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Controllable interaction of counterpropagating solitons in three-level media
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We examine the dynamics of counterpropagating self-induced transparency solitons in three-level media. In a
multilevel system, self-induced transparency gives rise to soliton solutions if the propagation is unidirectional,
but the collision of counterpropagating pulses destroys the integrability of the underlying equations. We consider
the collision of a rightward and a leftward moving self-induced transparency solitary wave by solving the
full Maxwell-Bloch equations numerically using a finite-difference time-domain approach. Depending on pulse
duration, amplitude and relative polarizations of the initial solitary waves we observe different regimes of
interaction. For high group velocities and orthogonal polarizations, secondary solitary waves are born during the
interaction, whereas the collision of solitary waves with the same polarization never produces secondary solitary
waves but leaves behind a population grating in the interaction region. Because the crucial parameters can be
controlled, an experimental confirmation of the predicted interaction regimes should be feasible.
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I. INTRODUCTION

Since their discovery by John Scott Russell in water waves
in 1834 [1] solitons have attracted interest from various
areas of research, especially in the field of nonlinear optics.
Solitons have been found to exist in various optical media,
with Kerr [2], Raman [3] or quadratic nonlinearities [4], in
photorefractive materials [5], and in two-level self-induced
transparency media [6]. Contrary to solitons in the strict
mathematical sense, which retain their shape when penetrating
each other, these particlelike solutions are prone to change
upon mutual interaction. In a collision process they can
dissipate or exchange energy, merge, annihilate each other,
or give birth to additional solitary waves. Theoretical studies
have been conducted on collisions of solitons in two- and three-
level media [7–9], in birefringent optical fibers [10,11], and
interactions of optical spatial solitons [12,13]. Experiments
on soliton collisions in photorefractive materials [14] have
been performed confirming the possibility of the annihilation
of solitons [15], and the merging or birth of solitons [16,17].
Recently, the creation of dispersive waves has been observed
in the collision of solitons in a photonic crystal fiber [18].

Self-induced transparency (SIT) solitons were the first
solitons discovered in optical systems by McCall and Hahn
in 1967 [6,19]. These nonlinear solutions retain amplitude
and shape upon propagation through an absorbing two-level
medium by inducing a complete rotation of the Bloch vector
of the two-level system as the gain via stimulated emission
into the trailing edge equals the absorption loss of the leading
edge. Because of this complete rotation of the Bloch vector
the fundamental SIT solitons are usually referred to as 2π

pulses.
Further analytical studies of SIT solitons have relaxed some

of the assumptions on the temporal and spatial dependencies
of the electric field, which were initially made by McCall and
Hahn to obtain the SIT equations [19]. The reduced Maxwell-
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Bloch (RMB) equations, unidirectional propagation equations
which neither make use of the slowly varying envelope
approximation (SVEA) nor the rotating wave approximation
(RWA), are still integrable [20,21]. Notably, the two-soliton
(breather) solution of the RMB equations is a generalization of
the 2π pulse solution of the SIT equations in SVEA. When the
assumption of the unidirectionality of the pulse propagation
is lifted, the resulting equations are not integrable anymore
and no soliton solution exists. A momentary violation of
approximative unidirectional propagation (during the collision
of counterpropagating pulses) can therefore lead to a whole
spectrum of new effects such as breakup, birth, or annihilation
of otherwise stable solitary waves.

Here, we systematically investigate the collision of coun-
terpropagating simultons [22], SIT solitary waves in three-
level media (Fig. 1), using an auxiliary differential equation
finite-difference time-domain (ADE-FDTD) approach. This
model introduces, apart from the numerical discretization,
no approximations on either the directionality or the form
of the electromagnetic field. Simultons have been found to
be similar to SIT solitons in two-level systems [23–25], but
offer an additional degree of freedom due to the possibility
of distributing the excitation between two transitions. In this
work we show that, in contrast to collisions in two-level media,
collisions in three-level media allow for the birth of new
(secondary) solitary waves. Furthermore, we demonstrate that
the outcome of the collision in terms of the group velocities
of the resulting pulses depends solely on the polarizations
and group velocities of the initial pulses. For a practical
realization the duration of the pulses should be considerably
smaller than all relaxation times in the medium and an
effectively one-dimensional system, such as a fiber, must be
chosen.

