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Collapse and stable self-trapping for Bose-Einstein condensates with 1/rb-type attractive
interatomic interaction potential
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We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional
to 1/rb and arbitrary angular dependence. It is shown exactly that collapse of a Bose-Einstein condensate
without contact interactions is possible only for b � 2. The case b = 2 is critical and requires the number
of particles to exceed a critical value to allow collapse. The critical collapse in that case is a strong one,
trapping into the collapsing region a finite number of particles. The case b > 2 is supercritical with an
expected weak collapse which traps a rapidly decreasing number of particles during approach to collapse.
For b < 2 a singularity at r = 0 is not strong enough to allow collapse but an attractive 1/rb interaction admits
stable self-trapping (a stable three-dimensional soliton solution) even in the absence of an external trapping
potential.
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I. INTRODUCTION

The dynamics of Bose-Einstein condensates (BECs) with
short-range s-wave interaction has been the subject of ex-
tensive research in recent years [1–3]. Condensates with
a positive scattering length have a repulsive (defocusing)
nonlinearity which stabilizes the condensate with the help of
external trap. Condensates with a negative scattering length
have an attractive (focusing) nonlinearity which formally
admits solitons. However, without a trap these solitons are
unstable and their perturbation leads either to the collapse
of the condensate [1–4] or to condensate expansion. An
external trap prevents expansion of the condensate and
makes solitons metastable for a sufficiently small number
of atoms. Otherwise, for a larger number of atoms, the
focusing nonlinearity results in the collapse of solitons. The
effect of a long-range dipolar interaction on BECs was
first studied theoretically [5–9] and more recently observed
experimentally [10–12] (see also [13,14] for reviews). In par-
ticular, collapse of a BEC with dominant dipole-dipole forces
predicted based on an approximate variational estimate [7] and
obtained based on an exact analysis [8] was recently observed
experimentally [15].

Here we look for the possibility of collapse of a BEC
due to a long-range attraction versus formation of a stable
self-trapped condensate for a general type of long-range
interaction,

V (r) = f (n)

rb
, b > 0, n ≡ r

r
, r ≡ |r|, (1)

where f (n) is an arbitrary bounded function, |f (n)| < ∞, and
r = (x1,x2,x3). We do not require f (n) to be sign-definite. By
attractive interaction we mean that f (n) is negative at least
for some nonzero range of angles so that one can choose a
wave function to provide a negative contribution to the energy
functional.

Possible experimental realizations of (1) are numerous. For
example, recent experimental advances allow us to study the
interaction of ultracold Rydberg atoms with principal quantum

number of about 100 (see, e.g., [16–20]). These interactions
between atoms in highly excited Rydberg levels are long range
and dominated by dipole-dipole–type forces. The strength of
the interaction between Rb atoms is about 1012 times stronger
(at typical distances of ∼10 µm) than that between Rb atoms
in the ground state (see, e.g., [19] for a review). The strength
and angular dependence of the interaction between Rydberg
atoms can be tuned in a wide range [19,21]. For example,
the spatial dependence for Rb with principal quantum number
n � 100 can be ∝ 1/r3 for r <∼ 9.5 µm and ∝ 1/r6 (van der
Waals character) for r >∼ 9.5 µm [19]. Another alternative is to
admix Rydberg atoms with the ground-state atoms, creating an
effective long-range interaction potential [20]. The short-range
s-wave scattering interaction is limited to a much smaller
distance (∼few nanmeters) so that the range of dominance
of the long-range interaction potential is quite high. The
radiative lifetime of the Rydberg atoms scales as n3 and
for large n that time is in the millisecond range [19]. If we
compare that time scale with the collapse time (0.1 ms) of a
BEC with a dipole-dipole interaction [15] one can conclude
that observing BEC collapse with Rydberg atoms is feasible.
Another possible form of long-range attractive interaction is
a gravity-like 1/r potential, which is proposed to be realized
in a system of atoms with laser-induced dipoles such that
an arrangement of several laser fields causes cancellation of
anisotropic terms [22]. Terms proportional to 1/r2 are also
possible [22].

