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Reproducible mesoscopic superpositions of Bose-Einstein condensates and mean-field chaos
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In a parameter regime for which the mean-field (Gross-Pitaevskii) dynamics becomes chaotic, mesoscopic
quantum superpositions in phase space can occur in a double-well potential, which is shaken periodically. For
experimentally realistic initial states, such as the ground state of some 100 atoms, the emergence of mesoscopic
quantum superpositions in phase space is investigated numerically. It is shown to be reproducible, even if the
initial conditions change slightly. Although the final state is not a perfect superposition of two distinct phase
states, the superposition is reached an order of magnitude faster than in the case of the collapse-and-revival
phenomenon. Furthermore, a generator of entanglement is identified.
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I. INTRODUCTION

Periodically shaking potentials used to trap ultracold atoms
currently is established as an experimental method [1–3]:
Tunneling has been suppressed by choosing the correct
amplitude of driving both for a Bose-Einstein condensate
(BEC) in an optical lattice [1,4,5] and for a single atom
in a double-well potential [3,6]. By fine-tuning the driving
frequency, tunneling in tilted systems can also be enhanced
in an analog of photon-assisted tunneling. After the driving
frequency has helped to bridge potential differences, tunneling
can again be controlled by tuning the driving amplitude [2,4,7].
BECs in periodically driven systems have been investigated
with regard to tunneling [8,9], dynamic localization [5], and
stabilities of exact Floquet states [10].

Suggestions about how mesoscopic superpositions, such as
the N00N state [11],

|�〉 ≡ 1√
2

(|N,0〉 + |0,N〉), (1)

could be obtained with BECs can be found in Refs. [12–26];
for a BEC in a double well, this corresponds to a quantum
superposition of all N particles, which are either in one well
or in the other. Here, |n,N − n〉 denotes the Fock state with n

particles in the left well and N − n particles in the right well.
Like the spin-squeezed states investigated in Refs. [27–29],
such states are relevant to improve interferometric measure-
ments [30].

A promising approach for obtaining mesoscopic superposi-
tions is the collapse-and-revival phenomenon in phase space if
the tunneling between both wells of a double-well potential is
suppressed (or, for a single-species condensate in a harmonic
trapping potential, the transition between two hyperfine states).
A N00N state then appears on the time scale [31],

t0 = π

4κ
, (2)

where 2h̄κ is the interaction energy of a pair of atoms. Chaos-
induced entanglement generation in a periodically shaken dou-
ble well should, in principle, offer the possibility for obtaining
mesoscopic superpositions on short time scales [32]. While
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the state will not be a perfect superposition, the time scale on
which it is reached will be an order of magnitude smaller. In
this paper, the question is whether these superpositions can be
achieved both for experimentally realistic conditions and for
parameters such that the superposition is reproducible: In an
experiment, the particle number will vary from shot to shot,
and the tilt in a double well or the amplitude of shaking is
likely to be slightly different.

The paper is organized as follows. Section II introduces
the model used to describe a BEC in a periodically shaken
double well. Section III describes experimental signatures of
the entangled states. In Sec. IV, a generator of mesoscopic
superpositions is discussed, while Sec. V demonstrates that
the generation of mesoscopic quantum superpositions is robust
against slight changes in the initial conditions.

II. A BEC IN A PERIODICALLY SHAKEN DOUBLE WELL

BECs in double-well potentials are interesting both experi-
mentally and theoretically [12,28,33–37]. In order to describe
a BEC in a double well, we use a model originally developed
in nuclear physics [38]: a many-particle Hamiltonian in two-
mode approximation [39],

Ĥ = −h̄�

2
(ĉ†1ĉ2 + ĉ

†
2ĉ1) + h̄κ(ĉ†1ĉ

†
1ĉ1ĉ1 + ĉ

†
2ĉ

†
2ĉ2ĉ2)

+ h̄[µ0 + µ1 sin(ωt)](ĉ†2ĉ2 − ĉ
†
1ĉ1), (3)

where the operator ĉ
(†)
j annihilates (creates) a boson in well j ;

h̄� is the tunneling splitting, 2h̄µ0 is the tilt between well 1
and well 2, and h̄µ1 is the driving amplitude. The interaction
energy of a pair of particles in the same well is denoted
by 2h̄κ .

