z2
− γLF sin(2θ )|ELF |2 = 0. (18)

Due to anchoring, we take θ = θB in both x = 0 and
x = L and apply periodic boundary conditions along z, as
θ is periodic with the electric field E2

LF in the limit of
infinitely extended electrodes along z with period �. Since
θ (x = L/2 − a,z) = θ (x = L/2 + a,z) we study θ (x,z) in
the range z ∈ [0 �] with x ∈ [0 L/2]. At low reori-
entation, Eq. (18) can be solved with the Green func-
tion (G) formalism, with G(x,x ′,|z − z′|) = −∑∞

m=1
1

πm

sin(πmx ′/L) sin(πmx/L)e−(πm|z−z′ |/L) [23]. To find an ex-
pression for ELF we take ELF = V/(� − l) in x = 0 (x = L)
between the electrodes and zero below or above them; we
assume an exponential decay e−κx along x, with κ a fit
parameter describing the coupling between the NLC molecules
and the external bias. Thus,

|ELF | = V

� − l
rect�−l[z − (� − l)/2]e−κx, (19)

where rectd (z) is equal to 1 for z ∈ (−d/2 d/2), 0.5 in z =
±d/2, and zero elsewhere.

FIG. 5. (Color online) Beam waist
versus input power Peq (see the text
for definition) at rest angles θ0 ranging
from 10◦ to 80◦. Blue solid line without
symbols, green line with triangles, red line
with squares, cyan line with circles, and
magenta line with asterisks correspond to
Peq = 1 µW, 500 µW, 1 mW, 3 mW, and
5 mW, respectively.
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FIG. 6. (Color online) Beam trajec-
tory versus input power Peq at rest angles
θ0 ranging from 10◦ to 80◦. Blue solid
line without symbols, green line with
triangles, red line with squares, cyan line
with circles, and magenta line with aster-
isks correspond to Peq = 1 µW, 500 µW,
1 mW, 3 mW, and 5 mW, respectively.

Defining the electric perturbation as �θ (x,z) = θ (x,z) −
θB , Eq. (18) provides �θ = − γLF sin(2θB)

∫∫ |ELF (x ′,z′)|2
G(x,x ′,|z − z′|)dx ′dz′. We find

�θ = −γLF sin(2θB)
2V 2

(� − l)2

×
∞∑

p=−∞

∞∑
m=0

sin[π (2m + 1)x/L]

π (2m + 1)
Q(z,p,2m + 1)R(2m + 1),

(20)

being

Q(z,p,m) =
∫ (p+1)�−l

p�

e−πm|z−z′ |/Ldz′, (21)

FIG. 7. (Color online) (a) Top and (b) side views of the cell used
in this work. The blue arrows represent the molecular director. In
(b) the director distribution induced by the bias V applied to the
interdigitated electrodes is sketched; the profile is inhomogeneous
close to the interfaces in x = 0 and x = L, and homogeneous in the
bulk of the NLC, with angle θ depending on V . The field lines of the
low-frequency electric field ELF (green lines) are drawn qualitatively;
the glass thickness is not in scale with L and the director is not
indicated when it overlaps with ELF for the sake of clarity. (c) In-
plane soliton steering: the red lines represent the soliton trajectories
versus power and indices 1, 2, and 3 correspond to increasing V (see
Ref. [37]).

R(m) =
∫ L/2

0
sin(πmx ′/L)e−2κx ′

dx ′. (22)

Solutions of integrals (21) and (22) are reported in
Appendix.

With reference to the experimental parameters θB = 80◦,
L = 100 µm, � = 30 µm, l = �/2, and the (commercial)
NLC mixture E7, Fig. 8 displays the computed �θ for
various κ and low reorientation. For each voltage the induced
reorientation is larger for smaller κ , owing to an increased
coupling between field and NLC, and the overall shape of �θ

depends on κ , as well: for rapidly decaying electric fields (i.e.,
large κ) θ has marked peaks and dips versus z corresponding
to the ITO pattern; for lower κ the nonlocality smoothes out
the �θ profile. Around the midplane x = L/2 θ is flat and
determined by the bias V , as the intermolecular forces stretch
the effects of ELF to distances comparable with the nonlocal
range L. In essence, the cell behaves as a planar system with
anchoring θ0 controlled by V , that is, an ideal experimental
setting for investigating spatial solitons versus nonlinearity
(i.e., Kerr figure).