The outline of the paper is as follows: In Sec. II we present
the fundamental equations for the optical dipole interaction of
a light pulse with a three-level medium in the full Maxwell-
Bloch theory. The results of finite-difference time-domain
(FDTD) simulations of the collision of counterpropagating
simultons in a V-type three-level system are reported and
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FIG. 1. Schematics of a V-type (a) and �-type (b) degenerate
three-level medium.

discussed in Sec. III. We first study the collision of coun-
terpropagating simultons with parallel relative polarization
and show that this scenario is equivalent to the collision of
simultons in two-level media (Sec. III A). Next, the collision
of simultons with orthogonal polarizations is investigated in
Sec. III B and finally we look at the collisions of simultons
with arbitrary relative polarizations (Sec. III C). We conclude
our findings in Sec. IV.

II. THREE-LEVEL MAXWELL-BLOCH EQUATIONS

We model the propagation of the light pulses using the
FDTD method [26] for Maxwell’s equations combined with
Mur boundary conditions [27].

In a one-dimensional propagation scheme the relevant
equations are the one-dimensional Maxwell equations for the
electric and magnetic field with the macroscopic polarization,
resulting from the material equations for the three-level
medium, as source term. The state of the three-level medium
at a given point in space x is represented by a three-by-three
density matrix ρ̂(x,t) and its time evolution can be described
by a three-by-three Hamiltonian Ĥ via the Liouville equation,

ih̄
∂

∂t
ρ̂ = [ρ̂,Ĥ ]. (1)

For a three-level system in dipole approximation the
Hamiltonian can be written as

Ĥ = Ĥ0 − µ̂ · E =

⎡
⎢⎣

h̄ω1 −µ12 · E −µ13 · E

−µ∗
12 · E h̄ω2 −µ23 · E

−µ∗
13 · E −µ∗

23 · E h̄ω3

⎤
⎥⎦ ,

(2)

with E = Exex + Eyey + Ezez denoting the electrical field
vector, µ12 = µey + iµez, µ13 = µey − iµez, and µ23 = 0
the vectors of dipole matrix elements, and h̄ωi the energy
of level |i〉.

The Liouville equation (1) together with the Hamiltonian
(2) results in the Bloch equations, equations of motion of the
density matrix elements of a three-level system excited by a
light field:

∂

∂t
ρ12 = i[ρ12(ω1 − ω2) + �12(ρ11 − ρ22) − �13ρ

∗
23], (3)

∂

∂t
ρ13 = i[ρ13(ω1 − ω3) + �13(ρ11 − ρ33) − �12ρ23], (4)

∂

∂t
ρ23 = i[ρ23(ω2 − ω3) + �13ρ

∗
12 − �∗

12ρ13], (5)

∂

∂t
ρ11 = −2 Im (�∗

12ρ12) − 2 Im (�∗
13ρ13), (6)

∂

∂t
ρ22 = 2 Im (�∗

12ρ12). (7)

∂

∂t
ρ33 = 2 Im (�∗

13ρ13). (8)

Here, �ij = µij · Eloc/h̄ is the Rabi frequency for transition
|i〉 ↔ |j 〉.

The macroscopic polarization density P is obtained as the
sum of the real parts of the dipole matrix vectors multiplied
by the coherences ρij ,

P(t) = ntr [ρ̂(t)µ̂] = 2n
∑
i �=j

Re [µ∗
ij ρij (t)]. (9)

Furthermore, we note that in a dense medium there is
a difference between the macroscopic electric field used in
the Maxwell equations and the microscopic field experienced
by an atom in a certain local neighborhood. This difference
is due to the polarization of the surrounding atoms which
interacts with the atom. The local field acting on the atom is
approximately given by [28]

Eloc = E + P
3

. (10)

The model equations are not integrable, due to their bidirec-
tional nature and the addition of the local field correction (10).
However, an undisturbed pulse with an area of 2π still
propagates largely unchanged through the system as the local
field correction only becomes important at significantly larger
densities than used in this study [29]. Here, correction (10) is
included to provide a more accurate description yet has been
verified to not change the qualitative nature of our findings.