The Gross-Pitaevskii dynamics can be mapped to that of
a nonrigid pendulum [34]. By including the term, which
describes the periodic shaking, the classical Hamiltonian is
given by

Hmf = Nκ

�
z2 −

√
1 − z2 cos(φ)

− 2z

[
µ0

�
+ µ1

�
sin

(
ω

�
τ

)]
, τ = t�, (4)

where z is the population imbalance, where z = 1 (z =
−1) refers to the situation with all particles in well 1
(well 2).
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On the N -particle quantum level, if all atoms occupy the
single-particle state characterized by z = cos(θ ) and φ, this
leads to the wave function

|θ,φ〉 =
N∑

n=0

(
N

n

)1/2

cosn(θ/2) sinN−n(θ/2)

× ei(N−n)φ |n,N − n〉. (5)

These bimodal phase states [31] are sometimes referred to as
atomic coherent states. Note that, for finite N , these are not
orthogonal:

|〈θ,φ |θ ′,φ′〉|2 > 0, N < ∞. (6)

As the Gross-Pitaevskii dynamics corresponds to that of
a nonrigid pendulum, the dynamics is known to display a
coexistence between chaotic and regular regions [40]. Here,
the relation to entanglement [32] is discussed (cf. [41,42] for
the δ-kicked top).

III. SIGNATURES OF MESOSCOPIC QUANTUM
SUPERPOSITIONS

The signatures of entangled states described in this section
can only serve as signatures of entangled states [43] if they
are followed by a revival. However, as these revivals are
only partial, this will not be a proof of entanglement but,
nevertheless, a strong indication. Furthermore, on the level
of computer simulations, one does not have the necessity to
distinguish between quantum superpositions and statistical
mixtures. Further information, which concerns the states of
interest, the superposition of atomic coherent states (5), can be
found in Ref. [32].

Here, one signature of entanglement is the quantum
Fisher information [44,45], for the relative phase between
the condensates in the two potential wells (in the following
referred to as the QFI). By defining for pure states,

FQFI ≡ (
n12)2, (7)

where (
n12)2 is the experimentally measurable [28] variance
of the particle-number difference between both wells, one has
an entanglement flag. For pure states,

Fent > 1, Fent ≡ FQFI

N
(8)

is a sufficient condition for particle entanglement and identifies
those entangled states that are useful for overcoming classical
phase sensitivity in interferometric measurements [44]. By
defining entangled states as states, which cannot be written
as product states [31], this statement is supported by the
fact that, for a single atomic coherent state (5), one has
Fent � 1. This is expected, since, in this case, all atoms
occupy the same single-particle state. For mixtures, the QFI
becomes more complicated (Ref. [44] and references therein)
and might not be easy to measure. To take the definition of
Eq. (7) for an experiment, leaves the difficulty of distinguishing
superpositions from mixtures.

Another experimental signature [46] will be provided by
interference patterns after switching off the potential and let-
ting the wave function expand for some time. A single atomic

coherent state |θ,φ〉 leads to an interference pattern used to
experimentally detect the phase between the condensates [33],

I (X) = [1 + sin(θ ) cos(X − φ)], (9)

which still has to be multiplied by a Gaussian envelope;
X essentially is the spatial variable in the direction, which
connects the two wells of the double well, and I is the intensity
at X. To characterize the quality of interference fringes, the
visibility or contrast,

C ≡ Imax − Imin

Imax + Imin
, (10)

is introduced, where Imax is the highest and Imin is the
lowest value of I . Given the fact that, even a single atomic
coherent state can produce an impressive interference pattern,
interference cannot be used in a straightforward manner as an
entanglement flag as in Refs. [23,36]. Thus, let us consider the
disappearance of interference patterns,

C � 1. (11)

This might simply mean sin(θ ) � 0 [cf. Eq. (9)] or even
heating. However, when combined with a high QFI, it will
be the signature for the superposition of two (or more)
distinct atomic coherent states with sin(θ1) � sin(θ2) and
cos(X − φ1) + cos(X − φ2) = 0. This is a strong indication
for mesoscopic superpositions similar to the case of the
superfluid-to-Mott-insulator transition [47] where the disap-
pearance and reappearance of the contrast clearly indicates
(but does not prove) the Mott-insulator transition.

