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We investigate the localized nonlinear matter waves in the two-component Bose-Einstein condensates with
time- and space-modulated nonlinearities analytically and numerically. The similarity transformations are
developed to solve the coupled Gross-Pitaevskii equations and two families of explicitly exact solutions are
derived. Our results show that not only the attractive spatiotemporal inhomogeneous interactions but the repulsive
ones support novel localized nonlinear matter waves in two-component Bose-Einstein condensates. The dynamics
of these matter waves, including the breathing solitons, quasibreathing solitons, resonant solitons, and moving
solitons, is discussed. We confirm the stability of the exact solutions by adding various initial stochastic noise and
study the general cases of the interaction parameters numerically. We also provide the experimental parameters
to produce these phenomena in future experiments.
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I. INTRODUCTION

The realization of Bose-Einstein condensations (BECs) in
weakly interacting atomic gases [1] has opened the possibility
to investigate nonlinear properties of atomic matter waves.
Several remarkable phenomena [2], which strongly resemble
well-known effects in nonlinear optics, have been observed in
BECs. In recent years, the development of trapping techniques
has allowed the creation of two-component BECs [3–5], which
are formed by trapping atoms in different internal states [6,7].
The two-component BECs, far from being a trivial extension
of the single-component one, present novel and fundamentally
different scenarios for its ground state [8] and excitations
[9]. The theory for a two-component condensate can be
developed similarly to that for a one-component condensate
whose equilibrium and dynamical properties can be accurately
described by the Gross-Pitaevskii (GP) equations [3–9].

In past decades, techniques for managing nonlinearity have
attracted considerable attention. For instance, nonlinearity
management arises in optics for transverse beam propagation
in layered optical media as well as in atomic physics for
the Feshbach resonance [10] of the scattering length of
interatomic interactions in BECs. In these situations, one has
to deal with the governing equations with the nonlinearity
coefficients being functions of time [11]. In recent researches,
the space-dependent [12,13] or spatiotemporal-dependent [14]
nonlinearities are considered by similarity transformations,
and some explicitly exact solutions of the single nonlinear
Schrödinger equations [15] are constructed. However, there is
little work considering the dynamics of the two-component
BECs with time- and space-modulated nonlinearities.

In this paper we study the localized nonlinear matter waves
in the two-component BECs with time- and space-modulated
nonlinearities in harmonic potential. To do so, we make use
of the similarity transformations that connect problems with
time- and space-modulated nonlinearities with simpler ones
that have an homogeneous nonlinearity. We show that in
the two-component BECs, not only the attractive spatially
inhomogeneous interactions but the repulsive ones can support

novel localized nonlinear matter waves. We also find that
the localized nonlinear matter waves have the behaviors of
breathing solitons, quasibreathing solitons, resonant solitons,
and moving solitons. Numerical simulations are used to show
the stability of our exact solutions and the dynamics of the
two-component BECs with general cases of the interaction
parameters. In addition, we provide the experimental parame-
ters to produce these phenomena in future experiments. These
are interesting results with potential physical implications.

II. THE THEORETICAL MODEL

The two interacting dilute Bose condensates can be well
described by the zero-temperature mean-field theory, in which
the collisions between the condensate atoms and the thermal
cloud are neglected. Considering two-component BECs each
of mass ma trapped in an external potential, the mean-field
dynamics can be derived by assuming that the two condensates
are described by the wave functions �1(r,t) and �2(r,t). At
low temperature, the total-energy functional of the system is

E[�1,�2] =
∫

dr
(

h̄2

2ma

|��1|2 + h̄2

2ma

|��2|2 + V
(1)

ext |�1|2

+ V
(2)

ext |�2|2 + 1

2
U1|�1|4 + 1

2
U2|�2|4

+ U12|�1|2|�2|2
)

. (1)

Here the trapping potentials are assumed to be V
(i)

ext =
ma[ω2

i⊥(γ 2
i x2 + y2 + z2)]/2, i = 1,2, where γi = ωix/ωi⊥

conveniently parametrizes the trap anisotropy, and ωi⊥ and
ωix are the the confinement frequencies in the transverse
and axial directions. The intracomponent coupling constant
Ui = 4πh̄2aii/ma is characterized by the scattering lengths
a11 and a22 between atoms of the same species, while
the intercomponent coupling constant U12 = 4πh̄2a12/ma is
determined by the scattering length a12 where an atom in the �1

component scatters from another atom in the �2 component.
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In this paper we consider the scattering lengths a11,a22, and
a12 to be spatiotemporally inhomogeneous [12–14], which is
experimentally feasible due to the flexible and precise control
of the scattering lengths achievable in quasi-one-dimensional
BECs with magnetically tuning the Feshbach resonances.