We use the total-field scattered-field method [30] to in-
ject rightward (leftward) moving (secant hyperbolic-shaped)
pulses into vacuum sections on the left (right) of the three-level
medium. Reflections at the vacuum-medium boundaries are
negligibly small for the parameters used.

III. COLLISION OF SIMULTONS IN A V-TYPE
THREE-LEVEL MEDIUM

A. Collision of simultons with parallel polarizations

In this section we investigate the collision of two counter-
propagating simultons with parallel polarizations in a V-type
three-level medium. We assume that the dephasing times and
the lifetimes of the upper states are much longer than the pulse
duration and can therefore be neglected. In the case where
both pulses have the same electromagnetic field polarization,
one can reduce the three-level system to a two-level system
by an appropriate choice of basis states. For example, if the
simultons are y polarized, only the states |1〉 and 1√

2
(|2〉 + |3〉)

can be occupied and constitute the two-level system of interest.
Therefore, individual simultons in a three-level medium have
the same shape as SIT solitons in two-level media even though
they may interact with both transitions of the original quantum
system. For a two-level medium, characterized by the vector
of the dipole matrix elements µ, the resonance frequency ω

and the particle density n, the temporal shape of 2π pulses (in
SVEA) is well known [19] and follows the form,

E(t) = E0
sin [ω(t − t0)]

cosh
(
1.76 t−t0

τ

) = E0

|E0|
h̄

µτ

sin [ω(t − t0)]

cosh
(
1.76 t−t0

τ

) , (11)

where τ is the pulse duration of the resonant pulse.
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The group velocities of the 2π pulses are given by the
following relation [19]:

v = c

1 + 2nh̄ω
ε0|E0|2

= c

1 + 2nωµ2τ 2

ε0h̄

. (12)

These equations provide surprisingly good approximations for
isolated solitary waves of the full Maxwell-Bloch equations
down to pulse durations of a few optical cycles [31]. A solitary
wave of pulse area 2π in a given two-level medium can
therefore be fully characterized either by its group velocity,
its duration, or the ratio of the electromagnetic energy to the
energy deposited in the medium. We can thus choose the group
velocity of the solitary wave in any given medium by setting
appropriate values for the pulse duration τ .

Depending on the group velocities of the counterpropa-
gating pulses, a collision either leads to a reduction in the
pulse amplitude and group velocity, and a long-lived density
excitation in the collision region, or to a complete breakup of
the pulses. The relative orientation of the simulton polarization
to the polarization of the three-level system has, however, no
influence on the outcome of the collision. For high group
velocities a reduction in the amplitude of the simulton occurs
while some of its energy is transferred to an excitation of the
medium and some is radiated off. Figure 2(a) shows the result
of a collision where the simulton polarizations are chosen
to interact with only one of the transitions in the three-level
system, whereas Fig. 2(b) shows the outcome for linearly
polarized simultons which are both interacting equally with
both transitions of the three-level system. The dynamics of
the field envelope is identical in these two scenarios because
in both situations the three-level system can be reduced to
a two-level system. The simultons lose energy during the
inelastic collision, which results in a reduction of their group
velocity and leaves a population grating in the interaction
region. There is a difference in the population densities ρ22

and ρ33 between the circularly polarized and linearly polarized
colliding pulses because we have not chosen the natural basis
for the case of linear polarization.

For low group velocities the simultons break up into several
breathers, solutions of the nonlinear equations with zero pulse
area, (again) leaving a population grating in the interaction
region [see Fig. 2(c)]. The critical group velocity below which
the pulses break up is approximately given by v0 = 0.36c.
The dependence of the group velocity of the simultons after
collision on the group velocity of the simultons before collision
is shown in Fig. 3. The critical velocity is the velocity at
which the velocity of the simulton after collision is zero (i.e.,
there is no simulton anymore). For high group velocities the
velocity reduction during the collision is relatively small and
it increases toward lower group velocities.