In order to numerically calculate the contrast, one
needs [48]

〈ψ |�̂†(x)�̂(x)|ψ〉, (12)

with

�̂(x) = �1(x)ĉ1 + �2(x)ĉ2, (13)

where �i is the expanded mode, which was originally localized
in well i with i = 1,2 before switching off the potential.

IV. EMERGENCE OF QUANTUM SUPERPOSITIONS

The claim of Ref. [32] is not that mean-field chaos is the
origin of entanglement generation but rather that it speeds
up the emergence of mesoscopic superpositions. Thus, rather
than looking for entanglement generators, which are only
present in mean-field chaos, at least some of the aspects
should be understandable in a parameter regime for which the
mean-field dynamics is regular; and, thus, the corresponding
Poincaré surface of section [cf. Fig. 1(a)] is easy to understand:
Essentially, there is one elliptic fixed point at z ≈ 0.17,
φ ≈ −0.48π and one hyperbolic fixed point near z ≈ 0.21
and φ ≈ 0.54π . In addition, there are further fixed points near
the top and bottom of the plot, which can be discarded at this
point. Within the mean-field dynamics, a solution that starts
right on a hyperbolic fixed point (θhyper,φhyper) will not move at
all. This, however, is different on the N -particle quantum level:
The N -particle state |θhyper,φhyper〉 will—for any N < ∞—
have contributions from neighboring atomic coherent states
[cf. Eq. (6)]. Those states, even on the mean-field level, do
move.
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FIG. 1. (Color online) Comparison of the Poincaré surface of
section (a) and the QFI map (b) for parameters 2µ0/� = 3.0,
Nκ/� = 0.5, ω/� = 3.0, and 2µ1/ω = 0.1. Plot (b) shows the
time-averaged QFI for a system with N = 100 particles and averaging
time 10/�. The QFI is enhanced close to the hyperbolic fixed point
in the Poincaré surface of section (z ≈ 0.21, φ ≈ 0.54π ), which acts
as a generator of mesoscopic entanglement (c).

Figure 1(b) shows the time-averaged QFI of all particles,
which initially occupy an atomic coherent state. For starting
values in the vicinity of the hyperbolic fixed point mentioned
previously, mesoscopic superpositions occur. If this is indeed
what is happening, the remaining question is why the other
hyperbolic fixed points do not display such behavior: In
contrast to the first one, they do not lie near the separatrix
for which the dynamics happens on much shorter time scales.

Related to the observed acceleration of entanglement
generation is the identification of enhanced atomic tunneling
between the two wells in high-chaoticity regions [49].

V. ROBUSTNESS OF ENTANGLEMENT GENERATION

In this section, parameters are presented where an entangled
state occurs on short time scales, indicated by both signatures
QFI and contrast. The robustness of this state under realistic
experimental conditions is discussed. In the following, the
initial state is prepared without driving, hence, corresponds
to the thermal occupation of the eigenstates with energies
Ei of Hamiltonian (3) exclusive of the last term. In a
typical experimental situation, only some energy eigenstates
are significantly occupied [28], which could considerably be
reduced by working at lower temperatures in the subnano-
Kelvin range [50]. The initial state can be prepared in a well-
controlled manner, and the experimental parameters are well
controlled [28] except for small experimental uncertainties.
The occurring fluctuations of the initial particle number are
discussed in this section, while particle losses are not analyzed;
their effect on phase revivals has been investigated in Ref. [51].

