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Probing light polarization with the quantum Chernoff bound
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We recall the framework of a consistent quantum description of polarization of light. Accordingly, the degree
of polarization of a two-mode state ρ̂ of the quantum radiation field can be defined as a distance of a related state
ρ̂b to the convex set of all SU(2)-invariant two-mode states. We explore a distance-type polarization measure in
terms of the quantum Chernoff bound and derive its explicit expression. A comparison between the Chernoff
and Bures degrees of polarization leads to interesting conclusions for some particular states chosen as illustrative
examples.
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I. INTRODUCTION

Polarized states of the quantum electromagnetic field are
basic resources in many experiments in quantum optics
and quantum-information processing, e.g., Bell inequalities
[1], quantum tomography [2], quantum cryptography [3,4],
quantum teleportation [5,6], superdense coding [7], entangle-
ment swapping [8], entanglement purification for quantum
communication [9], and quantum computation [10].

In classical optics, the degree of polarization is defined in
terms of the Stokes parameters [11]. The classical definition
was adapted to quantum optics, where the Stokes parameters
have been replaced by the expectation values of the Stokes
operators [12]. However, this polarization measure contains
only second-order correlations of the field, which are not
sufficient for a complete description of all quantum-optics
problems, where higher-order correlations play an important
role. An idea to eliminate this drawback is due to Luis, who
quantified the polarization in terms of the variance over S2

of the SU(2) Q function for the given field state [13–15].
Alternatively, the degree of polarization has been defined
as the minimal overlap between the given state and any
state obtained from it via an SU(2) transformation [16,17].
Other attempts have been made to introduce a polarization
measure for electromagnetic near fields by using the Gell-
Mann matrices [18–20]. Recently the degree of polarization
has been defined as a distance between the field state in
question and the set of unpolarized states. Several metrics,
e.g., the Hilbert-Schmidt and Bures metrics, have been used
for evaluating the polarization of some field states [21–23].

In this work we introduce a distance-type degree of
polarization defined in terms of the quantum Chernoff bound.
In a seminal paper, Chernoff investigated the problem of
discriminating two probability distributions and found an
upper bound on the minimal error probability P (N)

min in the
asymptotic case (N → ∞) [24]. This is known as the classical
Chernoff bound and has many applications in statistical deci-
sion theory. After some 55 years, this bound was generalized
to the quantum case. First, Ogawa and Hayashi proposed three
promising candidates for a quantum expression [25]. After
some other subsequent progress [26], the quantum Chernoff
bound was proven to coincide with one of their formulas.

This important result was established through the conjugate
efforts of two groups of researchers: Nussbaum and Szkoła,
and Audenaert et al. [27,28]. The quantum scenario is as
follows: N identical copies of a quantum system are prepared
in the same unknown state, which is either ρ̂ or σ̂ . The task at
hand is to determine the minimal probability of error by testing
the copies in order to draw a conclusion about the identity of
the state. When the two states are equiprobable, the minimal
error probability of discriminating them in a measurement
performed on N independent copies is [26,29]

P (N)
min (ρ̂, σ̂ ) = 1

2

(
1 − 1

2‖ρ̂⊗N − σ̂⊗N‖1
)
, (1.1)

where ‖Â‖1 := Tr
√

Â†Â is the trace norm of a trace-class
operator Â. In the special case when both states are pure
(denoted by |�〉 and |�〉), the minimal error probability (1.1)
reads [26]

P (N)
min (|�〉〈�|, |�〉〈�|) = 1

2 (1 −
√

1 − |〈�|� 〉|2N ).

For an optimal asymptotic testing (N → ∞), an upper bound
P

(N)
QCB of the minimal probability of error (1.1) was found to

decrease exponentially with N [28,29]:

P
(N)
QCB(ρ̂, σ̂ ) ∼ exp[−NξQCB(ρ̂, σ̂ )], (N 	 1),

where the positive quantity

ξQCB(ρ̂, σ̂ ) := − ln
[

min
s∈[0,1]

Tr(ρ̂s σ̂ 1−s)
]

(1.2)

is called quantum Chernoff bound [27–29].
We find it convenient to introduce the function

Q(ρ̂, σ̂ ) := min
s∈[0,1]

Tr(ρ̂s σ̂ 1−s), (1.3)

which is manifestly symmetric, Q(ρ̂, σ̂ ) = Q(σ̂ , ρ̂), and is
referred to in what follows as the quantum Chernoff overlap of
the states ρ̂ and σ̂ [30]. Its maximal value is reached when the
states ρ̂ and σ̂ coincide. In the body of the paper we intensively
employ the quantities