B. Collision of simultons with orthogonal polarizations

After having analyzed collisions of simultons with the same
field polarization we focus now on the collision of simultons
with orthogonal field polarizations, again in V-type media. As
we will show, the birth of secondary simultons is possible
in such a collision scheme. In �-type media with equal initial
occupation probability of the lower states, such a result can also
be obtained. As before, we assume that the dephasing times

FIG. 2. (Color online) ρ11 (black dashed line), ρ22 (red dash-
dotted line), and E (blue solid line) after the collision of two
counterpropagating simultons against distance x for group veloc-
ities (a) v0 = 0.75c, circularly polarized; (b) v0 = 0.75c, linearly
polarized; and (c) v0 = 0.35c, circularly polarized. The material
parameters are µ = 1.19 × 10−29 C m, n = 8.64 × 1024 m−3, and
ω = 3.59 × 1015 s−1.

and the upper state lifetimes are much longer than the pulse
durations, so that they can be neglected in the quantitative
analysis. We find that the introduction of small dephasing
rates into the Bloch equations [Eqs. (3)–(8)] does not have a
significant impact on the results.

There are two distinct regimes in the collision of orthog-
onally polarized simultons. For initial group velocities lower
than v0 ≈ 0.62c, the collision breaks the original simultons
into at least two copropagating pulses which resemble the two-
soliton solutions of the SIT equations in SVEA discussed by
Steudel in [32]. These pulses are unable to invert the medium
completely but propagate with a similar group velocity as 2π

pulses of the same amplitude. An example of the pulse breakup
is given in Fig. 4(a), where we plot the occupation probability
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FIG. 3. Group velocity v0 before collision versus group velocity
v1 after collision. The dashed line (v1 = v0) serves as a guide to the
eye. Medium parameters are chosen as in Fig. 2.

ρ11 of the ground state of the three-level medium versus
time and propagation distance for two counterpropagating
simultons with an initial group velocity of v0 = 0.4c. This
contrasts with the observations in the case of parallel polarized
simultons, where down to group velocities of v0 = 0.36c the
initial simultons get reshaped to simultons of lower amplitude
and group velocity. Furthermore, no population grating is left
in the interaction region.

For initial group velocities higher than v0 ≈ 0.62c a new
phenomenon is observed: the birth of secondary solitary
waves. During collision each of the original simultons breaks
up into two simultons with different group velocities, thereby
the energy of the initial simultons is distributed between
the two resulting simultons. Additionally, some energy is
dissipated in the interaction process. As the energy of a
simulton of area 2π is inversely proportional to its duration
and as a longer duration leads to a lower group velocity,
the resulting simultons are slower than the initial simultons.
Figures 4(c) and 4(d) show examples of the birth of secondary
simultons for group velocities of v0 = 0.64c and v0 = 0.8c,
respectively. The secondary simultons still achieve maximum
inversion (ρ11 = 0). It can be seen that the difference in group
velocities between the resulting simultons is larger for the
higher group velocity. If we denote the group velocity of the
initial simultons as v0, the group velocity of the remaining
simulton as v1 and the group velocity of the secondary simulton
as v2, then v1 decreases and v2 increases when v0 decreases.
For v0 = 0.62c, v2 has reached almost the same value as v1. In
this case, the two pulses initially exchange energy until they
separate very slowly [see Fig. 4(b)]. The reason that no new
simultons are created for initial group velocities v0 < 0.62c is
that v2 would have the same value as v1.

We systematically investigated the dependencies of the
group velocities v1 and v2 of the pulses created in the collision
on the initial group velocity of the counterpropagating pulses
and the parameters of the medium. The results are shown
in Fig. 5. A first observation is that the velocities v2 and v1

do not depend on the parameters of the medium, which we
varied broadly. This indicates that our results are still valid
for picosecond pulses in a medium of much lower density, as
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FIG. 4. Linear grayscale plot of the occupancy of the lowest
level ρ11 during the collision of circularly polarized pulses with
group velocities of (a) v0 = 0.4c, (b) v0 = 0.62c, (c) v0 = 0.64c, and
(d) v0 = 0.8c. Black corresponds to ρ11 = 0 and white to ρ11 = 1.
The material parameters are µ = 2.38 × 10−29 C m, ρ = 8.64 ×
1024 m−3, and ω = 3.59 × 1015 s−1.

long as the dephasing times and spontaneous emission times
are much longer than the pulse duration. Just as for the case of
parallel polarized simultons, the dependence on group velocity
is the only significant dependence for the case of orthogonal
polarized pulses.