Our considerations above apply to small �θ , when Eq. (18)
can be linearized. For large �θ , conversely, saturation due
to the sine term becomes relevant. To address the latter and

FIG. 8. (Color online) Plots of �θ versus z and x computed from
Eq. (20) for (a) κ = 2 × 106 m−1, (b) 1 × 106 m−1, (c) 5 × 105 m−1,
(d) 2 × 105 m−1, (e) 1 × 105 m−1, and (f) 5 × 104 m−1. Here the
applied bias is V = 2, the electrodes extend from z = 0 to z = 15 µm,
L = 100 µm, K = 12 × 10−12 N and εLF = 1.25 × 10−10 Fm−1.
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FIG. 9. (Color online) �θ profiles computed with Eq. (18) for
κ = 1.3 × 105 m−1 and (a) V = 1 V, (b) 2 V, (c) 3 V, and (d) 5 V,
respectively. (e) θ in the midplane x = L/2 and (f) corresponding
walk-off at λ = 1064 nm versus bias V . In (e) and (f) the dots are
experimental data and each line corresponds to a different κ; from left
to right κ = 5 × 104, 1.3 × 105, 2 × 105, 4 × 105, and 2 × 106 m−1,
respectively.

fully compare theory and experiments, we solved Eq. (18)
using an over-relaxed Gauss-Seidel scheme [73]. The results
are shown in Fig. 9: from (a)–(d), it is apparent that the θ

profile is perfectly consistent with the predictions of Eq. (20),
even for voltages well beyond the low reorientation limit. This
is better understood by solving Eq. (18) with a perturbative
approach, as it can be proven to be equivalent to an infinite
set of Poisson equations and therefore share the same Green
function [43]. The effects of saturation can be addressed
numerically: Fig. 9(e) graphs the midplane NLC reorientation
for various κ; for low κ the curve resembles the Freedericksz
transition [60], whereas for high κ the reorientation is smoother
due to a smaller coupling between ELF and the NLC, with
a much lower slope for κ = 2 × 106 m−1. Finally, Fig. 9(f)
displays the walk-off corresponding to reorientation dynamics
in Fig. 9(e): by the applied bias V it is possible to angularly

steer solitons over a range as large as 7◦, the sensitivity with
V being maximum for strong coupling.

VI. EXPERIMENTAL RESULTS

An infrared beam from a Nd:YAG laser source operating
at λ = 1.064 µm was focused at the cell input with a waist of
about w0 = 5 µm; its evolution in the plane yz was monitored
by collecting the out-of-plane scattered light with a microscope
objective and a CCD camera [14]. We studied nonlinear
propagation for powers ranging from 1 to 10 mW and by
varying the applied bias, that is, the effective nonlinearity
(see expression of n2 in Sec. II and discussion therein), but
keeping the nonlocality constant (the latter related to the cell
size L). Figure 10 displays the beam evolution in yz for various
voltages V and input powers P . At low powers the beams
(launched with wave vector parallel to z) propagate straight
along their linear walk-off determined by V . Figure 9(f) graphs
the measured walk-off versus V , whereas Fig. 9(e) shows
the corresponding angle between wave vector and director
in the midplane. At each V the sample effectively behaves
as a standard cell [20] with anchoring at θ0(V ) [Fig. 9(e)]
[37]. Since the agreement between predicted and measured
walk-off is excellent for V < 2V , from our data on soliton
walk-off versus voltage V we can estimate κ = 2 × 105 m−1

[see Fig. 9(f)]. For larger biases the computed walk-off is
smaller than measured due to the approximated distribution of
the electric field with no x components.

Figure 11 plots the beam waist versus excitation and
voltage. At θ0 = 80◦ (i.e., no voltage), the beam diffracts
for P = 1 mW (waist quasilinearly growing with z), whereas
it weakly self-focuses for P up to 6 mW; for P = 8 mW
self-focusing is witnessed by the reduction in beam waist for
large z; for P = 10 mW the waist in z = 0 and z = 1.5 mm
is the same, indicating the formation of a self-confined
breather [18,38]. At θ0 = 60◦ the nonlinearity gets larger
and self-confinement occurs for P = 2 mW, with a breathing

P=1mW

y 
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m
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−200

0

200
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FIG. 10. (Color online) Acquired evolution of an extraordinary beam at λ = 1064 nm for various input powers and biases. For V = 4 V
we observed oscillations along z with the same periodicity of the electrodes and attributed them to the effect of the transition zone near the cell
edges (Fig. 9).
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FIG. 11. (Color online) (First row) Measured beam trajectories
in the plane yz for various θ0 (legends) and powers; powers are
P = 1 (blue line), 2 (green), 4 (red), 6 (purple), 8 (cyan), and 10 mW
(yellow), from bottom to top for θ0 = 10◦ and θ0 = 30◦, and from top
to bottom for θ0 = 60◦ and θ0 = 80◦. (Second row) Corresponding
evolution of beam waist versus z for the same set of powers. The
power corresponding to each line can be inferred by the fact that
lower waists correspond to larger power, if propagation close to the
entrance (i.e., on a single breathing period) is considered.

period continuously reducing from 2 mm to 250 µm as the
excitation goes from 4 to 10 mW; the waist w(z) oscillates
around a mean value comparable with the input spot size.
At θ0 � 40◦ self-focusing becomes appreciable for powers as
low as 1 mW and the breathing period reaches a minimum of
about 120 µm for P = 10 mW as the nonlinearity becomes the
largest. If bias is further increased past the maximum in n2, then
the waist evolves with an opposite trend, in agreement with the
bell-shaped curve in Fig. 2(a); the breathing period � becomes
longer (for a fixed power) as the nonlinearity decreases, with
diffraction becoming dominant for � → ∞.

