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Multiphoton resonance in a three-level system with nearly degenerate excited states
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An analytic study is presented of the efficient multiphoton excitation and strong harmonic generation in
three-level systems specified by a pair of nearly degenerate, strongly dipole-coupled excited states. Such systems
are physically formed by the three lowest states in, e.g., the hydrogen atom or evenly charged homonuclear
diatomic molecular ions under reasonably chosen laser intensities. As a detailed analytic result, we found that
the laser pulse of photon energy 2.05 eV, duration 0.23 ps, and intensity 5 × 1013 W

cm2 is able to produce complete
inversion of the initial population in the hydrogen atom through the five-photon excitation. At the same photon
energy, the pulse of duration 0.41 ps and intensity 3.44 × 1014 W

cm2 was found to produce the same effect in the
molecular ion but through the nine-photon excitation. We show that the accompanying scattering of light has
very rich spectrum differing substantially from that of the two-level system.
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I. INTRODUCTION

Typically, a number of optical photons are necessary to
cover the energy gap between the ground state and the first
excited state in most atoms and molecules. Multiphoton
transition is thus the only way of populating the excited
states in these materials when exposed to laser light. In a
nonperturbative analysis, Duvall et al. [1] have, however,
proved that in a two-level system multiphoton excitation is
inefficient because of small multiphoton coupling strengths
requiring high laser fields producing, in turn, large ac Stark
shifts and prompting competitive processes like multiphoton
ionization. As shown by Gibson [2,3], all these disadvantages
of the two-level system are canceled in a specific class of
three-level systems, where the multiphoton coupling strengths
are greatly enhanced, the ac Stark shifts are greatly reduced and
the ionization is minimized. The specific three-level systems of
interest include a pair of nearly-degenerate strongly-coupled
different-parity excited states separated by many photons from
the ground state. Physical realizations of such systems are
all evenly charged homonuclear diatomic molecular ions,
like N2

4+ for example, as reminded by Gibson. The recent
numerical calculations by Gibson for a 1D model of this
ion have shown that its ground state is distanced by as
much as over 0.66 a.u. (over 18 eV) from the excited pair
of states at the internuclear separation of the order of 3.5 a.u.
At this internuclear separation, the splitting of the excited
states amounts to 0.0167 a.u. (0.454 eV) and the dipole matrix
element between them is 6 times greater than that between
the ground state and the lower excited state. By numerical
calculations Gibson found that, at laser intensities of the
order of 1015 W

cm2 , nearly complete inversion of the population
could be obtained in the 11-photon and 12-photon excitation
processes. Also, an important finding was that no other discrete
ionic states, besides the three lowest ones, were populated
during the excitation and practically no ionization occurred at
intensities not exceeding substantially 1015 W

cm2 . All this means
that, up to the mentioned laser intensities, the ion behaves like a
perfect three-level system. Thanks to the efficient multiphoton
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excitation, this ion was predicted by Gibson to be a source of
strong generation of harmonics of the incident laser light. At
the above intensities, the harmonic generation by the ion differs
in its mechanism from the generation by atoms because in the
latter case the atomic continuum is strongly engaged through
the three-step mechanism including ionization, acceleration
of the ionized electron and, finally, its recombination [4].
In the case of atoms, e.g., the hydrogen atom with its three
lowest states 1S, 2P , and 2S, a substantial decrease in the
laser intensity by almost two orders of magnitude is required
to avoid the ionization effects and to approximate the atom by
an effective three-level system.

In the present paper we give an approximate analytic
solution to the problem of the above specific three-level
systems strongly driven by a laser field. Our analytic solution
will be shown to confirm the numerically-based predictions of
Gibson concerning efficient multiphoton excitation and strong
harmonic generation. The chain of dipole couplings in the
system under the present study forms a �-type configuration
(see Fig. 1). This configuration differs from the �-type
and ladder-type configurations we have previously studied
[5] under the opposite assumption of weak multiphoton
excitation and by a different method based on a set of two
differential equations for appropriately defined ratios of the
level population amplitudes. At weak excitations, this set
was made decoupled and one equation was transformed into
a quadratically nonlinear Riccati-type equation. Thus, the
present paper considerably extends our previous treatment by
including a different system, a different approach and higher
laser intensities.