Qs(ρ̂, σ̂ ) := Tr(ρ̂s σ̂ 1−s), (1.4)
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which are the quantum analogs of the classical Rényi overlaps
discussed in Ref. [31] as being distinguishability measures
in their own right. According to Eqs. (1.2) and (1.3), their
minimum over s determines the quantum Chernoff bound,
which has many applications in various branches of physics.
Calsamiglia et al. have employed it as a measure of distin-
guishability between qubit states and between single-mode
Gaussian states of the radiation field [32]. Hiai et al. have
analyzed the asymptotic discrimination of two states with
measurements that are invariant under some symmetry group
of the system [33]. Recently, the quantum Chernoff overlap
was employed to evaluate the degree of nonclassicality for
one-mode Gaussian states [30]. Pirandola and Lloyd have
found upper bounds for the error probability of discrimination
of Gaussian states of n bosonic modes [34]. They combined
Minkowski’s inequality and the quantum Chernoff bound and
derived computable bounds. The quantum Chernoff bound
was used for asymptotic discrimination between two states of
an infinite-lattice system in the fermionic case [35], as well
as in the bosonic one [36]. The quantum Chernoff bound
is also applied to the theory of quantum phase transitions.
Abasto et al. have evaluated the quantum Chernoff metric
for the XY model at finite temperature [37]. By use of
the quantum Chernoff bound, discrimination between two
ground states or two thermal states of the one-dimensional
quantum Ising model was recently addressed by Invernizzi and
Paris [38].

The present article deals with two-mode states of the
quantum radiation field. Its purpose is to investigate a distance-
type degree of polarization that involves the quantum Chernoff
overlap. The paper is organized as follows. In Sec. II we review
the recently formulated requirements to be fulfilled by any
acceptable measure of polarization [15,21]. We here insist on
the physical significance of these general requirements that
change the current view on the way of evaluating the degree
of polarization for a two-mode state. Section III is devoted
to the Chernoff degree of polarization for which a general
formula is derived and discussed. A parallel treatment of the
Bures degree of polarization is then presented. In Sec. IV the
obtained formulas are specialized to pure states. The Chernoff
and Bures degrees of polarization are compared for two
families of states, each of them having just two nonvanishing
photon-number probabilities. Our conclusions are outlined in
Sec. V.

II. QUANTUM DEGREE OF POLARIZATION

The polarization transformations are an essential ingredient
in linear optics. They are carried out by lossless linear optical
devices while transmitting a quasimonochromatic light beam
between a pair of planes transverse to its travel direction.
We give here two examples. The first one is that of a
compensator which introduces a phase difference between two
perpendicular components of the oscillating electric field. A
second device to be mentioned is called rotator because it
produces a rotation of the electric-field vector about the beam
propagation axis.

From the mathematical point of view, the class of linear
polarization transformations is a group of unitary operators
Ûpol on the two-mode Hilbert space HH ⊗ HV . They are

generated by three Stokes operators:

Ŝ1 := â
†
H âV + âH â

†
V , Ŝ2 := 1

i
(â†

H âV − âH â
†
V ),

(2.1)
Ŝ3 := â

†
H âH − â

†
V âV ,

built with the amplitude operators of the horizontal (H ) and
vertical (V ) modes. Accordingly, the operators Ûpol form an
infinite-dimensional unitary representation of the group SU(2)
and can be parametrized in terms of the Euler angles φ, θ, ψ,

as follows:

Ûpol(φ,θ,ψ) = exp

(
−i

φ

2
Ŝ3

)
exp

(
−i

θ

2
Ŝ2

)
exp

(
−i

ψ

2
Ŝ3

)
.

(2.2)

Any SU(2) polarization transformation (2.2) preserves the total
number of photons, which is described by the fourth Stokes
operator,

Ŝ0 := â
†
H âH + â

†
V âV . (2.3)

A state τ̂ that remains invariant under any polarization
transformation (2.2) is unpolarized [39]. It is known for a
long time that a two-mode state τ̂ is SU(2) invariant if and
only if it has the spectral decomposition [39–42]

τ̂ =
∞∑

N=0

πN

1

N + 1
P̂N , (2.4)

where

P̂N :=
N∑

n=0

|n,N − n〉〈n,N − n| (2.5)

is the projection operator onto the vector subspace of the N -
photon states, called the N th excitation manifold. We have
denoted |n,N − n〉 := |n〉H ⊗ |N − n〉V . Further, πN are the
photon-number probabilities in the SU(2)-invariant state τ̂ ,
and they satisfy the normalization condition

∞∑
N=0

πN = 1. (2.6)

In order to describe the polarization properties of an
arbitrary two-mode state ρ̂, we make use of its photon-number-
ordered Fock expansion

ρ̂ =
∞∑

M=0

∞∑
N=0

M∑
m=0

N∑
n=0

|m,M − m〉〈m,M − m|

× ρ̂|n,N − n〉〈n,N − n|. (2.7)