The paper is organized as follows. In Sec. II we use a
nonlocal Gross-Pitaevskii equation for the mean-field BEC
dynamics with the long-range interaction potential to derive
the virial theorem for the mean square radius of the condensate
wave function. In Sec. III we show exact the possibility of
the BEC collapse for 2 � b � 3 and find the sufficient collapse
conditions. In Sec. IV we prove that collapse is impossible
for b < 2. In Sec. V we show that the ground-state soliton
is nonlinearly stable for b < 2. In Sec. VI we introduce
strong and weak regimes of collapsing solutions and find that
collapse for b = 2 is in the strong one while for b > 2 the
weak regime is expected. In Sec. VII we summarize the main
results.
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II. VIRIAL THEOREM FOR THE NONLOCAL
GROSS-PITAEVSKII EQUATION

The mean-field BEC dynamics is governed by a nonlocal
Gross-Pitaevskii equation (NGPE)

ih̄
∂�(r)

∂t
=

[
− h̄2

2m
∇2 + 1

2
mω2

0

(
γ 2

1 x2
1 + γ 2

2 x2
2 + γ 2

3 x2
3

)
+ g|�(r)|2 +

∫
d3r′V (r − r′)|�(r′)|2

]
�(r),

(2)

where � is the condensate wave function, the contact in-
teraction is proportional to g = 4πh̄2a/m, a is the s-wave
scattering length, m is the atomic mass, ω0 is the external
trap frequency, γ1,γ2, and γ3 are the anisotropy factors of the
trap, and the wave function is normalized to the number of
atoms,

∫ |�|2d3r = N . The contact interaction term can be
also included in the potential V (r) as g

2 δ(r) but we have not
done that because we focus here on the effect of the long-rage
potential (1). If V (r) ≡ 0 then a standard Gross-Pitaevski
equation (GPE) [1] is recovered.

The NGPE (2) can be written through variation ih̄ ∂�
∂t

= δE
δ�∗

of the energy functional

E = EK + EP + ENL + ER, (3)

which is an integral of motion: dE
dt

= 0 and

EK =
∫

h̄2

2m
|∇�|2d3r, ENL = g

2

∫
|�|4d3r,

EP =
∫

1

2
mω2

0

(
γ 2

1 x2
1 + γ 2

2 x2
2 + γ 2

3 x2
3

)|�|2d3r, (4)

ER = 1

2

∫
|�(r)|2V (r − r′)|�(r′)|2d3rd3r′.

We consider the time evolution of the mean square radius of
the wave function, 〈r2〉 ≡ ∫

r2|�|2d3r/N. Using (2), inte-
grating by parts, and taking into account vanishing boundary
conditions at infinity one obtains

∂t 〈r2〉 = h̄

2mN

∫
2ixj (�∂xj

�∗ − �∗∂xj
�)d3r, (5)

where ∂t ≡ ∂
∂t

, ∂xj
≡ ∂

∂xj
and repeated index j means summa-

tion over all space coordinates, j = 1, . . . ,3. After a second
differentiation over t , one gets [8]

∂2
t 〈r2〉 = 1

2mN

[
8EK − 8EP + 12ENL − 2

∫
|�(r)|2|�(r′)|2

× (
xj∂xj

+ x ′
j ∂x ′

j

)
V (r − r′)d3r

]
, (6)

which is called by a virial theorem [8] similar to the GPE
[23–28].

It follows from (1) that (xj∂xj
+ x ′

j ∂x ′
j
)V (r − r′) =

−bV (r − r′) and using (3) we rewrite (6) as

∂2
t 〈r2〉 = 1

2mN
[4bE + (8 − 4b)EK

− (8 + 4b)EP + (12 − 4b)ENL]. (7)

Here the nonlocal nonlinear term ER was absorbed into E in
comparison with (6).