II. THEORY

A. The model

The system of interest, shown in Fig. 1, includes three
states |j 〉 (j = 1,2,3) of eigenfrequencies ωj and defined
parities (either “+” or “−”). The parities of states |1〉 and
|3〉 are assumed to be the same and opposite to that of
state |2〉. This system, with its initial population in |1〉,
is driven by a light of linear polarization along the z

axis, carrier frequency ω0, electric field amplitude E0, and
switching on (off) function 0 � f (t) � 1. The interaction is
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FIG. 1. The three-level �-type system with nearly degenerate
upper states in a laser field of frequency ω32 � ω0 � ω21. �(t) and
M(t) are instantaneous Rabi frequencies for the 1-2 and 2-3 dipole
couplings, respectively. The dot points to the initial population.

taken in the electric-dipole approximation V (t) = −ezE(t),
where E(t) = E0f (t) cos(ω0t). Instead of Vij (t), we intro-
duce the instantaneous Rabi frequencies for the 1-2 and
2-3 couplings, namely, �(t) = −V12(t)

h̄
= �Rf (t) cos(ω0t)

and M(t) = −V23(t)
h̄

= MRf (t) cos(ω0t), where �R = µ12E0

h̄

and MR = µ23E0

h̄
are the standard time-independent Rabi

frequencies while µjk = 〈j |ez|k〉 is the dipole matrix element
for the j → k transition.

Throughout this paper the duration of the light pulse is
taken to be much shorter than the excited state lifetimes, so
the function of the system under interaction is represented
by �(t) = ∑3

j=1 bj (t)|j 〉. From the Schrödinger equation
for �(t) one obtains the differential equations for the time-
dependent population amplitudes bj (t):

iḃ1 = ω1b1 − �(t)b2,

iḃ2 = ω2b2 − �(t)b1 − M(t)b3, (1)

iḃ3 = ω3b3 − M(t)b2.

We perform a series of transformations on this set. Four
of them are those suggested by Gibson [3] for the system
with degenerate upper states (ω2 = ω3). In turn, the first
transformation is

cj = bj e
iω2t , (2)

the second

c1 = c1,
(3)

c± = 1√
2

(c2 ± c3),

the third

d1 = c1 e−iω21t ,
(4)

d± = c± e∓iφ(t),

and the fourth

d1 = d1,
(5)

d2,3 = 1√
2

(d+ ± d−),

where ωαβ = ωα − ωβ , φ(t) = ∫ t

t0=0 M(t ′) dt ′ and t0 is the
turn-on time of the pulse. To these transformations we add
one more transformation

x = d1,

y = d2 exp

{
iω32

∫ t

0
sin2[φ(t ′)] dt ′

}
,

(6)

z = d3 exp

{
iω32

∫ t

0
cos2[φ(t ′)] dt ′

}
.

By these transformations the initial set of equations for bj is
replaced by a new set for x, y and z:

iẋ = F (t)y + G(t)z,

iẏ = F ∗(t)x + H (t)z, (7)

iż = G∗(t)x + H ∗(t)y,

where

F (t) = − exp

[
− i

2
(ω21 + ω31)t

]
q(t)�(t) cos[φ(t)], (8)

G(t) = −i exp

[
− i

2
(ω21 + ω31)t

]
q−1(t)�(t) sin[φ(t)], (9)

H (t) = −i
ω32

2
q−2(t) sin[2φ(t)] (10)

with

q(t) = exp

{
i

2
ω32

∫ t

0
cos[2φ(t ′)] dt ′

}
. (11)

Obviously, set (7) for x, y, and z is as exact as set (1) for
bj . The advantage of the set for x, y and z is that it makes
it possible to identify multiphoton resonances in the system.
These resonances are rooted in the coupling terms F (t), G(t),
and H (t) being nonlinear in M(t).

Having found x, y, and z we return to the amplitudes bj by
the inverse transformations

b1 = e−iω1t x, (12)

b2 = −e−iω1t�−1(t) [F (t)y + G(t)z], (13)

b3 = −e−iω1t�−1(t) [q−2(t)F (t)z + q2(t)G(t)y]. (14)

From the initial conditions for bj (t) [b1(0) = 1, b2(0) =
b3(0) = 0], one obtains the following initial conditions for
x, y, and z, namely x(0) = 1, y(0) = z(0) = 0. We will use
the above amplitudes to calculate the population dynamics,
|bj (t)|2, and the coherent part of the correspondence-principle
spectrum of scattered light. The total spectrum, S(ω), is defined
by [6]

S(ω)/ω4 =
3∑

j=1

∣∣∣∣
∫ tp

0
dt eiωt 〈�j (t)|ez|�1(t)〉

∣∣∣∣
2

, (15)

where tp is the duration of the incoming pulse and �j (t)
stands for the Schrödinger wave function satisfying the
condition �j (0) = |j 〉. The diagonal term in Eq. (15), j = 1,
defines the coherent part of the spectrum, Sc(ω), and the
rest is the incoherent part, Sinc(ω). The coherent part results
from the average dipole moment d(t) = 〈�1(t)|ez|�1(t)〉 =
2µ12Re[b∗