The dynamics of the two-component BECs is governed
by coupled dimensionless GP equations, which are derived
from the variational principle ih̄∂�i/∂t = δE/δψ∗

i as shown
in [3–9]

ih̄
∂�1

∂t
=

(
−h̄2∇2

2ma

+ V
(1)

ext + U1|�1|2 + U12|�2|2
)

�1,

ih̄
∂�2

∂t
=

(
−h̄2∇2

2ma

+ V
(2)

ext + U12|�2|2 + U2|�2|2
)

�2,

where the condensate wave functions are normalized by
the particle number Ni = ∫

d3r|�i |2. If the condensates are
tightly confined in the transverse direction, that is ωi⊥ � ωix,

i.e., γi � 1, it is reasonable to reduce the GP equations for the
condensate wave functions to a quasi-one-dimensional system.
To do this, one can factorize the condensate wave functions
into a longitudinal and a transverse part as

�i(r,t) = φ
(i)
⊥ (y,z)ψi(x,t)e−iω⊥t , i = 1,2

where we assume ω1⊥ = ω2⊥ = ω⊥, ω1x = ω2x = ωx to
reduce the number of the parameters, and φ

(i)
⊥ (y,z) is the

normalized ground state of the transverse potential with
energy h̄ω⊥. Integrating along the transverse coordinates, the
resulting equations for the axial wave functions ψ1,2(x,t) in
dimensionless form can be written as the coupled quasi-one-
dimensional (quasi-1D) GP equations [4,5]

i
∂ψ1

∂t
=

(
−1

2

∂2

∂x2
+ γ 2

2
x2+ b11|ψ1|2+ b12|ψ2|2

)
ψ1,

(2)

i
∂ψ2

∂t
=

(
−1

2

∂2

∂x2
+ γ 2

2
x2 + b12|ψ1|2 + b22|ψ2|2

)
ψ2,

where b11 = 2a11, b22 = 2a22, b12 = 2a12, and the units for
length and time are

√
h̄/(maω⊥) and ω−1

⊥ , respectively.
Model (2) has attracted a great deal of attention due to

its applications in the theory of low-dimensional condensed
quantum gases. We will construct the explicitly exact solutions
of this model under the special interaction parameters b11, b12,
and b22, and investigate their unique dynamics.

III. SIMILARITY TRANSFORMATION AND
ANALYTIC SOLUTIONS

In this section we consider the exact spatially localized
solutions of Eqs. (2) for which lim|x|→∞ ψ1,2(x,t) = 0. To do
this, we take the similarity transformation

ψ1(x,t) = β1(x,t)eiα1(x,t)U [X(x,t)], (3a)

ψ2(x,t) = β2(x,t)eiα2(x,t)V [X(x,t)], (3b)

to reduce Eqs. (2) to two stationary nonlinear Schrödinger
(SNLS) equations

UXX + g11U
3 + g12UV 2 = 0, (4a)

VXX + g22V
3 + g12V U 2 = 0, (4b)

where g11, g12, and g22 are constants, and α1,α2,β1,β2,X

are functions of x and t to be determined. For brevity, we
define variables σ1 = g12 − g11, σ2 = g12 − g22, and σ12 =
g2

12 − g11g22. Substituting Eqs. (3) into Eqs. (2) and asking
U (X),V (X) to satisfy Eqs. (4), we have a set of partial
differential equations (PDEs). By solving this set of PDEs,
we conclude that when

b11 = g11θ (t,x), b12 = g12θ (t,x), b22 = g22θ (t,x), (5)

with θ (t,x) = −λ2e−3λ2x2−6λδx−2δ2
/[2ζ 2

3 (t)], one has

α1 = ζ1(t) − λtx
2

2λ
− δtx

λ
, α2 = ζ2(t) − λtx

2

2λ
− δtx

λ
,

(6)

β1 = β2 = ζ3(t)e
λx(λx+2δ)

2 , X =
√

π

2
erf(λx + δ),

where erf(s) = 2√
π

∫ s

0 e−τ 2
dτ is called an error function,

ζ1(t),ζ2(t), and ζ3(t) satisfy

ζ1(t) =
∫

(λ4 − δt
2 + λ4δ2)/(2λ2)dt + C1,

ζ2(t) =
∫

(λ4 − δt
2 + λ4δ2)/(2λ2)dt + C2, ζ3(t) =

√
λe

1
2 δ2

,

with C1 and C2 arbitrary constants, and λ,δ satisfy

λ6 − γ 2λ2 − 2λt
2 + λttλ = 0, (7a)

2δttλ + 2λ5δ − 4δtλt = 0. (7b)