Catastrophic collapse of a BEC in terms of the NGPE
means a singularity formation, max |�| → ∞, in a finite time.
Because of conservation of N , the typical size of an atomic
cloud near a singularity must vanish. The virial theorem (7)
describes collapse when the positive-definite quantity 〈r2〉
becomes negative in finite time, implying max |�| → ∞
before 〈r2〉 turns negative. The kinetic energy EK diverges
to infinity at the collapse time. Then the potential energy must
also diverge to ensure conservation of the energy functional
E. But the divergence of the potential energy implies that
max |�| → ∞ because of the conservation of N . Another
way to see divergence to infinity of EK is from the uncertainty
relation EK � h̄2

2m
(9/4)N/〈r2〉 [see [25,28] as well as Eq. (8)]

for 〈r2〉 → 0. Generally, 〈r2〉 may not vanish at collapse (e.g.,
if there are nonzero values of |�| away from the collapse
center) but EK diverges to infinity at the collapse time because
of max |�| → ∞. We use in the following divergence to
infinity of EK as a necessary and sufficient condition of
collapse formation while vanishing of 〈r2〉 is only a sufficient
condition for collapse.

The NGPE is not applicable near a singularity and other
physical mechanisms, such as inelastic two- and three-body
collisions, are important and these can cause a loss of atoms
from the condensate [1]. In addition, the multipole expansion
used for derivation of the dipole-dipole–type potential is
not applicable for very short distances (about a few Bohr
radii). However, as previously explained, the NGPE with the
potential (1) is a good approximation for a wide range of typical
interatomic distances ranging from a fraction of nanometer
to ∼10 µm.

III. SUFFICIENT COLLAPSE CONDITIONS FOR 2 � b � 3

Consider the case 2 � b � 3. Then one immediately ob-
tains from Eq. (5) for g � 0 that ∂2

t 〈r2〉 � 2bE
mN

. Integrating that
differential inequality over time we get that 〈r2〉 � bE

mN
t2 +

∂t 〈r2〉|t=0t + 〈r2〉|t=0. If E < 0 we conclude that 〈r2〉 → 0 for
large enough t, which provides a sufficient criterion of collapse
of the BEC. The condition E < 0 is sufficient but not necessary
for collapse. We now use generalized uncertainty relations
between EK, N, 〈r2〉, and ∂t 〈r2〉 [25,28] to obtain a much
stricter condition of collapse. For the reader’s convenience we
repeat the derivation of Refs. [8,25] to show that these uncer-
tainty relations result from the Cauchy-Schwarz inequality and
Eq. (5) with use of integration by parts (� ≡ Reiφ, R = |�|)
as follows:

EK = h̄2

2m

∫
[(∇R)2 + (∇φ)2R2]d3r,

2mN

h̄
|∂t 〈r2〉| = 4

∣∣∣∣
∫

xj∂xj
φR2d3r

∣∣∣∣
� 4

(
N〈r2〉

∫
(∇φ)2R2d3r

)1/2

, (8)

N = −2

3

∫
xjR∂xj

Rd3r � 2

3

(
N〈r2〉

∫
(∇R)2d3r

)1/2
.
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Using Eqs. (7) and (8) one can obtain a basic differential
inequality:

∂2
t 〈r2〉 � 1

2mN

[
4bE − (b − 2)

h̄2

2m

(
9N

〈r2〉 + m2N (∂t 〈r2〉)2

h̄2〈r2〉

)

− (4 + 2b)mω2
0NF (γ )〈r2〉

]
, (9)

where F (γ ) ≡ min(γ 2
1 ,γ 2

2 ,γ 2
3 ) results from the estimate of

the upper bound of the term proportional to EP in Eq. (5).
The change of variable 〈r2〉 = B4/(b+2)/N gives the following
differential inequality:

∂2
t B � b + 2

2m

[
bEB

b−2
b+2 − (b − 2)

h̄2

8m

9N2

B
6−b
b+2

− b + 2

2
mω2

0F (γ )B

]
, (10)

which can be rewritten as

Btt = −∂U (B)