1(t)b2(t)] + 2µ23Re[b∗
2(t)b3(t)], while the incoher-

ent part from the dipole fluctuations around the average value.
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In all our calculations we will take many-cycle pulse, i.e., much
longer than the optical period T = 2π

ω0
, meaning the pulse shape

function f (t) to be slowly varying in time when compared
with cos(ω0t). This assumption will allow us to remove the
slow function f (t) from the integrand when multiplied by a
fast function. Thanks to that, �(t) cos[φ(t)] and �(t) sin[φ(t)],
being the major parts of F (t) and G(t), respectively, can be
expanded in harmonic functions as

�(t) cos[φ(t)] = 2ω0
�R

MR

∞∑
k=0

(2k + 1)J2k+1

(
MR

ω0
f (t)

)
× cos[(2k + 1)ω0t], (16)

�(t) sin[φ(t)] = 2ω0
�R

MR

∞∑
k=1

(2k)J2k

(
MR

ω0
f (t)

)
× sin(2kω0t). (17)

The above expansions result from the known relations for the
Bessel functions Jk(x) [7]:

cos(ρ sin α) = J0(ρ) + 2
∞∑

k=1

J2k(ρ) cos(2kα), (18)

sin(ρ sin α) = 2
∞∑

k=0

J2k+1(ρ) sin[(2k + 1)α], (19)

Jk−1(ρ) + Jk+1(ρ) = 2k

ρ
Jk(ρ). (20)

B. Exact degeneracy of the excited states (ω32 = 0)

In the case of exact degeneration of the upper levels,
q(t) = 1 and H (t) = 0 and then set (7) reduces to

iẋ = F (t)y + G(t)z,

iẏ = F ∗(t)x, (21)

iż = G∗(t)x,

where now

F (t) = −ω0
�R

MR

∑
n=1,3,5,...

nJn

(
MR

ω0
f (t)

)

× (ei(nω0−ω21)t + e−i(nω0+ω21)t ), (22)

G(t) = −ω0
�R

MR

∑
p=2,4,6,...

pJp

(
MR

ω0
f (t)

)

× (ei(pω0−ω31)t − e−i(pω0+ω31)t ). (23)

When MR → 0, we have F (t) = −�(t) e−iω21t and G(t) = 0
and then Eqs. (21) are made the standard equations for the
two-level system under one-photon resonance.

As seen, F (t) determines the odd-photon excitation of
|2〉, while G(t) the even-photon excitation of |3〉. Under the
odd-photon resonance (ω21 = Nω0 + δN , |δN | � ω0, N =
1,3,5, . . .), F (t) splits into the slow part FN and the rapidly
oscillating part fN , while G(t) = GN always remains a rapidly
varying function. Precisely,

FN = −Nω0
�R

MR

JN

(
MR

ω0
f (t)

)
e−iδN t = −aNe−iδN t , (24)

fN = −ω0
�R

MR

e−iδN t

⎧⎪⎨
⎪⎩

∑
n=1,3,5,...

n 
=N

nJn

(
MR

ω0
f (t)

)
ei(n−N)ω0t

+
∑

n=1,3,5,...

nJn

(
MR

ω0
f (t)

)
e−i(n+N)ω0t

⎫⎪⎬
⎪⎭ , (25)

GN = −ω0
�R

MR

e−iδN t
∑

p=2,4,6,...

pJp

(
MR

ω0
f (t)

)

× (ei(p−N)ω0t − e−i(p+N)ω0t ). (26)

In the other case of even-photon resonance (ω31 = Pω0 + δP ,
|δP | � ω0, P = 2,4,6, . . .), the functions F (t) and G(t)
change their roles. Now, G(t) is composed of its slow part
GP and the fast part gP , while F (t) = FP remains a rapidly
varying function:

GP = −Pω0
�R

MR

JP

(
MR

ω0
f (t)

)
e−iδP t = −aP e−iδP t , (27)

gP = −ω0
�R

MR

e−iδP t

⎡
⎢⎣ ∑

p=2,4,6,...

p 
=P

pJp

(
MR

ω0
f (t)

)
ei(p−P )ω0t

−
∑

p=2,4,6,...

pJp

(
MR

ω0
f (t)

)
e−i(p+P )ω0t

⎤
⎥⎦ , (28)