The period � is a scalar quantity well suited for the
(indirect) evaluation of the nonlinearity. However, since
scattering reduces the optical power in propagation and distorts
the sinusoidal behavior predicted in the ideal limit (see Sec. II
and simulations therein) [18,38], we evaluated � as four
times the distance z where the waist takes its first maximum.
For a fixed input power P = 4 mW, Figs. 12(a) and 12(b)
plot � versus θ0 and voltage V , respectively: � decreases
from 1.8 to 0.9 mm as V goes from 0 to 2V , reaching its
minimum for the latter value (for θ0 � 45◦ the nonlinearity
is maximum) and eventually increasing again for larger V .
The breathing period is longer at higher θ0, at variance with
what is expected from the theoretical expression of n2: this
is a consequence of saturation, more relevant for θ0 closer to
π/2 and not considered in deriving Eq. (6). Saturation effects
are more apparent in Figs. 12(c) and 12(d), graphing both
numerical and experimental z-averaged waists: the solitons
are wider for θ0 close to π/2 (i.e., low V ) (see results for
θ0 = 80◦ and θ0 = 10◦). Figures 12(c) and 12(d) show an
excellent agreement between simulations and experiments
with a fit-coefficient σ = 5; the latter is consistent with the
predictions in Sec. IV. From the relationship between θ and δ

[see Fig. 2(b)], the largest changes in walk-off (for low powers)
are expected for θ close to either 0 or π/2; experimentally, we
verified that indeed the largest soliton self-deflections occur

FIG. 12. (Color online) (a) and (b) Measured � (blue line with
symbols) and n2 [red solid line; see Eq. (6) for a definition] for P = 4
mW and versus (a) θ0 and (b) V , respectively. Error bars are derived
from Fig. 9(e). (c) Experimental and (d) numerically averaged waist
along z versus power P and θ0(V ). The best fit is obtained for σ = 5
(see Sec. IV). Slight discrepancies are due to scattering losses, taken
constant in the numerical simulations whereas they actually depend
on θ0(V ) [60].

for either θ0 close to 0◦ or 90◦ (Fig. 11), although the explored
range of powers was limited in order to prevent the insurgence
of time-dependent instabilities; the upper bound of 10 mW in
the experiments ensured reproducible results at each voltage.

VII. CONCLUSIONS

We have introduced, modeled, and experimentally charac-
terized a planar geometry for the investigation of nonlocal
spatial solitons in a tunable reorientational medium such
as voltage-controlled nematic liquid crystals. By employing
interdigitated comb electrodes deposited on each side of the
cell we were able to mimic an effective anchoring dependent
on an external applied voltage. At variance with previous NLC
samples and experiments, we were able to decouple nonlin-
earity and nonlocality, the former depending on applied bias
and the latter on the smallest cell dimension, respectively. We
found a perfect match between director distributions calculated
at a given voltage, either with a Green function formalism
or numerically. We derived a theoretical expression for the
equivalent Kerr coefficient in nonlinear dielectrics which
are nonlocal in both transverse and longitudinal coordinates
with respect to a propagating light beam. An equivalent 2D
model was derived which retains the main features of the
complete 3D model but requires much shorter computation
times. To compare model and experimental results for soliton
propagation versus nonlinearity, we determined soliton waist
and trajectory in the highly nonlocal case and found an
excellent agreement between data and theory. We verified
experimentally the predicted soliton self-steering via nonlinear
changes in walk-off and in various anchoring conditions.

Our findings are relevant to nonlinear light self-confinement
in the presence of nonlocality and demonstrate an adjustable
nonlinear configuration for nematicons. Further investigations
will deal with interactions between solitons and between
solitons and defects, pinpointing the role of nonlocality as
well as of nonlinearity. Finally, the presented novel geometry
entails reconfigurable interconnects, whereby optically in-
duced waveguides corresponding to individual solitons can
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be used as signal steering elements with deflections depending
on both applied bias and light power, without the detrimental
effects of out-of-plane walk-off.
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APPENDIX: CALCULATION OF THE INTEGRALS
INVOLVED IN ELECTRICALLY DRIVEN

DIRECTOR REORIENTATION

From Eq. (22) it is easy to find that

R(m) = sin φ − e−κL sin
(

πm
2

)
cos φ√(

πm
L

)2 + 4κ2
, (A1)

with φ = arctan( πm
2κL

). For p = 0 Eq. (21) gives

Q(z,0,m)

=
⎧⎨
⎩

L
πm

(
2 − e− πm

L
z − e− πm

L
[(�−l)−z]

)
, 0 < z < (�− l),

L
πm

e− πm
L

z
[
e

πm
L

(�−l) − 1
]
, z � (� − l).

(A2)

For p < 0,

Q(z,p,m) = L

πm
e− πm

L
z+ πm

L
p�

[
e

πm
L

(�−l) − 1
]
, (A3)

and for p > 0,

Q(z,p,m) = L

πm
e

πm
L

z− πm
L

p�
[
1 − e− πm

L
(�−l)]. (A4)

Noteworthy, only the coefficients R depend on the coupling
coefficient κ , as expected.
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