Figure 2 shows the time development of QFI and the
contrast for initial ground and first excited state dependent on
the scaled driving amplitude 2µ1/ω. Obviously, both initial
states show similar behavior. Parameters, where both QFI
and contrast strongly indicate entanglement, are shown in
Fig. 3. The QFI takes on a value of 70.5, and the contrast
decreases to 1% already at τ = 7.1. Additionally, the contrast
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FIG. 2. (Color online) Entanglement flag Fent as a function
of time τ = �t and scaled driving amplitude 2µ1/ω for (a) the
ground and (b) the first excited state. (c) and (d): Contrast for the
ground and the first excited state. N = 110, Nκ/� = 1.045, µ0/� =
0.75, and ω/� = 3.0.

reappears a short time later; hence, heating can be excluded in
an experiment.

To determine QFI or contrast in an experiment, it has to
be repeated several times with the same initial conditions.
However, in the laboratory, parameters such as driving fre-
quency ω and tilt 2h̄µ0 will change slightly from shot to shot.
Figure 4 shows the influence of slight deviations on the two
entanglement indicators. Another parameter, where deviations
will occur, is the initial particle number N . The dependence
of the signatures is represented in Fig. 5. For Poissonian
distributed initial particle numbers, the signatures are likely
to still be visible in the experiment.

So far, we have optimized with respect to interference
patterns and fluctuations of the initial particle number N . Other
experimentally interesting quantum states are characterized by
a bimodal phase distribution with a small standard deviation.
By using the completeness relation [52],

1 = N + 1

4π

∫
dθ sin(θ )

∫
dφ|θ,φ〉〈θ,φ|, (14)
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FIG. 3. Entanglement flag (a) Fent and (b) contrast for 2µ1/ω =
1.0. Other parameters as in Fig. 2.
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FIG. 4. (Color online) (a) Entanglement flag and (b) contrast
at τ = 7.1 versus µ0/� and ω/�. N = 110, Nκ/� = 1.045,
2µ1/ω = 1.0.

the phase distribution pφ of a state can be calculated. The
initial particle number is again assumed to obey a Poissonian
distribution with mean value N = 110, which, for numerical
purposes, has been truncated and has been renormalized with
N , which ranges from N = 100 to N = 120. Then, a mean-
phase distribution and its standard deviation can be calculated
for each point of time, which has been optimized in order to
find a phase distribution that indicates strong entanglement
and has a small standard deviation. In such an optimization
procedure, an entangled state has been found at τ = 6.5, where
the phase distribution shows two distinct maxima separated
by 
φ ≈ π [cf. Fig. 6(b)]. For maximum reappearance, one
important peak is observed at τ = 8.9 (c). For comparison, an
exemplary mixed state, which leads to the phase distribution
of (b) has been constructed: The wave function at τ = 6.5 has
been split into two parts, each consisting of the contributions
to pφ in an interval of 
φ = π around one of the peaks. In the
statistical mixture, these two renormalized parts are weighted
according to their contribution to the total wave function. After
the corresponding time difference 
τ = 2.4, this mixed state
would have a phase distribution according to (d), which is
distinct from (c). Hence, it is possible to distinguish pure
entangled states from mixed states. Additionally, preliminary
results indicate that, under slight parameter variations of about
1% for driving frequency, driving strength, and initial tilt,
respectively, and about 10% for the scaled interaction strength
Nκ/�, the phase distribution at τ = 6.5 and the partial revival
at τ = 8.9, nonetheless, stay robust.

In addition to slight changes in the experimental conditions,
another effect that should be discussed is the influence of
temperature. So far, calculations have been performed for T =
0. To account for temperature, the eigenstates of the undriven
system, which correspond to energies Ei , are supposed to
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FIG. 5. (Color online) (a) Fent and (b) contrast for τ = 7.1 (black
crosses) and τ = 9.0 (blue stars) for different particle numbers
such that κ/� = const. Nκ/�(N = 110) = 1.045, µ0/� = 0.75,
ω/� = 3.0, and 2µ1 = 1.0.
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FIG. 6. (Color online) Averaged phase distribution pφ (red
solid line) with standard deviation (blue dashed lines). The initial
particle number is modeled by a truncated renormalized Poisson
distribution of the initial particle number, which ranges from
N = 100 to N = 120, with mean value N = 110. (a) Initial state,
(b) entangled state at τ = 6.5, (c) time-developed state at τ = 8.9, and
(d) assumed exemplary two-component statistical mixture at τ = 8.9.
The interaction strength κ/� is kept constant such that Nκ/�(N =
110) = 1.0. µ0/� = 1.3, ω/� = 3.3, and 2µ1/ω = 0.7.