FP = −ω0
�R

MR

e−iδP t
∑

n=1,3,5,...

nJn

(
MR

ω0
f (t)

)

× (ei(n−P )ω0t + e−i(n+P )ω0t ). (29)

The slow functions FN and GP are seen to have the same
structure and become constant for exact multiphoton resonance
(δN = δP = 0) caused by a square pulse [f (t) = 1]. These
constants are the resonant multiphoton Rabi frequencies
identified by Gibson earlier (Eq. (14) in [3]). On the other
hand, the fast functions oscillate with either even multiplicities
(fN , gP ) or odd multiplicities (GN , FP ) of the carrier frequency
ω0 of the incident light. Under a given multiphoton resonance,
Eqs. (21) are transformed into

iẋN = (FN + fN )yN + GNzN,

iẏN = (F ∗
N + f ∗

N )xN, (30)

iżN = G∗
NxN

for the odd-photon excitation (N = 1,3,5, . . .), and

iẋP = FP yP + (GP + gP )zP ,

iẏP = F ∗
P xP , (31)

iżP = (G∗
P + g∗

P )xP

for the even-photon excitation (P = 2,4,6, . . .). Thus far,
no approximation (besides the assumption of slow pulse
envelope) has been made, when manipulating the equations.

In the lowest-order (rough) approximation, we are tempted
to neglect all rapidly oscillating terms in Eqs. (30) and
(31) in complete analogy to the standard rotating wave
approximation (RWA) known from the one-photon reso-
nance [8,9]. In such an approach, Eqs. (30) are reduced to
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iẋN = −aNe−iδN t yN , iẏN = −aNeiδN txN , iżN = 0, while
Eqs. (31) to iẋP = −aP e−iδP t zP , iżP = −aP eiδP txP , iẏP = 0.
In either case, the first two equations are structurally
the same as those for the two-level system under
RWA, but now with the multiphoton couplings aK (K =
N,P ) defined by Eqs. (24) and (27). Obviously, in the
limit MR → 0, only a1 takes a nonzero value (aK →
�Rf (t)

2 δK,1where δa,b is the Kronecker symbol). Choosing, for
example, a square pulse [f (t) = 1] we find

xN (t) =
{
xN (0) cos(ANt) + i

AN

[
δN

2
xN (0) + aNyN (0)

]

× sin(ANt)

}
e−i

δN
2 t ,

yN (t) =
{
yN (0) cos(ANt) − i

AN

[
δN

2
yN (0) − aNxN (0)

]

× sin(ANt)

}
ei

δN
2 t ,

zN (t) = zN (0), (32)

where AN =
√

a2
N + ( δN

2 )2 has the meaning of an off-resonant
multiphoton (odd-photon) Rabi frequency. It results from
the derivation that the solutions (32) have to change slowly
on the scale of the field period, so the restriction of their
applicability is AN � ω0. For the even-photon resonance,
xP is obtained from xN by changing N → P and y → z

simultaneously; zP is obtained from yN in the same way.
Obviously, yP (t) = yP (0) in the latter case. For the ini-
tial conditions b1(0) = 1, b2(0) = b3(0) = 0, equivalent to
x(0) = 1, y(0) = z(0) = 0, we combine the solutions (32)
with the transformation relations (12)–(14) and obtain the
time-dependent population amplitudes bj . In the case of
odd-photon resonance (N = 1,3,5, . . .), these amplitudes are

b
(N)
1 (t) =

[
cos(ANt) + i

δN

2AN

sin(ANt)

]
ei(Nω0+ δN

2 −ω2)t ,

b
(N)
2 (t) = i

aN

AN

sin(ANt) cos[φ(t)] ei( δN
2 −ω2)t , (33)

b
(N)
3 (t) = − aN

AN

sin(ANt) sin[φ(t)] ei( δN
2 −ω2)t .

For the even-photon resonance (P = 2,4,6, . . .), one obtains
b(P )

1 from b(N)
1 , b(P )

2 from b(N)
3 , and b(P )

3 from b(N)
2 by

changing N → P in Eqs. (33). At any time t , the above
amplitudes satisfy the condition of normalization of the total
population probability, |b1(t)|2 + |b2(t)|2 + |b3(t)|2 = 1. With
these amplitudes we can analyze not only the population
dynamics, |bj (t)|2, but the coherent spectrum of scattered
light as well, S(ω)/ω4 = | ∫ tp

0 dteiωtd(t)|2, where the average
dipole moment is now reduced to d(t) = 〈�1(t)|ez|�1(t)〉 =
2µ12Re(b∗

1b2) because Re(b∗
2b3) = 0 as results from (33).