∂B
− q2(t), (11)

where

U (B) = − (b + 2)2

4m
EB

2b
b+2 + h̄29(b + 2)2N2

32m2
B

2b−4
b+2

+ (b + 2)2

8
ω2

0F (γ )B2, (12)

and q2(t) is some unknown nonnegative function of time.
Equation (11) has a simple mechanical analogy [25] with
the motion of a “particle” with coordinate B under the
influence of the potential force − ∂U (B)

∂B
in addition to the

force −q2(t). Due to the influence of the nonpotential force
−q2(t) the total energy E of the “particle” is time dependent:

E(t) = B2
t

2 + U (B). Collapse certainly occurs if the “particle”
reaches the origin B = 0. It is clear that if the particle were
to reach the origin without the influence of the force −q2(t)
then it would reach the origin even faster under the additional
influence of this nonpositive force. Therefore one can consider
in the following the particle dynamics without the influence of
the nonconservative force −q2(t) to prove sufficient collapse
conditions.

It follows from Eq. (12) that the potential U (B) is a mono-
tonic function for E � 3h̄ω0N [(b2 − 4)F (γ )]1/2/(2b) ≡
Ecritical (see curve 1 in Fig. 1) while for E > Ecritical the
potential U (B) has a barrier at B

4/(b+2)
m = b[E − (E2 −

E2
critical)

1/2]/[(b + 2)mω2
0F (γ )] with particle energy Em =

U (Bm) at the top (see curve 2 in Fig. 1). One can separate
the sufficient collapse condition into three different cases:

(a) for E � Ecritical, the particle reaches the origin in a finite
time irrespective of the initial value of B|t=0;

(b) for E > Ecritical and E(0) > Em, the particle is able to
overcome the barrier and thus it always falls to the origin in a
finite time irrespective of the initial value of B|t=0;

(c) for E > Ecritical and E(0) < Em, the particle is not able
to overcome the barrier and thus it falls to the origin in a finite
time only if B|t=0 < Bm.

FIG. 1. Typical behavior of the potential U (B) from Eq. (12)
for E � Ecritical (curve 1) and E > Ecritical (curve 2). U0 =
(Nh̄/m)

b+2
2 ω

2−b
2

0 and B0 = (Nh̄/mω0)
b+2

4 .

It is important to stress that we have proven here analytically
only sufficient collapse conditions. Generally, even if none of
these three conditions are satisfied one cannot exclude collapse
formation for some particular values of the initial conditions
of Eq. (2). Generally, it is determined by the nonpotential
force −q2(t). The inequality (9) reduces to equality for γ 2

1 =
γ 2

2 = γ 2
3 , g = 0 and a Gaussian initial condition with ψ |t=0 =

N1/2

π3/4r
3/2
0

e−r2/(2r2
0 ). For that initial condition

E = 3h̄2

4m

N

r2
0

+ π−1/2f N2r−b
0 	(3/2 − b/2) + 3

4
mω2

0r
2
0 N

(13)

provided f (n) = constant ≡ f.

Assume that the trap contribution to E is negligible (i.e.,
we set ω0 → 0) then E < 0 in (13) either if the constant r0 is
small and b > 2 or if b = 2 and N > N (var)

c , where

N (var)
c = −3h̄2/(4mf ). (14)

This means that for 2 � b � 3 we can easily have the
simplest sufficient collapse condition E < 0 satisfied for the
long-distance potential alone (for g = 0); that is, the potential
alone can result in collapse of the BEC. N (var)

c in (14) is the
variational estimate for the critical number of particles, Nc, for
b = 2. If N < Nc then collapse is impossible for any initial
conditions (and for any trap) as shown in the following. Nc

is independent of the trap and it is an analog of the critical
particle number for the standard two-dimensional (2D) GPE
with contact interactions only.