be populated with probability pi according to a Boltzmann
distribution:

pi = e−(Ei−E0)/kBT

Z , Z =
M∑
i=0

e−(Ei−E0)/kBT . (15)

Hence, the statistically averaged contrast is given by

〈C〉st =
M∑
i=0

piCi, (16)

where Ci is the contrast for the pure state i and M is the number
of states included in the average. With an analog definition of
〈·〉st, the statistically averaged QFI becomes

〈Fent〉st = 〈(
n12)2〉st

N
= 1

N

(〈
n2

12

〉
st − 〈n12〉2

st

)
. (17)

Also, for comparison, the QFI for mixed states (Ref. [44] and
references therein),

Fent,mixed = 1

2N

∑
j,k

(pj − pk)2

pj + pk

|〈j |n12|k〉|2, (18)

again, relative to the relative phase, is calculated. Temperature
effects are represented in Fig. 7 for the same parameters
as in Fig. 2 and the interesting points of time τ = 7.1 and
τ = 9.0 where the contrast maximally vanishes, reappears,
respectively. As the experiments in Ref. [28] are performed in
a temperature regime where only the three lowest-lying states
are significantly populated, both statistical averages, over the
three lowest-lying states and all states, are calculated. The
curves for only the three lowest-lying and all states stay almost
identical up to temperatures where kBT approximately equals
the energy separation of the ground and the first excited states.
The value of the QFI at τ = 7.1 is still adequate, while the
contrast stays low. Also, for τ = 9.0, the signatures are not
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FIG. 7. (Color online) (a) Fent for τ = 7.1 and (c) τ = 9.0.
Black solid line: QFI Fent,mixed for mixed states [cf. Eq. (18)], blue
dashed line: 〈Fent〉st statistically averaged over all 111 states, red
dotted line: 〈Fent〉st statistically averaged over the three lowest-lying
experimentally important states [28]. (b) and (d): Contrast 〈C〉st for
τ = 7.1 and τ = 9.0 [cf. Eq. (16)]. Blue dashed-dotted line: statistical
average over all states, red dotted line: statistical average over three
lowest-lying eigenstates. Parameters same as in Fig. 3, 2µ1/ω = 1.0.

influenced very much. For higher temperatures, the QFI for
mixed states deviates from the statistically averaged QFI of
Eq. (17). Hence, it should be noted that the measurement
of the variance of the particle number difference at higher

temperatures is not equivalent to the measurement of the QFI
for mixed states, while for low enough temperatures, both
quantities lead to similar results.

VI. CONCLUSION

To summarize, the occurrence of entanglement on short
time scales is observed for a BEC in a tilted double-well
potential. For this system, on the mean-field level, the entan-
glement generation is accelerated in the vicinity of hyperbolic
fixed points. The robustness of the entangled states under
realistic experimental conditions is analyzed, and parameters
are presented where the signatures QFI for the relative phase
and contrast are found to be sufficiently stable. In conclusion,
for the proposed parameters, the phase distribution of the
entangled state measured in an experiment is expected to
exhibit two clearly distinguishable maxima.

Our results are based upon the widely used two-mode
approximation. An analysis of its limitations can be found,
for example, in Ref. [53]. Nevertheless, the two-mode ap-
proximation has, especially for comparatively small inter-
action strengths, been found to describe many aspects of
the experiments [28,33]. In addition to the investigation of
extended models, the influence of particle losses is certainly
an interesting aspect for future work.
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