For N -photon excitation (N = 1,3,5, . . .), we obtain from
Eqs. (33) and the Fourier-Bessel expansions (18) and (19)
the following induced dipole:

d (N)(t) = µ12
aN

2AN

∞∑
k=0

αkJ2k

(
MR

ω0

)

×
{

δN

AN

[cos(N − 2k)ω0t + cos(N + 2k)ω0t]

+
(

1− δN

2AN

)
{cos[(N − 2k)ω0 − 2AN ]t

+ cos[(N + 2k)ω0 − 2AN ]t}
−

(
1 + δN

2AN

)
{cos[(N − 2k)ω0 + 2AN ]t

+ cos[(N + 2k)ω0 + 2AN ]t}
}
, (34)

where α0 = 1
2 and αk>0 = 1, by definition. In the case of

even-photon excitation (P = 2,4,6, . . .), d (P )(t) is obtained
from the above d (N)(t) in the following steps: first we put
1 in place of all αk , then replace N → P and 2k → 2k + 1
and, finally, change the sign + → − at the second cosine
in each bracket. These average dipoles suggest that odd-order
harmonics will be revealed in the coherent spectrum Sc(ω) with
each harmonic having a triplet structure, in general. At exact
multiphoton resonance (δK = 0, where K = N,P ), the triplets
convert into doublets with the field-dependent separation 4aK

between the doublet components. In the limit MR → 0, we
recover from Eq. (34) the known coherent spectrum, i.e., the
doublet with separation 2�R around the perfectly resonant
incoming frequency ω0 = ω21.

An improved solution to Eqs. (30) is found by applying
the approach of Avetissian et al. [10,11]. According to this
approach, x, y, and z are separated into their slow and rapid
parts, e.g., x(t) = x̄(t) + βx(t), where x̄(t) is the time average
of x(t) while βx(t) is a rapidly oscillating function on the scale
of the incident field period T = 2π

ω0
. Then, we substitute the

two-part expressions for x, y, and z into (30), separate the slow
and rapid oscillations and neglect small terms FNβy � β̇x and
F ∗

Nβx � β̇y in equations for the rapid parts. The rapid parts
are found to satisfy the set

iβ̇x = ȳNfN (t) + z̄NGN (t),

iβ̇y = x̄Nf ∗
N (t), (35)

iβ̇z = x̄NG∗
N (t).

Having in mind that x̄N , ȳN , and z̄N are slow functions with
respect to fN and GN , this set is easily integrated. When the
result of this integration is substituted to the equations for the
slow parts and then time-averaging of the right-hand sides is
made, one obtains

i ˙̄xN = (�fN
+ �GN

)x̄N − aNe−iδN t ȳN ,

i ˙̄yN = −�fN
ȳN − aNeiδN t x̄N , (36)

i ˙̄zN = −�GN
z̄N ,

where

�fN
= −ifN (t)

∫
f ∗

N (t ′) dt ′

|δN |�ω0= 2Nω0

(
�R

MR

)2 ∑
n=1,3,5,...

n 
=N

n2

n2 − N2
J 2

n

(
MR

ω0
f (t)

)
,

(37)
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�GN
= −iGN (t)

∫
G∗

N (t ′) dt ′

|δN |�ω0= 2Nω0

(
�R

MR

)2 ∑
p=2,4,6,...

p2

p2 − N2
J 2

p

(
MR

ω0
f (t)

)

(38)

have the meaning of the dynamic Stark shifts. By the
substitutions x̄N = u exp[−i(�fN

+ �GN
)t] and ȳN =

v exp[i�fN
t], the first two equations in (36) are reduced

to iu̇ = −aN exp[−iδ̄N t]v, iv̇ = −aN exp[iδ̄N t]u, where
δ̄N = δN − (2�fN

+ �GN
) is the Stark-modified N -photon

detuning. The equations for u,v have the same structure as the
previously discussed set iẋN = −aN exp[−iδN t]yN , iẏN =
−aN exp[−iδN t]xN . Thus, u and v are obtained from the first
two Eqs. (32), by replacing xN → u, yN → v and also δN →
δ̄N , AN → ĀN =

√
a2

N + ( δ̄N

2 )2. As a result, the population
dynamics, |b(N)

j |2, still results from Eqs. (33) after the
replacements δN → δ̄N , AN → ĀN . The same replacements
must be done in Eq. (34) for the average dipole. With the above
Stark-type corrections, the applicability range of the solutions
is now ĀN � ω0. Some corrections to both the population
dynamics and the average dipole are expected to come from
the rapidly oscillating parts βx , βy and βz of x, y, and z. These
rapid parts are to be calculated from Eqs. (35) after the slow
parts x̄N , ȳN , and z̄N have already been found. Obviously,
what has been said above holds for the even-photon excitation
as well.