In Fig. 5 the measured group velocities v1 and v2 do show
deviations to both sides of the fit. This could be a consequence
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FIG. 5. (Color online) Group velocities of v1 of primary pulses
and v2 of secondary pulses after collision plotted versus the group
velocity of the initial pulses. Different symbols stand for different
values of dipole moment µ and medium density n and the lines
represent polynomial fits of second order to the data.

of a discretization of the possible group velocities [33] or due
to slight errors introduced by the method of extracting the
group velocities from the simulations. Extracting the group
velocities involves comparing the positions of the maxima of
the electric field envelopes at different times, but we only have
the positions of the maximum electric field values available
and those do not necessarily coincide exactly with the position
of the maximum of the electric field envelope.

The velocities v2 (Fig. 5) increase superlinearly when we
approach the critical group velocity v0 = 0.62c. The lower
the group velocity, the higher the proportion of pulse energy
which is split off into the secondary pulse. This is reflected
in the dependence of v1 on v0. v1 rises superlinearly with
increasing initial group velocity v0 and it approaches v0 as v0

approaches the speed of light.
In order to understand why collisions of orthogonal polar-

ized simultons are fundamentally different from the collisions
of simultons with the same polarization we analyze how this
difference is reflected in the model equations. The coherence
ρ23 between the two upper states plays a crucial role in
the interaction between the colliding pulses, as it constitutes
the main difference between a genuine three-level system
(orthogonal polarizations) and an effective two-level system
(parallel polarizations). Additionally, in the case of orthogonal
polarizations, the pulses compete for the same population of
the lower state without acting on the same transition. One
pulse, therefore, impinges on a population gradient created
by the other pulse and the pulses excite the coherence ρ23

between the two upper states when they collide. ρ23 is only
excited in regions where both pulses are present and it acts
back on the coherences ρ12 and ρ13 which constitute the optical
polarization.

To establish the difference between the nonintegrable full
Maxwell-Bloch equations in the case of counterpropagating
solitons and the integrable reduced Maxwell-Bloch equations
we analyze the case of a forward-moving electric field E+

y (x,t)
and a backward-moving electric field E−

z (x,t). Both are
resonant with the transition frequency of a degenerate V-type

three-level system with dipole matrix elements µ12 = µey and
µ13 = µez. The wave equations for E+

y and E−
z can be written

in terms of the density matrix elements as

∂2E+
y

∂x2
− 1

c2

∂2E+
y

∂t2
= 2nµ

ε0c2

∂2 Re (ρ+
12)

∂t2
, (13)

∂2E−
z

∂x2
− 1

c2

∂2E−
z

∂t2
= 2nµ

ε0c2

∂2 Re (ρ−
13)

∂t2
. (14)

Let us analyze the left-hand side of Eq. (13) to see which
terms will be added due to the interaction of counterpropa-
gating pulses. We start with replacing the derivatives on the
right-hand side by inserting Eqs. (3) and (5):

∂2Re (ρ+
12)

∂t2
= ∂

∂t
[ Im (ρ+

12)ω − �−
z Im (ρ23)]

= −[ω2 + (�−
z )2]Re (ρ+

12) + ω�+
y (ρ11 − ρ22)

−ω�−
z Re (ρ23) − ∂�−

z

∂t
Im (ρ23)

+�−
z �+

y Re (ρ−
13). (15)

Replacing the densities ρ11 and ρ22 and the coherence term
ρ23 with their integral form we can identify the terms which
are due to the interaction of two counterpropagating pulses
and those which are present in the case of a single pulse tuned
to only one transition. The latter terms are the ones giving
rise to self-induced transparency and the former are the ones
responsible for the pulse breakup:

ρ11(x,t) = 1 −
∫ t

0
2�+

y (x,t ′) Im [ρ+
12(x,t ′)] dt ′

−
∫ t

0
2�−

z (x,t ′) Im [ρ−
13(x,t ′)] dt ′, (16)

ρ22(x,t) =
∫ t

0
2�+

y (x,t ′) Im [ρ+
12(x,t ′)] dt ′, (17)

Re [ρ23(x,t)] =
∫ t

0
{�−

z (x,t ′) Im [ρ+
12(x,t ′)]

+�+
y (x,t ′) Im [ρ−

13(x,t ′)]} dt ′ (18)

Im [ρ23(x,t)] =
∫ t

0
{�−

z (x,t ′) Re [ρ+
12(x,t ′)]

−�+
y (x,t ′) Re [ρ−

13(x,t ′)]} dt ′. (19)

The last term in ρ11 is an interaction term which would also
be present in the interaction of two colliding solitary waves
in a two-level system. The terms related to ρ23, however, are
unique to the collision of orthogonal simultons in a three-level
system and any difference we find in the collision of solitary
waves in a three-level system compared to the collision of
solitary waves in two-level systems should thus be attributed
to those terms.