For 2 < b < 3 we can also introduce another critical value
of particles, Nc,trap, from the condition that for N > Nc,trap

the energy E does not have minimum as a function of system
parameters for fixed N . We find from Eq. (13) that E does not
have a minimum for any r0 if N > N

(var)
c,trap, where

N
(var)
c,trap = − h̄5/2

m3/2ω
1/2
0 f

6(b − 2)
b−2

4
√

π

b(b + 2)
b+2

4 	(3/2 − b/2)
(15)

is the variational estimate for Nc,trap. This means that any
soliton-type solution is impossible for N > Nc,trap and collapse
inevitably occurs. The critical number of particles, Nc,trap, is
defined for 2 < b < 3 and is determined by the trap (since
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without the trap particles could spread unboundedly, prevent-
ing collapse for the wide class of initial conditions, while the
trap blocks that scenario and eventually results in collapse
for N > Nc,trap). Nc,trap is the analog of the critical number
of particles, Ncr,GPE ≡ κ aho

|a| , κ � 0.5, aho = (h̄/mω0)1/2 in the

standard three-dimensional (3D) GPE [29,30]. Both N
(var)
c,trap

and Ncr,GPE are undefined without the trap because formally
both the NGPE for 2 < b < 3 and the standard 3D GPE can
have collapse for an arbitrarily small number of particles for
appropriately chosen initial conditions (and of course these
equations are based on the mean-field approximation so for
small N ∼ 1 these equations will not be applicable).

For 2 < b < 3 and N < N (var)
c the energy E (13) has a local

minimum for a finite value of r0 while E → −∞ for r0 →
0. This means that depending on initial conditions (i.e. the
initial value of r0) the BEC either collapses in a finite time or
stabilizes on a soliton solution. That soliton solution is however
metastable because of the finite probability of tunneling of the
condensate to small values of r0.

The b = 3 case is special because convergence of the
integral ER at small distances requires that angular integration
(integration over a sphere of radius one) of f (n) gives zero:∫

f (n)dn = 0. A particular example for b = 3 was considered
in Ref. [8] for the case of the dipole-dipole interaction potential
with all dipoles oriented in one fixed direction. In that case
indeed

∫
f (n)dn = 0. Also in that case ENL vanishes from (7),

which allows collapse even for g > 0.

If either b = 3 and
∫

f (n)dn 
= 0 or b > 3 then it is
necessary to introduce a cutoff at a small distance rc (typically
at few Bohr radii) and the potential would lose a general
form (1). Also for b > 3 the integral

∫
|r|>rc

V (r)d3r is finite
so generally we have a very similar situation to a standard
δ-correlated potential [1]. Thus b = 3 is a border between
short-range potentials (for b > 3) and long-range potentials
(for b � 3) in three dimensions.

IV. NONEXISTENCE OF COLLAPSE FOR b < 2

Now we prove that for b < 2 collapse is impossible for
g = 0 because the singularity of (1) is not strong enough. We
use the inequality

∫ |�(r)|2
|r−r′|2 d

3r � 4
∫ |∇�(r)|2d3r [31], which

holds for any r′. We generalize that inequality using Hölder’s
inequality (assuming b < 2) as follows:∫ |�(r)|2

|r − r′|b d3r =
∫

|�(r)|2−b |�(r)|b
|r − r′|b d3r

�
[∫

(|�(r)|2−b)
1

1−b/2 d3r
]1− b

2

×
[∫ ( |�(r)|b

|r − r′|b
) 2

b

] b
2

d3r

� 2bN1− b
2

(
2m

h̄2 EK

) b
2

. (16)

Using now boundness of f : f (n) � fm ≡ max
n

|f (n)| in (1)

and inequality (16) we obtain a bound for ER in (4),

ER � −fm2b−1N2− b
2

(
2m

h̄2 EK

) b
2

, (17)

E(1)

K

E

0

1
2

E
K

P
(E

K
)

FIG. 2. Schematic of the function P (EK ) defined in (18) (solid
curve). It is seen that the equation P (EK ) = E (with E shown by the
dashed line) has either one of two roots for EK > 0 depending on
sign of E. E

(1)
K designates the largest of these roots.

which gives a respective bound of E in (4) (where recall that
we assume g = 0):

E � EK − fm2b−1N2− b
2

(
2m

h̄2 EK

) b
2

≡ P (EK ). (18)

A function P (EK ) in (18) has a minimum for EK = E
(0)
K ≡

2−2[fmb]2/(2−b)N
4−b
2−b (2m/h̄2)b/(2−b), resulting in a lower bound

E � −2 − b

b
2−2[fmb]

2
2−b N

4−b
2−b

(
2m

h̄2

) b
2−b

. (19)

Boundness of the energy functional E from below ensures
that collapse is impossible for b < 2. To prove that, we
show boundness of EK while collapse requires EK → ∞.
We choose any value of E which satisfies (19). Figure 2 shows
schematically the function P (EK ) from (18).