The above expansion can be split into the sum of the block-
diagonal terms (M = N ) and that of the off-block-diagonal
ones (M �= N ). The former sum is the block-diagonal density
matrix ρ̂b associated with the given state ρ̂,

ρ̂b :=
∞∑

N=0

pNρ̂N . (2.8)
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In Eq. (2.8), pN is the probability of the N th excitation
manifold

pN = Tr(ρ̂P̂N ) =
N∑

n=0

ρ(N)
nn , (2.9)

where

ρ(N)
mn := 〈m,N − m|ρ̂|n,N − n〉 (2.10)

are the entries of a positive semidefinite matrix ρ(N) ∈
MN+1(C). Further, ρ̂N is an N -photon state determined by
the matrix ρ(N) with a nonvanishing trace pN :

ρ̂N := 1

pN

P̂N ρ̂P̂N = 1

pN

N∑
m=0

N∑
n=0

|m,N − m〉ρ(N)
mn 〈n,N − n|,

pN > 0. (2.11)

Recall now the requirements we need to quantify the
polarization of a two-mode state ρ̂. There are three conditions
to be satisfied by its degree of polarization P (ρ̂) [23]:

(a) P (ρ̂) = 0 if and only if ρ̂ is unpolarized. This is only
natural: for an unpolarized state the degree of polarization van-
ishes, and, conversely, a state with zero degree of polarization
is unpolarized.

(b) The degree of polarization is invariant under polarization
transformations:

P (Ûpol ρ̂ Û
†
pol) = P (ρ̂). (2.12)

(c) The degree of polarization is not affected by coherences
between different excitation manifolds. In fact, all polarization
properties of a given two-mode state ρ̂ are not influenced by
its coherent terms between vector subspaces with different
numbers of photons, displayed in Eq. (2.7). Excluding them,
we ascribe the description of polarization to the block-diagonal
density matrix ρ̂b, Eq. (2.8). Accordingly, we adopt a new
definition for the degree of polarization of the state (2.7):

P (ρ̂) := P (ρ̂b). (2.13)

Equation (2.13) implies that all two-mode states with
the same block-diagonal part ρ̂b are equally polarized. In
particular, any unpolarized state σ̂ has an SU(2)-invariant
block-diagonal part σ̂b [39]:

σ̂b =
∞∑

N=0

πN

1

N + 1
P̂N . (2.14)

We refer here only to type I unpolarized light [41]. Note that,
except for the vacuum, any unpolarized state is mixed.

The block-diagonal state ρ̂b occurring in definition (2.13)
has a significant operational meaning. Indeed, the observable
(2.3),

N̂ := N̂H + N̂V =
∞∑

N=0

NP̂N, (2.15)

is a random variable that commutes with any polarization trans-
formation Ûpol. Consequently, a polarization measurement of
an arbitrary state does not alter its photon-number distribution.
Now, when we perform a von Neumann measurement of
the total number of photons, we obtain the outcome N

with the probability pN , while the state ρ̂ collapses into the

N -photon state ρ̂N , Eq. (2.11). We measure the total number
of photons for each member of an ensemble of identical states
described by ρ̂ and do not select any result. In this way,
we eventually get another ensemble of states described by
the mixture ρ̂b = ∑∞

N=0 pNρ̂N . Note that the block-diagonal
state ρ̂b has the same photon-number distribution as the given
state ρ̂. This happens because ρ̂b is deliberately built with
the ensemble of states provided by the corresponding von
Neumann measurement. To sum up, an ideal nonselective
measurement of the total number of photons is a quantum
operation [43] (or quantum channel) B whose output is ρ̂b:

ρ̂
B−→ ρ̂b =

∞∑
N=0

P̂N ρ̂P̂N . (2.16)

The quantum operation B preserves the photon-number dis-
tribution. Remark first that any output ρ̂b of the channel B
commutes with the output σ̂b, Eq. (2.14), of an arbitrary
unpolarized state σ̂ :

[ρ̂b,σ̂b] = 0. (2.17)

This is not generally true for the input states ρ̂ and σ̂ .
As a consequence of the commutation relation (2.17), most
polarization-measure candidates P (ρ̂b) depend only on the
photon-number probabilities pN and the eigenvalues λN,n of
the density matrices 1

pN
ρ(N) that determine the N -photon

states ρ̂N entering the convex decomposition (2.8). Since
all these quantities are SU(2) invariant, it follows that the
candidates themselves fulfill the SU(2)-invariance condi-
tion (2.12) and are therefore admissible as adequate measures
of polarization [21].