C. Near degeneracy of the excited states (| ω32
ω0

| � 1)

The theory of Sec. II B can straightforwardly be adapted
to the case of nearly degenerate upper states, i.e., those
satisfying the condition |ω32

ω0
| � 1. After using Eq. (18), q(t)

of Eq. (11) can be reduced to the form q(t) = exp( i
2 ω̃32t),

where ω̃32 = ω32J0 ( 2MR

ω0
f (t)) = ω32 − 2�(t) with �(t) =

ω32
2 [1 − J0( 2MR

ω0
f (t))]. As a result, F (t) is still given by

Eq. (22) and G(t) by Eq. (23) with the replacements ω21 →
ω̃21 = ω21 + �(t) and ω31 → ω̃31 = ω31 − �(t), respectively.
Obviously, H (t) of Eq. (10) differs from zero now but is a
rapidly oscillating function due to (19) and our approximation
for q(t). In the case of multiphoton resonances, δN → δ̃N =
ω̃21 − Nω0 and δP → δ̃P = ω̃31 − Pω0 in Eqs. (24)–(26) and
(27)–(29), respectively. Also, the term H (t)zN [H ∗(t)yN ] must
be added to the right-hand side of the second [third] equation
of the set (30). Similar extension must be applied to the set
(31) but with the change N → P now.

These changes only slightly modify the solutions of
Sec. II B. For example, making the rough RWA, consisting
in neglecting the rapidly varying terms fN , GN , and HN

in the extended set (30), one arrives [for f (t) = 1] at
Eqs. (32), (33), and (34) with the change δN → δ̃N . On
the other hand, when applying the improved method of
Avetissian et al., we again approach the set (35) in which
iβ̇y has the extra term z̄NH (t) on its right-hand side, while
iβ̇z the extra term ȳNH ∗(t). Also, we recover the set (36) with
δN → δ̃N and with some coefficients appropriately redefined.
Precisely, aN → aN + αN in the first equation, aN → aN +

αN and �fN
→ �fN

− �H in the second equation, and
�GN

→ �GN
+ �H in the third equation, where

αN = −iGN (t)
∫

H ∗(t ′) dt ′

|ω32|�ω0= ω32
�R

MR

∑
p=2,4,...

Jp

(
MR

ω0
f (t)

)

× Jp−N

(
2MR

ω0
f (t)

)
p

p − N
(39)

is a correction to the coupling parameter aN , while

�H
|ω32|�ω0= −iH (t)

∫
H ∗(t ′) dt ′

= −1

2

(
ω32

ω0

)2

ω32J0

(
2MR

ω0
f (t)

)

×
∑

n=1,3,...

J 2
n

(
2MR

ω0
f (t)

)
n2

(40)

is an additional Stark shift.

III. APPLICATIONS

As an example of a three-level system with degenerate
upper states, we take the three lowest states in the hydrogen
atom: |1〉 = |1S〉, |2〉 = |2P 〉, and |3〉 = |2S〉. In this case,
the excitation energy is ω21 = ω31 = 3

8 a.u., while the
dipole matrix elements amount to µ12 = 0.745 a.u. and
µ23 = −3 a.u., so µ12/µ23 = −0.248. For a square pulse,
the system is expected to respond according to Eqs. (33)
and (34) in which δN → δ̄N = δN − (2�fN

+ �GN
), where

�fN
and �GN

are to be calculated from Eqs. (37) and (38),
respectively. Thus, the N -photon resonance should occur at
the light frequency ω0 = 1

N
[ω21 − (2�fN

+ �GN
)]. We take

a field allowed by the condition of applicability of Eqs. (33)
and (34). For a given N -photon resonance, this condition
reads |aN/ω0| = |N µ12