Inequality (18) requires that EK � E
(1)
K (E), where E

(1)
K (E)

is the largest root of the equation P (EK ) = E. This proves
that EK is bounded for fixed N, which completes the proof
of the absence of collapse for b < 2. A particular version of
that result for b = 1 and f (n) = constant was first obtained
in Ref. [32]. The nonexistence of collapse for the nonsingular
potential V (r) was shown previously based on the approximate
analysis in Ref. [33]. The proof of the nonexistence of collapse
for the particular example of nonsingular potentials with
a positive-definite bounded Fourier transform was given in
Ref. [34]. These results can be easily generalized for any
bounded potential similar to the analysis here. Thus collapse
can occur for a singular potential only and the singularity
should be strong enough (i.e., b � 2).

V. NONLINEAR STABILITY OF THE GROUND-STATE
SOLITON FOR b < 2

We now look for a soliton solution of the NGPE (2) as
�(r,t) = A(r)e−iµt/h̄, where µ is the chemical potential. In
that case the NGPE (2) reduces to a time-independent equation[

−µ − h̄2

2m
∇2 + 1

2
mω2

0

(
γ 2

1 x2
1 + γ 2

2 x2
2 + γ 2

3 x2
3

)

+
∫

d3r′V (r − r′)A(r′)2

]
A(r) = 0, (20)

where we again assume g = 0 although generalization to the
g 
= 0 case is straightforward. Equation (20) is the stationary
point of the energy functional E for a fixed number of particles:
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δ(E − µN ) = 0. Multiplying Eq. (20) by A and xj∂xj
A and

integrating by parts one obtains using (1) and (3) that

EK,s = −µNs

b

4 − b
+ EP,s, ER,s = µNs

2

4 − b
,

(21)

Es = −µNs

b − 2

4 − b
+ 2EP,s,

where subscript “s” means values of all integrals are taken
on the soliton solution. Especially simple and interesting is
the case of self-trapping (ω0 = 0) when the condensate is in
steady state without any external trap. All integrals in that case
depend on the number of particles, Ns , only.

Assume radial symmetry f (n) = constant < 0 in (1). A
ground-state soliton is determined from a condition that A(r)
never crosses zero [35,36]. To prove the ground-state soliton
stability we show that it realizes a minimum of the Hamiltonian
for a fixed Ns. One can make inequality (16) sharper by min-
imizing a functional F(�) ≡ N1− b

2 ( 2m

h̄2 EK )
b
2 /

∫ |�(r)|2
|r−r′|b d

3r.
That minimum is achieved at one of the stationary points
δF
δ�∗ = 0 and after simple rescaling one can see that these
points correspond to soliton solutions of the time-independent
NGPE (20). Among these stationary points the minimum is
achieved at the ground-state soliton �s,ground. It gives a bound
F(�) � minF(�) = F(�s,ground) which is sharper than the
inequality (16). Following an analysis similar to Eqs. (17)–(19)
we obtain that for any �

E � min E = Es,ground, (22)

that is, the ground-state soliton solution attains the minimum of
E for fixed N . This proves exactly the stability of the soliton
for f (n) = constant. Similar ideas were used in a nonlinear
Schrödinger equation (NLS) which is a GPE with ω0 = 0
[35,36]. The ground-state soliton was also found numerically
for b = 1 [37].

For more general f (n) 
= constant, the minimum of E is
still negative if f (n) is negative for a nonzero range of values
of n. So in that case we expect that the ground-state soliton
solution attains that minimum and, respectively, is stable. If
f (n) > 0 for any n then min E = 0. This corresponds to the
unbounded spatial spreading of the NGPE solution for any
initial conditions. Self-trapping is impossible in that case and
solitons are possible for ω0 
= 0 only.