III. CHERNOFF DEGREE OF POLARIZATION

A. Definition

In view of its outstanding distinguishability properties, the
quantum Chernoff bound can be used to define a polarization
measure similar to other distance-type ones [21,23]. We
therefore introduce the Chernoff degree of polarization

PC(ρ̂) := 1 − max
σ̂∈U

Q(ρ̂b, σ̂b), (3.1)

built with the Chernoff overlap (1.3). Here ρ̂b is the block-
diagonal state (2.8) and U stands for the set of all unpolarized
two-mode states. Let us denote

Q̃ := max
σ̂∈U

Q(ρ̂b, σ̂b), (3.2)

in order to write simply: PC(ρ̂) = 1 − Q̃.

It is important to check that definition (3.1) fulfills the three
requirements stated in Sec. II. The “if” part of property (a) is
obvious, so that we are left to prove its “only if” part.

To this end, let us consider an arbitrary block-diagonal
state ρ̂b which is polarized. As already mentioned, we have
denoted by λN,n the eigenvalues of any N -photon density
matrix 1

pN
ρ(N),(pN > 0). Let νN be the rank of the matrix

ρ(N), Eq. (2.10), i.e., the number of its positive eigenvalues
pNλN,n:

νN := rank ρ(N), ρ(N) ∈ MN+1(C), 1 <= νN <= N + 1.

(3.3)
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For subsequent use, we introduce the quantity

ξ
(s)
N :=

N∑
n=0

(λN,n)s , pN > 0, (3.4)

which is a decreasing function of s from the limit ξ
(0)
N = νN to

the value ξ
(1)
N = 1.

The commuting density operators ρ̂b, Eq. (2.8), and
σ̂b, Eq. (2.14), have the eigenvalues pNλN,n and πN

δnn

N+1 ,
respectively. Therefore, a Rényi overlap of the states ρ̂b and
σ̂b reads

Qs(ρ̂b, σ̂b) =
∞∑

N=0

N∑
n=0

(pNλN,n)s
(

πN

δnn

N + 1

)1−s

,

0 <= s <= 1. (3.5)

Obviously,

Q0(ρ̂b, σ̂b) <= 1, Q1(ρ̂b, σ̂b) <= 1. (3.6)

For 0 < s < 1, we apply Hölder’s inequality [44]:

∑
n

anbn <=
[∑

m

(am)p

] 1
p
[∑

n

(bn) q

] 1
q

. (3.7)

In Eq. (3.7), an >= 0, bn >= 0, and {p, q} is a pair of conjugate
exponents, i.e., positive real numbers such that p + q = pq

or, equivalently, 1
p

+ 1
q

= 1. Equation (3.7) becomes an
equality if and only if an and bn are components of proportional
vectors. When p is conjugate to itself (p = q = 2) , Hölder’s
inequality (3.7) reduces to Cauchy’s inequality.

We specialize Eq. (3.7) by taking

aN,n = (pNλN,n)s , bN,n =
(

πN

δnn

N + 1

)1−s

,

p = 1

s
, q = 1

1 − s
, 0 < s < 1,

to get the inequality:

Qs(ρ̂b, σ̂b) <

( ∞∑
M=0

M∑
m=0

pMλM,m

)s( ∞∑
N=0

N∑
n=0

πN

δnn

N + 1

)1−s

= 1,

0 < s < 1. (3.8)

In Eq. (3.8), a strict inequality holds because the states ρ̂b and
σ̂b cannot coincide: the first one is polarized and the second is
not. The same strict inequality is still valid for the maximum
of the Rényi overlap occurring in Eq. (3.8):

max
σ̂∈U

Qs(ρ̂b,σ̂b) < 1, 0 < s < 1. (3.9)

Taking into account the identity

max
σ̂∈U

min
s∈[0,1]

Qs(ρ̂b,σ̂b) = min
s∈[0,1]

max
σ̂∈U

Qs(ρ̂b,σ̂b), (3.10)

an inspection of Eqs. (3.6) and (3.9) leads to the inequality to
be proven:

PC(ρ̂) = 1 − Q̃ > 0. (3.11)

Equation (3.11) is then true for any state ρ̂ whose block-
diagonal part ρ̂b is polarized.

Property (b) is immediate. Indeed, any polarization trans-
formation Ûpol is the orthogonal sum of all the SU(2)
irreducible representations and their carrier spaces are just the
corresponding N -photon eigensubspaces. Consequently, the
block-diagonal part of the state Ûpol ρ̂ Û

†
pol factors as follows:

(Ûpol ρ̂ Û
†
pol)b = Ûpol ρ̂bÛ

†
pol. (3.12)

By use of the invariance of the Chernoff overlap under unitary
transformations [29],

Q(Û ρ̂1Û
†, Û ρ̂2Û

†) = Q(ρ̂1,ρ̂2),

we get

Q(Ûpol ρ̂b Û
†
pol, σ̂b) = Q(ρ̂b, Û

†
pol σ̂b Ûpol) = Q(ρ̂b,σ̂b).