In Fig. 6 the influence of the solitary wave collision on
the coherences in the system is shown. The rightward-moving
pulse is polarized in y direction and the leftward-moving pulse
in x direction. In the case of the undisturbed simulton [see
Fig. 6(a)] the coherence ρ12, which gives rise to the optical
polarization in y direction, is symmetric in time and it helps to
preserve the shape of the symmetric pulse. The collision with
the counterpropagating pulse changes this picture considerably
[see Fig. 6(b)]. At the spatial symmetry point of the collision,
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FIG. 6. (Color online) (a) Re (ρ12) (dotted red line), ρ11 (dash-
dotted blue line), and Ey (solid green line) and of an undisturbed
simulton of group velocity v0 = 0.75c in a three-level system plotted
against time in units of the inverse frequency. (b) Re (ρ12) (dotted red
line), ρ11 (dash-dotted blue line), Ey (solid green line), and Re (ρ23)
(black dashed line) at the symmetry point of a collision between
two counterpropagating simultons of group velocity v0 = 0.75c, one
resonant with the 1 ↔ 2 transition (Ey), the other resonant with the
1 ↔ 3 transition (Ez).

the leading edge of coherence ρ12 behaves similarly to the
case of the undisturbed simulton, but ρ12 does not rise to
1/2 anymore. Its trailing edge is first shortened, then rises
again, and stays almost on a constant level for a prolonged
period of time, thereby producing a second electric field pulse.
The magnitude of the real part of the coherence ρ23 reaches
a maximum value of 1/2 and influences the coherence ρ12 as
shown in Eq. (15). This influence together with the influence of
the counterpropagating pulse on the occupation probabilities
of the levels reshapes the optical polarization and destroys its
symmetry, leading to the breakup of the pulse and the birth of
a new soliton.

All above investigations can only be of practical relevance
if they still hold true when a small dephasing rate is added
to the equations. Our numerical experiments confirm that the
collisions are not significantly affected by small dephasing
rates. Small dephasing rates do, however, cause a selective
excitation of a small region inside the medium under certain

FIG. 7. (Color online) Occupancies of a three-level medium
with dephasing long after the collision of two simultons with
orthogonal polarization. Parameters used were λ = 525 nm, µ =
2.8 × 10−29 C m, n = 1.87 × 1024 m−3, τ = 2.66 × 10−15 s (four-
cycle pulse), and γ12 = γ13 = 57 ns−1, resulting in a primary pulse
velocity of v0 = 0.863c.

conditions. If we add dephasing to the system, fast pulses with
a group velocity on the order of the speed of light will not be
affected much. They still propagate almost lossless through
the medium, whereas the slow pulses created in the collision
may be completely absorbed inside the system, if they are
slow enough compared to the dephasing time. This makes it
possible to invert the population in a small region close to the
collision region of the pulses without exciting the rest of the
medium. Figure 7 illustrates this possibility. Such a selective
excitation has in the past been reported to be achievable in
three-level �-media [25,34], but to the best of our knowledge
no scheme has been proposed to do so in a V-type medium.

C. Collision of simultons with arbitrary polarizations

The collision of simultons with the same field polarization is
very different from the collision of simultons with orthogonal
field polarizations. This observation leads us to expect some
kind of intermediate behavior between a two-level case and
a genuine three-level case for simultons with some arbitrary
angle between the two field polarizations. In this section we
investigate this intermediate behavior by switching gradually
between a two-level and a three-level case. To this end, we take
the three-level medium as outlined in Sec. II and study how
counterpropagating linearly polarized simultons collide. One
of the solitons is Ez polarized, whereas the other is polarized
with an angle α relative to the z axis.