The case b = 2 is on the boundary between the bounded and
unbounded energy functionals, as can be seen from inequal-
ities (18) and (22). If N > Ns,ground then E is unbounded. If
N < Ns,ground then E � Es,ground = 0 as follows from (21) for
b = 2. Thus Ns,ground is the critical number of particles for
collapse: Nc = Ns,ground. This is the exact result and compares
with the variational estimate (14). That critical particle number
Nc is similar to to the critical particle number for the collapse
of the standard 2D GPE (as well as similar to the critical
power in nonlinear optics) [23]. As we have discussed here,
it is important to distinguish Nc from the critical number of
particles of the 3D GPE with ω0 
= 0 [1,2].

VI. WEAK AND STRONG REGIMES OF COLLAPSE

To qualitatively distinguish among regimes of collapse and
solitons one can consider, in addition to the exact analysis just

FIG. 3. Schematic of E(L) from (23) for b > 2 (curve 1), b = 2
and N < Ns,ground (curve 2), b = 2 and N > Ns,ground (curve 3), and
b < 2 (curve 4).

given, a scaling transformations �(r) → L−3/2�(r/L) [38]
which conserves the number of particles. Under this transfor-
mation the energy functional E (for ω0 = 0) depends on the
parameter L as follows:

E(L) = L−2EK + L−bER. (23)

The virial theorem (7) and the relations (21) and (23) have
striking similarities with the GPE if we replace b by the spatial
dimension D in the GPE. That analogy suggests we refer to the
case b = 2 as the critical NGPE and to the case b > 2 as the
supercritical NGPE because cases D = 2 and D > 2 are called
by critical and supercritical ones, respectively, for the standard
GPE (NLS) [38]. Similarly, we refer to collapse for b = 2 as
a critical collapse and for b > 2 as a supercritical collapse.
Figure 3 shows a typical dependence of (23) on L for b > 2,
b = 2, and b < 2 with ER < 0 assumed. For b > 2 there is a
maximum of E (curve 1 in Fig. 3) corresponding to an unstable
soliton. The solution of the NGPE either collapses or expands.
For b = 2 there is no extremum and collapse is impossible
for N < Ns,ground (curve 2 in Fig. 3) while the condensate can
collapse for N > Ns,ground (curve 3 in Fig. 3). The ground-
state soliton corresponds to N = Ns,ground and E = 0, exactly
located at the boundary between collapsing and noncollapsing
regimes. For b < 2 there is a minimum which corresponds to
the stable ground-state soliton (curve 4 in Fig. 3).

Solutions of both the GPE and the NGPE with ω0 = 0 near
collapse typically consist of a background of nearly linear
waves and a central collapsing self-similar nonlinear core.
The scaling (23) describes the dynamics of the core with time-
dependent L(t) such that L(t) → 0 near collapse. Waves have
negligible potential energy but carry a positive kinetic energy
Ewaves � EK,waves. The total energy E = Ecollapse + Ewaves is
constant, where Ecollapse is the core energy.

It follows from (23) that for b = 2 one can simultaneously
allow conservation of N and Ecollapse so that a negligible
number of particles are emitted from the core. This scenario
is called a strong collapse with the self-similar collapsing core
centered at r = 0 and approximated as

|ψc,strong(r,t)| � 1

L(t)3/2
χ

(
r

L(t)

)
, L(t) → 0 for t → t0,

(24)

where the function χ (ξ ) with ξ ≡ r/L(t) describes the spatial
structure of the collapsing solution and t0 is the collapse
time.
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Equation (24) is applicable for |ξ | < ξc, where ξc >∼ 1. The
number of particles, Ncollapse,strong, in the collapsing solution is
nearly constant provided ξc is nearly constant: Ncollapse,strong �∫
|r|<ξcL(t) |ψc,strong(r,t)|2d3r = ∫

|ξ |<ξc
χ2(ξ )d3ξ ∼ 1. Thus the

critical collapse is always a strong one with Ncollapse,strong �
Nc. Substitution of (24) into the NGPE with g = 0 allows us
to conclude that all terms are of the same order in powers of L