(3.13)

The last equality in Eq. (3.13) follows from the SU(2)-invariant
formula (2.14) corresponding to any unpolarized two-mode
state σ̂ . Hence we obtain the SU(2)-invariance property

PC(Ûpol ρ̂ Û
†
pol) = PC(ρ̂). (3.14)

Property (c) is fulfilled by definition.

B. General expression

Our task here is to evaluate the parameters π̃N of the
unpolarized state for which the maximum in Eq. (3.1) is
obtained. Determining Q̃ is equivalent to finding the saddle
point of the function Qs(ρ̂b,σ̂b). We start by writing the Rényi
overlap Qs(ρ̂b,σ̂b), Eq. (3.5), in an equivalent form:

Qs(ρ̂b,σ̂b) =
∞∑

N=0

(pN )sξ (s)
N

(
πN

N + 1

)1−s

, 0 <= s <= 1.

(3.15)

Let us treat first the case s > 0. The maximum of the Rényi
overlap Qs(ρ̂b,σ̂b) with respect to the variables πN under
the constraint (2.6) can be found by applying the method
of the Lagrange multipliers. One readily gets the N -photon
probabilities π̃

(s)
N that maximize function (3.15):

π̃
(s)
N = pN

(
ξ

(s)
N

)1/s
(N + 1)1− 1

s∑∞
M=0 pM

(
ξ

(s)
M

)1/s
(M + 1)1− 1

s

. (3.16)

They characterize the closest unpolarized state ˆ̃σb to the state
ρ̂b,

Qs(ρ̂b, ˆ̃σb) := max
σ̂∈U

Qs(ρ̂b,σ̂b). (3.17)

Insertion of Eq. (3.16) into Eq. (3.15) gives the explicit formula

Qs(ρ̂b, ˆ̃σb) =
⎡
⎣ ∞∑

N=0

pN (N + 1)

(
ξ

(s)
N

N + 1

)1/s
⎤
⎦

s

, 0 < s <= 1.

(3.18)

It is convenient to denote by Ñ (s) the value of N that

maximizes the ratio ξ
(s)
N

N+1 :

ξ
(s)
Ñ(s)

Ñ (s) + 1
:= max

0<=N<∞
ξ

(s)
N

N + 1
. (3.19)
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Equations (3.18) and (3.19) imply the inequality

max
σ̂∈U

Qs(ρ̂b,σ̂b) <=
ξ

(s)
Ñ(s)

Ñ (s) + 1
(〈N〉 + 1)s , 0 < s <= 1.

(3.20)

We are now ready to handle the limit case s = 0. Recalling
that ξ

(0)
N = νN and setting Ñ := Ñ (0), Eq. (3.19) reads for

s = 0
νÑ

Ñ + 1
:= max

0<=N<∞
νN

N + 1
. (3.21)

The inequality (3.20) has therefore the limit

lim
s→0

Qs(ρ̂b, ˆ̃σb) <=
νÑ

Ñ + 1
. (3.22)

If we consider the unpolarized Ñ -photon state

σ̂Ñ = 1

Ñ + 1
P̂Ñ , (3.23)

i.e., with πN = δN,Ñ , then, according to Eq. (3.15) we get

Qs(ρ̂b,σ̂Ñ ) = (pÑ )sξ (s)
Ñ

(
1

Ñ + 1

)1−s

, 0 <= s <= 1. (3.24)

The limit s = 0 of Eq. (3.24) then reads

lim
s→0

Qs(ρ̂b,σ̂Ñ ) = νÑ

Ñ + 1
. (3.25)

Equations (3.22) and (3.25) show that for s = 0 the unpolar-
ized state (3.23) is the closest to ρ̂b. Therefore, the explicit
formula (3.18) can be extended to the limit case s = 0, so that
the Chernoff degree of polarization has the general expression

PC(ρ̂) = 1 − min
s∈[0,1]

[ ∞∑
N=0

pN

(
ξ

(s)
N

)1/s
(N + 1)1− 1

s

]s

. (3.26)

It is well known [28,29] that the Chernoff overlap is closely
related to the Uhlmann fidelity. This suggests that a comparison
between the Chernoff degree of polarization and the one based
on the Bures distance would be interesting. The Bures degree
of polarization has been defined in Refs. [21,23] as

PB(ρ̂) := 1 − max
σ̂∈U

√
F(ρ̂b,σ̂b) , (3.27)

where F is the fidelity between two states,

F(ρ̂1,ρ̂2) := [
Tr

√
ρ̂

1/2
1 ρ̂2 ρ̂

1/2
1

]2
. (3.28)

Owing to the commutation relation (2.17) the following
identity holds:

[F(ρ̂b,σ̂b)]1/2 = Q1/2(ρ̂b,σ̂b). (3.29)

We take advantage of Eq. (3.29) to specialize Eq. (3.16) for
the closest unpolarized state,

π̃
(1/2)
N = pN (N + 1)−1

[
ξ

(1/2)
N

]2

∑∞
M=0 pM (M + 1)−1

[
ξ

(1/2)
M

]2 , (3.30)

and Eq. (3.18) to write the maximal fidelity F(ρ̂b, ˆ̃σb):

F(ρ̂b, ˆ̃σb) =
∞∑

N=0

pN

N + 1

[
ξ

(1/2)
N

]2
. (3.31)

Therefore, the Bures degree of polarization (3.27) has the
expression [23]

PB(ρ̂) = 1 −
√√√√ ∞∑

N=0

pN

N + 1

[
ξ

(1/2)
N

]2
. (3.32)

We stress that the polarization measures PC(ρ̂), Eq. (3.26),
and PB(ρ̂), Eq. (3.32), depend only on the photon-number
probabilities pN and on the eigenvalues λN,n of the N -photon
density matrices 1

pN
ρ(N), (pN > 0). Hence both of them are

nice examples for the discussion at the end of Sec. II. Note
finally the inequality

PC(ρ̂) >= PB(ρ̂). (3.33)

IV. APPLICATIONS

A. Pure states

Let us now analyze the case of a pure state, ρ̂ = |�〉〈�|:

|�〉 =
∞∑

N=0

N∑
n=0

cN,n|n,N − n〉,
∞∑

N=0

N∑
n=0

|cN,n|2 = 1.

(4.1)

Its block-diagonal part is a convex combination of N -photon
pure states,

[|�〉〈�|]b =
∞∑

N=0

pN |�(N)〉〈�(N)|, (4.2)

which is expressed in terms of the photon-number probabilities

pN =
N∑

n=0

|cN,n|2 (4.3)

and the N -photon state vectors

|�(N)〉 := 1√
pN

N∑
n=0

cN,n|n,N − n〉, pN > 0. (4.4)

Each N -photon pure state ρ̂N = |�(N)〉〈�(N)| entering the
convex decomposition (4.2) has the eigenvalues λN,n = δn0,

for n = 0,1, . . . ,N . Accordingly, Eqs. (3.26) and (3.32)
simplify to

PC(|�〉〈�|) = 1 − min
s∈[0,1]

[ ∞∑
N=0

pN (N + 1)1− 1
s

]s

(4.5)

and, respectively,

PB(|�〉〈�|) = 1 −
( ∞∑

N=0

pN

N + 1

)1/2

. (4.6)

As already remarked in Ref. [23], for a pure state, ρ̂ = |�〉〈�|,
the Chernoff and Bures degrees of polarization are determined
solely by its photon-number distribution, regardless of the
nature of the N -photon state vectors (4.4).

We further specialize the above formulas to the case of
a pure state with N photons, ρ̂N = |�(N)〉〈�(N)|, whose
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photon-number probabilities are pM = δMN . Hence Eqs. (4.5)
and (4.6) reduce to

PC(|�(N) 〉〈�(N)|) = N

N + 1
, (4.7)

since the minimum over s is reached at s̃ = 0, and, respectively,

PB(|�(N)〉〈�(N)|) = 1 −
(

1

N + 1

)1/2

. (4.8)

Both degrees of polarization are strictly increasing functions
of N from the lowest value PC = PB = 0, for the vacuum, to
the large-photon-number limit

lim
N→∞

PC = lim
N→∞

PB = 1.

B. States with a given photon-number distribution

Let us consider the set of all two-mode states (pure
and mixed) with a given photon-number distribution
{pN }N=0,1,2,3,.... According to Eqs. (3.26) and (3.32), such a
state is maximally polarized if and only if its block-diagonal
part ρ̂b is a convex combination (2.8) of pure N -photon
states:

ρ̂b =
∞∑

N=0

pN |�(N)〉〈�(N)|. (4.9)

A significant example is that of the pure state

|�〉 =
∞∑

N=0

√
pN |�(N)〉 (4.10)

that has the property (4.2). Therefore, the maximal Chernoff
and Bures degrees of polarization are those for a pure state,
i.e., they are given by Eqs. (4.5) and (4.6), respectively.

In what follows we analyze two families of states, each of
them having only two nonvanishing N -photon probabilities.
The first one is a one-parameter family of pure states, while
the second one consists of Fock-diagonal mixed states.