µ23
JN (MR

ω0
)| � 1. Assuming N = 5, for

example, we find the ratio |a5/ω0| � 0.1 if MR/ω0 � 3.5. So,
we choose MR/ω0 = 1.5 and obtain, for this field-strength
parameter, the following Stark shifts �f5 = −0.009 26ω0

and �G5 = −0.006 46ω0, giving the five-photon resonant
frequency ω0 = 0.0754 a.u. The calculated ω0 leads to the
electric field amplitude E0 = 1.5ω0/|µ23| = 0.0377 a.u.,
corresponding to the light intensity 1.42 × 10−3 a.u.
(4.99 × 1013 W

cm2 ). For the above atom-field parameters, we
show in Fig. 2 the evolutions of the level populations and the
coherent spectrum of the scattered light. Precisely, Figs. 2(a)
and 2(b) show the evolution of the ground-state population,
|b1(t)|2, and the evolution of the total population in the excited
states, |b2(t)|2 + |b3(t)|2. The bold solid curves in Figs. 2(a)
and 2(b) were obtained from the simple analytic solution (33).
The dotted curve with small fast oscillations in Fig. 2(a) is the
result of applying the improved approach of Avetissian et al.
when finding the fast parts βx , βy , and βz of xN , yN , and zN ,
respectively (see the remark at the end of Sec. II B). In Fig. 2(b),
the dotted curve with rapid oscillations comes from direct
numerical integration of Eqs. (1) for the field being turned on
by ten cycles according to sin2(ω0t/40), where ω0t/40 � π/2.
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FIG. 2. (Color online) Five-photon (N = 5) 1S → 2P reso-
nance in the hydrogen atom produced by the laser field of
strength E0 = 0.0377 a.u. and frequency ω0 = 0.0754 a.u. (a) and
(b) Temporal evolutions of level populations. (c) Coherent spectrum
of scattered light. Bold solid curves correspond to approximate
analytic solutions [either Eqs. (33) or (34)]. The small rapid
oscillations superimposed on the bold curve in (a) come from
the approach of Avetissian et al. while those in (b) come from
numerical integration of Eqs. (1) for the field with ten-cycle turn-on
time and then of constant amplitude. The turn-on function was
sin2(ω0t/40) with the restriction ω0t/40 � π

2 . In (c), the numerical
spectrum was obtained for the field with the same turn-on function
as in (b).
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FIG. 3. (Color online) Nine-photon (N = 9) resonance in the
molecular ion A2

4+ produced by the laser field of strength E0 =
0.099 a.u. and frequency ω0 = 0.0754 a.u. (ω0 the same as in Fig. 2).
The description as in Fig. 2.

As seen, the approximate analytic evolutions (Fig. 2(a)) imitate
quite well the numerical ones, though some difference in
the periods of slow oscillations between the analytic and
numerical curves must be noted. An important conclusion
resulting from Figs. 2(a) and 2(b) is that the simple solution
(33) describes satisfactorily well the main trend observed in the
numerical evolution, i.e., the possibility of achieving the total
inversion of the population through multiphoton (five-photon)
resonance. For the parameters of Fig. 2, 225-cycle pulse
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FIG. 4. (Color online) Population evolutions as in Fig. 2 but
for three-photon (N = 3) resonance in the hydrogen atom (ω0 =
0.1255 a.u., E0 = 0.0314 a.u.). In (b), the numerical curve is for field
with two-cycle turn-on time.

(0.45 ps) turns out to be long enough to execute one trip in the
population evolution, i.e., to move all the population from the
ground state to the excited states and then back to the ground
state. Under the condition of complete population inversion,
Fig. 2(c) shows the coherent part of the spectrum of scattered
light [solid curve—Eq. (34), dotted curve—numerical
integration of Eqs. (1)]. Except the height of the background,
the analytic and numerical curves agree with respect to the
number of peaks, their positions, and relative heights.

To present the results for a three-level system with nearly
degenerate excited states we use the system parameters calcu-
lated by Gibson [3] for his one-dimensional model of evenly
charged homonuclear diatomic molecular ion A4+

2 , where
A = N,O,I . It results from Figs. 10 and 11 of Gibson [3] that,
at the internuclear separation 3.5 a.u., the three lowest levels
are so spaced that ω21 = 0.6685 a.u., ω32 = 0.0167 a.u. and,
moreover, the dipole matrix elements are µ12 = 0.503 a.u.
and µ23 = 3.033 a.u. Now, δN → δ̃N = δN + � − (2�fN

+
�GN

) in Eqs. (33) and (34), with � = ω32
2 [1 − J0( 2MR

ω0
)].

As an illustration, let us consider the nine-photon resonance
which is predicted at ω0 = 1

9 [ω21 + � − (2�f9 + �G9 )]. We
find that |a9/ω0| � 0.1 provided that MR/ω0 � 7.15, so
we choose MR/ω0 = 4. For this value of MR/ω0, we calculate
� = 0.0069 a.u., �f9 = −0.0155ω0, and �G9 = −0.014ω0.
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FIG. 5. Numerical spectra of coherently scattered light
obtained by neglecting the third state in the model shown in
Fig. 1. (a) The spectrum from the two-level hydrogen atom and the
strength-frequency parameters as in Fig. 2. (b) The spectrum from the
two-level A2

4+ ion and the strength-frequency parameters as in Fig. 3.