(except for the trapping potential EP , which is not important
near collapse) if L(t) ∝ (t0 − t)1/2. By analogy with the 2D
GPE, which has a critical collapse [39–41], we also expect
to observe logarithmic corrections to (t0 − t)1/2, which is a
typical feature of critical collapses in many systems (see,
e.g., [42]). If N � Nc then multiple collapses will occur, each
capturing about Nc particles, which is the analog of multiple
filamentation turbulence and beam spray in nonlinear optics
and laser-plasma ineractions [43,44]. The universality in the
number of particles captured in each collapse, Ncollapse,strong �
Nc, holds for the critical collapse only and does not hold for
the supercritical case.

In the supercritical case 2 < b � 3, the term ∝ L−b in (23)
dominates with Ecollapse → −∞ as L(t) → 0. Then the only
way to ensure conservation of E is to assume a strong emission
of linear waves (particles) from the collapsing core. Near the
collapse time t0 only a vanishing number of particles remains
in the core (and of course all that is true until the NGPE losses
its applicability), which is called a weak collapse [38]. Instead
of the self-similar solution (24), the weak collapse is described
by another type of self-similar solution:

|ψc,weak(r,t)| � 1

L(t)α
η

(
r

L(t)

)
, L(t) → 0 for t → t0,

(25)

α = 5 − b

2
,

where the function η(ξ ) with ξ ≡ r/L(t) describes the spatial
structure of the collapsing solution and α = 5−b

2 is chosen
from the condition that a substitution of (25) into the NGPE
allows the same leading order in powers of L for linear
(the kinetic energy) and nonlinear [the potential energy from
V (r)] terms. Here we again neglect the trapping potential and
assume g = 0. Assuming now that the left-hand-side of the
NGPE is of the same order in power of L(t) we obtain that
L(t) ∝ (t0 − t)1/2. Similar to (24), we assume that Eq. (25) is

applicable for |ξ | < ξc, where ξc >∼ 1. The number of parti-
cles, Ncollapse,weak, in the collapsing solution approaches zero
near collapse: Ncollapse,weak � ∫

|r|<ξcL(t) |ψc,weak(r,t)|2d3r =
L(t)b−2

∫
|ξ |<ξc

η2(ξ )d3ξ ∼ L(t)b−2 → 0 for t → t0.

The solution of the NGPE in the form of the strong
collapse (24) can also be considered for 2 < b � 3, which
results in the dominance of the nonlinear interaction and
time-dependent terms in the NGPE over the kinetic energy
term. It was shown that a similar solution for the supercritical
GPE [38] is unstable and we expect that it might also be
unstable for the NGPE. Thus supercritical collapse can be
either weak or strong but a weak one appears to be more
probable.

VII. CONCLUSION

We studied the collapse versus the long-time existence of
Bose-Einstein condensates with a long-range attractive inter-
action proportional to 1/rb and arbitrary angular dependence.
We proved that collapse is impossible for b < 2. Instead,
the attractive 1/rb interaction allows stable self-trapping for
b < 2 even in the absence of an external trapping potential
(i.e., 3D stable solitons are possible). We showed that they
are nonlinearly stable for the radially symmetric attracting
interaction potential. For b = 2, collapse is strong with the
critical number of particles, Nc, independent of the trapping
potential, so we also refer to that collapse as a critical collapse.
We showed that Nc is determined by the ground-state soliton
solution. For 2 < b � 3, we expect a weak collapsing solution
but a strong collapse is also possible. In that case we define
another critical number of particles, Nc,trap, which depends on
the form of the trapping potential. For N > Nc,trap, collapse
always occurs, while for N < Nc,trap, both collapsing and
noncollapsing solutions are possible depending on the initial
conditions. These results can be extended to the case of a
general anharmonic trap, in which only conditions for collapse
would be modified but no qualitative change of collapsing
versus noncollapsing BEC dynamics would result.
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