1. Superposition of two pure N-photon states

Suppose that N1 and N2 are fixed numbers of photons, and
N1 < N2. We investigate the family of pure states

|�〉 = √
p|�(N1)〉 +

√
1 − p|�(N2)〉, (4.11)

depending on the probability p ∈ [0,1]. The block-diagonal
part (4.2) of a given state is

[|�〉〈�|]b = p|�(N1)〉〈�(N1)| + (1 − p)|�(N2)〉〈�(N2)|,
(4.12)

so that the Rényi overlap Qs(ρ̂b, σ̂b), Eq. (3.15), reads

Qs(p,πN1 ) = ps

(
πN1

N1 + 1

)1−s

+ (1 − p)s
(

1 − πN1

N2 + 1

)1−s

.

(4.13)

In the limit cases p = 0 and p = 1, the state vector (4.11)
reduces to |�(N2)〉 and |�(N1)〉, respectively. According to
Eqs. (4.7) and (4.8), we write

PC(|�〉〈�|) = N2

N2 + 1
, PB(|�〉〈�|) = 1 − 1√

N2 + 1
,

p = 0, (4.14)

and

PC(|�〉〈�|) = N1

N1 + 1
, PB(|�〉〈�|) = 1 − 1√

N1 + 1
,

p = 1. (4.15)

In the case 0 < p < 1, it is convenient to write the optimal
value (3.16) of the parameter πN1 ,

π̃
(s)
N1

=
[

1 + 1 − p

p

(
N1 + 1

N2 + 1

) 1
s
−1

]−1

, (4.16)

as well as the maximum over πN1 , Eq. (3.18), of the Rényi
overlap (4.13),

Qs

(
p,π̃

(s)
N1

) = [
p(N1 + 1)1− 1

s + (1 − p)(N2 + 1)1− 1
s

]s
.

(4.17)

By use of Eqs. (4.5) and (4.6), we get

PC(|�〉〈�|)
= 1 − min

s∈[0,1]

[
p(N1 + 1)1− 1

s + (1 − p)(N2 + 1)1− 1
s

]s
,

(4.18)

and, respectively,

PB(|�〉〈�|) = 1 −
(

p

N1 + 1
+ 1 − p

N2 + 1

)1/2

. (4.19)

The Bures degree of polarization (4.19) strictly decreases with
the probability p.

We are left to find the minimum over s in Eq. (3.26). The
necessary condition for minimum reduces to the transcenden-
tal equation

p(N1 + 1)1− 1
s̃ ln

{
(N1 + 1)

[
p(N1 + 1)1− 1

s̃

+ (1 − p)(N2 + 1)1− 1
s̃

]s̃}
+ (1 − p)(N2 + 1)1− 1

s̃ ln
{
(N2 + 1)

[
p(N1 + 1)1− 1

s̃

+ (1 − p)(N2 + 1)1− 1
s̃

]s̃} = 0. (4.20)

Equation (4.20) has no solution for p � 1
N1+1 , when there is no

saddle point of the Rényi overlap (4.13). The minimum over
s in Eq. (3.26) is reached in s̃ = 0. Further, Eqs. (4.16) and
(4.17) give π̃N1 = 1 and Q̃ = 1

N1+1 , respectively. The Chernoff
degree of polarization is independent of the probability p:

PC(|�〉〈�|) = N1

N1 + 1
,

1

N1 + 1
� p < 1. (4.21)

In the opposite situation, p < 1
N1+1 , Eq. (4.20) has a solution

s̃ ∈ (0,1). This corresponds to a saddle point of the Rényi
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Qs

0.0

0.2

0.4s
0.0

0.5

1.0

π1

0.3

0.4

0.5

0.6

FIG. 1. (Color online) Displaying the saddle-point evaluation of
the Chernoff degree of polarization PC(|�〉〈�|) for a state (4.11)
with N1 = 1, N2 = 2, and p = 0.1. The Rényi overlap, Eq. (4.13), is
plotted vs s and π1. The saddle point has the coordinates s̃ = 0.124
and π̃1 = 0.634. The Chernoff overlap, Eq. (4.17), is Q̃ = 0.431, so
the degree of polarization is PC = 0.569.

overlap (4.13). The Chernoff degree of polarization (3.26)
depends on the probability p, taking values in the interval

PC(|�〉〈�|) ∈
(

N1

N1 + 1
,

N2

N2 + 1

)
, 0 < p <

1

N1 + 1
.

(4.22)

The above analysis is illustrated in Fig. 1 for a superposition
with lower photon numbers at a fixed value of the proba-
bility p. The numerical calculation of the Chernoff degree
of polarization by the saddle-point method is straightfor-
ward and can be performed with great accuracy. Figure 2
displays the comparison between the maximal (pure-state)
Chernoff and Bures degrees of polarization as functions of the
probability p.