These values recommend to take the laser frequency ω0 =
0.0754 a.u., i.e., the same as that in the case of the five-photon
resonance in the hydrogen atom. The frequency ω0 gives the
scaled separation ω32/ω0 = 0.22 and the peak electric field
E0 = 0.099 a.u. translating into the light intensity 0.0098 a.u.
(3.44 × 1014 W

cm2 ). As found by Gibson [3], in fields like that
practically no other levels of a real molecular ion, besides the
three discrete levels of the model, take part in the interaction.
With the above ion-light parameters, we show in Fig. 3
the population evolutions and light scattering spectra. The
qualitative conclusions resulting from Fig. 3 for the molecular
ion match those drawn from Fig. 2 for the hydrogen atom.
A quantitative difference between the figures is that, for
the molecular ion, a longer pulse of 405 cycles (0.82 ps)
is required to execute one complete trip in the population
evolution (ground state→excited state→ground state). The
other difference is a richer spectrum of scattered light including
12 components instead of six components met in the case of
the hydrogen atom.

We add Fig. 4 to show that, by lowering the order of
resonance to N = 3, specifically for the hydrogen atom, a
better agreement was found between the analytically and
numerically calculated population evolutions.
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We wish to stress that by ignoring the third states in the
systems under study one obtains quite different results. For the
hydrogen atom and the same field strength and frequency as in
Fig. 2, we found by numerical integration that the ground state
in the two-level system is only weakly depopulated, and the
spectrum includes only three components (ω0,3ω0,5ω0) with
the third and fifth harmonics being much weaker. Qualitatively
the same result was found for the A2

4+ ion and the same
field strength and frequency as in Fig. 3. The found weak
depopulation of the ground ionic state resulted in a drastic
reduction of the number of spectral components in the scattered
light (to two only) and in lowering the height of the third
harmonic. In Fig. 5 we show the numerically calculated spectra
of scattered light for the above mentioned two-level systems
obtained from our original three-level system (Fig. 1) by
ignoring the third state of the same parity as that of the
ground state |1〉. Thus, the importance of the third state is
that the three-level system interacts much stronger with laser
light giving stronger multiphoton excitation and harmonic
generation, because of its strong coupling to the second state
by large dipole moment.

IV. SUMMARY

In a specific three-level �-type system, we have treated an-
alytically both multiphoton excitation and the accompanying
generation of harmonics of the incident light. The specificity
of the system was that it contained a pair of perfectly or nearly
degenerate excited states separated by many photons from

the ground state and, moreover, the dipole coupling between
the excited states greatly exceeded that between the ground
state and the lower excited state. Up to 100% five-photon
excitation in the hydrogen atom and nine-photon excitation in
the A2

4+ molecular ion were found by sub-picosecond laser
pulses of moderate intensities [5 × 1013 W

cm2 (hydrogen) and
3.44 × 1014 W

cm2 (molecular ion)] at the frequency 0.0754 a.u.
(2.05 eV photon energy). The calculated coherent spectrum
of the scattered light was found to be composed of a number
of odd-order harmonics and it was much richer and better
pronounced than that from the two-level system obtained
by rejecting one excited state of the same parity as that of
the ground state. The analytic results agree, qualitatively at
least, with those of numerical integration of the Schrödinger
equation. The quantitative differences are that the numerically
and analytically calculated populations oscillate slowly with
slightly different frequencies, and the spectra of scattered light
though coinciding in peaks have different heights of their
backgrounds. A possible reason for different frequencies of
slow oscillations is that, in the analytic calculations, we did
not find sufficiently precisely the frequency ω0 generating
multiphoton resonance. This supposition is maintained by the
observation that changing slightly the calculated ω0 we were
able to achieve better agreement between the analytic and
numerical curves in Figs. 2 and 3. Also, by diminishing the
multiphoton order of resonance and, thus, the required laser
intensity we found better agreement between the analytic and
numerical results.

[1] R. E. Duvall, E. J. Valeo, and C. R. Oberman, Phys. Rev. A 37,
4685 (1988).

[2] G. N. Gibson, Phys. Rev. Lett. 89, 263001 (2002).
[3] G. N. Gibson, Phys. Rev. A 67, 043401 (2003).
[4] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and

P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
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