The subject of investigation is the dependence of the group
velocity of the faster simulton (or only simulton if there is
no soliton birth) resulting from the collision on the angle
of relative polarization α (see Fig. 8). For low polarization
angles α the collision is very similar to the collision in the
two-level case. The group velocities v1 do not change much
for low angles, whereas the variation in group velocity is
relatively steep when we approach orthogonal polarization.
Qualitatively, the collision outcome is also much closer to
the two-level case for most polarization angles. For a group
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FIG. 8. Group velocity v1 after collision plotted over angle α

between polarizations of counterpropagating simultons for initial
group velocities of v0 = 0.75c (squares), v0 = 0.65c (circles), v0 =
0.6c (triangles), and v0 = 0.5c (diamonds).

velocity of v0 = 0.5c no simulton would be expected after
collision in the three-level case but it would be expected for
the two-level case. Up to an angle of about 70◦ the initial
simulton is attenuated but still present after the collision. The
genuine three-level case of pulse breakup is only observed for
higher angles. For an initial group velocity of v0 = 0.75c, a
soliton birth can only be observed if the polarization angle is
above 80◦.

These results paint a relatively clear picture of the nature of
the interaction process. The collision behavior resembles the
collision behavior of orthogonal polarizations only for angles
close to 90◦. This indicates that, if a substantial fraction of the
pulses are parallel polarized, the interaction mediated by the
population density dominates over the interaction mediated by
the coherence.

IV. CONCLUSION

We analyzed the collision process of two counterpropagat-
ing simultons of pulse area 2π using a three-level medium in
a one-dimensional finite-difference time-domain model. The
implementation avoids the usual rotating wave, slowly varying
envelope and unidirectional propagation approximations and
allows us to accurately simulate the collision of simultons.

The birth of additional simultons can occur in a degenerate
three-level medium, if the individual pulses are resonant
(or near resonant) with the transitions and have (close-to)
orthogonal relative polarizations. Additional solitary waves
are found if the group velocities of the original pulses are
higher than a critical group velocity of v0 ≈ 0.62c and the
difference in group velocities between the resulting pulses gets
larger with higher initial group velocities. Below this critical
group velocity the original pulses break up into two or more
co-moving, inseparable solutions. As a change in the angle
between the polarizations of the interacting pulses results in a
different collision outcome, such collisions provide a possible
mechanism to enact polarization and amplitude-dependent
interaction schemes between light pulses.

In a dissipative three-level medium, counterpropagating
simultons of group velocity close to the speed of light could

be used to excite a population inversion in a small region next
to the collision region of the pulses as the resulting very slow
simultons will be absorbed in a dissipative medium whereas
the fast original pulses will propagate almost unaffected. In
contrast, two pulses with a group velocity slightly higher than
the critical velocity could be used to create additional pulses.

Since the crucial parameters in the system such as density
of the active medium, pulse length, pulse amplitude, and
light polarization can be controlled experimentally it should
be possible to observe the effects described in this paper
in an experiment using, for example, gas-filled hollow core
fibers [35].
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APPENDIX: NUMERICAL MODEL

The propagation of the light pulses is modeled on the basis
of the one-dimensional finite-difference time-domain method
[26]:

H
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2
,x + �x

2

)
= H

(
t + �t

2
,x + �x

2
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) ]
, (A2)

E(t + �t,x) = 1

ε(x)
[D(t + �t,x) − P(t + �t,x)], (A3)

combined with Mur boundary conditions [27].
The local electric field, which couples to the three-level

Bloch equations of the material, is calculated from the electric
displacement D as

Eloc (t,x) = 1

ε

[
D(t,x) − 2

3
P(t,x)

]
, (A4)

with

P(t,x) = ntr [ρ̂(t,x)µ̂] = 2n
∑
i �=j

Re [µ∗
ij ρij (t,x)]. (A5)

We integrate the material Bloch equations at every grid cell
by a fourth-order Runge-Kutta scheme, where we interpolate
the electric displacement D to get the values of the electric
field at the halfway points. A similar scheme has been applied
successfully by Loiko and Serrat in [25]. The scheme has been
tested for its numerical stability and accuracy, and it behaves
perfectly well for any realistic Rabi frequencies.
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