2. Mixture of two mixed N-photon states

We consider again a pair of fixed numbers of photons, N1

and N2, such that N1 < N2, and examine a mixture

τ̂ = p ρ̂N1 + (1 − p) ρ̂N2 , (4.23)

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

p

FIG. 2. (Color online) Degree of polarization of the pure states
(4.11) characterized by N1 = 1, N2 = 2 as a function of the
probability p: the Chernoff measure (black full line) and the Bures
measure (red dashed line).

where the states ρ̂N1 and ρ̂N2 are Fock-diagonal. Obviously,
τ̂b = τ̂ . In the particular case when N1 = 1 and N2 = 2, we
choose density matrices 1

p
ρ(1) and 1

1−p
ρ(2) with nonvanishing

diagonal entries:

1

p
ρ(1) =

(
α 0

0 1 − α

)
,

(4.24)

1

1 − p
ρ(2) =

⎛
⎜⎝

β 0 0

0 γ 0

0 0 1 − β − γ

⎞
⎟⎠ .

The Rényi overlap (3.15) specializes to

Qs(p,π1) =
(

π1

2

)1−s

ps[αs + (1 − α)s] +
(

1 − π1

3

)1−s

× (1 − p)s[βs + γ s + (1 − β − γ )s]. (4.25)

The Chernoff degree of polarization, Eq. (3.26), reads

PC(τ̂ ) = 1 − min
s∈[0,1]

{21−1/sp[αs + (1 − α)s]1/s + 31−1/s(1 − p)

× [βs + γ s + (1 − β − γ )s]1/s}s . (4.26)

We further write the Bures measure of polarization, Eq. (3.32):

PB(τ̂ ) = 1 −
{

p

2
[α1/2 + (1 − α)1/2]2 + 1 − p

3

× [β1/2 + γ 1/2 + (1 − β − γ )1/2]2

}1/2

. (4.27)

Figure 3 presents the saddle-point evaluation of the Chernoff
degree of polarizationPC(τ̂ ) of a state (4.23) with lower photon
numbers. For the same family of states, a comparison between

Qs

0.0

0.5

1.0

s

0.0

0.5

1.0

π1

0.6

0.8

1.0

FIG. 3. (Color online) Saddle-point evaluation of the Chernoff
degree of polarization PC(τ̂ ) for a state (4.23) with N1 = 1, N2 = 2,
p = 0.1, α = 0.1,β = 0.01, and γ = 0.04. The Rényi overlap Qs ,
Eq. (4.25), is plotted vs s and π1. The saddle point is reached at
s̃ = 0.434 and π̃1 = 0.209. The optimal value Q̃ is 0.544, so that the
degree of polarization is PC(τ̂ ) = 0.251. For the same state, the Bures
degree of polarization, Eq. (4.27), is PB(τ̂ ) = 0.247.
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0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.15

0.20

0.25

0.30

p

FIG. 4. (Color online) Degree of polarization of the mixed
states (4.23) characterized by the same parameters N1,N2,α,β,γ as
in Fig. 3 vs the mixing coefficient p: the Chernoff measure (black
full line) and the Bures measure (red dashed line).

the Chernoff and Bures degrees of polarization as functions of
the mixing parameter p is made in Fig. 4. Unlike the couple of
maximal degrees of polarization drawn in Fig. 2, their graphs
are here very close.

V. SUMMARY AND CONCLUSIONS

In this paper we have exploited the quantum Chernoff
bound in order to introduce a distance-type polarization
measure for the quantum radiation field. This measure fulfills
the requirements for a genuine degree of polarization, put
forward quite recently [15,23]. We have derived a general
expression of the Chernoff degree of polarization, Eq. (3.26),
that allows its computation. Moreover, a comparison between
the Chernoff and Bures degrees of polarization proved to be

very useful. For instance, Fig. 2 displays both degrees of
polarization for a one-parameter family of pure states that
are superpositions of a fixed pair of pure N -photon states.
The Bures polarization measure distinguishes between all
the states of this family because it is strictly decreasing
with the probability of one of the N -photon states. On the
contrary, the predicted existence of a plateau of the Chernoff
degree of polarization starting from a threshold of the same
probability is displayed. Although considerably larger than
the Bures polarization measure, the Chernoff measure cannot
discriminate between the corresponding states. On the other
hand, Fig. 4 points out that for a one-parameter mixture of two
given mixed N -photon states, the Bures and Chernoff degrees
of polarization happen to be very close.

We stress that the Rényi overlaps Qs(ρ̂b, ˆ̃σb), with
0 < s < 1 [Eq. (3.18)], can themselves be employed as reliable
measures of polarization. The symmetric one (s = 1

2 ) yields
the Bures degree of polarization via Eq. (3.29) and has a
privileged position owing to its significant meaning in quantum
mechanics. To conclude, the Chernoff polarization measure,
Eq. (3.26), deserves special attention because it is the maximal
Rényi distance-type polarization measure.
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