When setting σ1/σ12 > 0 and σ2/σ12 > 0, Eqs. (4) have
two families of exact solutions as

U (1)(X) =
√

σ2/σ12ν1cn(ν1X,
√

2/2), (8a)

V (1)(X) =
√

σ1/σ12ν1cn(ν1X,
√

2/2), (8b)

and

U (2)(X) =
√

2/2
√

σ2/σ12ν2sd(ν2X,
√

2/2), (9a)

V (2)(X) =
√

2/2
√

σ1/σ12ν2sd(ν2X,
√

2/2), (9b)

where ν1,ν2 are arbitrary constants, sd = sn/dn with sn,cn,

and dn being Jacobi elliptic functions. When imposing the
bounded condition lim|x|→∞ ψ1,2(x,t) = 0, we have ν1 =
2(2n + 1)K(

√
2

2 )/
√

π for Eqs. (8) and ν2 = 4mK(
√

2
2 )/

√
π

for Eqs. (9), where n and m are integer numbers and K(
√

2
2 ) =∫ π/2

0 [1 − (
√

2
2 )2 sin2 τ ]−1/2dτ is an elliptic integral of the first

kind.
After some algebra, we find Eq. (7b) has a solution of the

following form:

δ(t) = c1e
i
∫
λ2dt + c2e

−i
∫
λ2dt , (10)

with c1 and c2 arbitrary constants.
Next we set λ = 1/ξ to rewrite Eq. (7a) in the form of the

Ermakov-Pinney equation [16,17] as

ξtt + γ 2ξ = 1/ξ 3. (11)

According to the result [17], to obtain the explicit solutions
of Eq. (11) we choose γ to satisfy

γ 2 = γ 2
0 + ε cos(γ1t), (12)
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with ε ∈ (−1,1) and γ0,γ1 ∈ R. Therefore, the general solu-
tion to Eq. (7a) is

λ = (
Aξ 2

1 + Bξ 2
2 + 2Cξ1ξ2

)−1/2
, (13)

where A,B,C are constants satisfying AB − C2 = 1/W 2,

and the Wronskian W = ξ1ξ2t − ξ2ξ1t with (ξ1,ξ2) being two
linearly independent solutions of a homogeneous ordinary
differential equation

ξtt + γ 2ξ = 0. (14)

Combining Eqs. (3) and (6) with (8) and (9), we arrive
at two families of explicitly exact solutions for the coupled
quasi-1D GP equations (2) as

ψ
(j )
1 (x,t) =

√
λe

1
2 δ2

e
λx(λx+2δ)

2 eiα1(x,t)U (j )(X), (15a)

ψ
(j )
2 (x,t) =

√
λe

1
2 δ2

e
λx(λx+2δ)

2 eiα2(x,t)V (j )(X), (15b)

where U (j )(X) and V (j )(X) are given by Eqs. (8) and (9),
index j = 1,2, α1,α2 satisfy Eq. (6), and X,δ,λ satisfy
Eqs. (6), (10), and (13), respectively. It is easy to check that
lim|x|→∞ ψ

(j )
1,2(x,t) = 0 for j = 1,2, so these two families of

exact solutions are localized nonlinear wave solutions.

IV. DYNAMICS OF THE EXACT LOCALIZED
NONLINEAR MATTER WAVES

In this section we discuss the dynamics and important
physical applications of the exact localized nonlinear wave
solutions (15) of the coupled quasi-1D GP equations (2). We
also propose how to control dynamics of localized nonlinear
waves in the two-component BECs by the harmonic potentials
and the spatiotemporal inhomogeneous s-wave scattering
lengths in future experiments.

Similar to the single BECs cases [14], considering different
choices of the parameters ε, γ0, and γ1 in Eq. (12), we can also
single out several different types of soliton behaviors, such as
breathing solitons, resonant solitons, quasiperiodic solitons,
and moving solitons. Here we discuss the existence regions
of the exact localized nonlinear matter waves by assuming
the two constraint conditions σ1/σ12 > 0 and σ2/σ12 > 0 in
Eqs. (8) and (9). Without loss of generality, we always assume
g11 > g22. So we have four cases of parameters g11, g22, and
g12 as given in the following:

Case 1. g11 > g22 > 0 and g12 > g11.

Case 2. g11 > g22 > 0 and
√

g11g22 > g12 > −√
g11g22.

Case 3. g22 < g11 < 0 and g12 >
√

g11g22 > 0.

Case 4. g11 > 0,g22 < 0 and g12 > g11.

These correspond to four cases of the intracomponent
interaction parameters b11, b22, and intercomponent interaction
parameters b12 [see Eq. (5)] as follows:

Case a. b11 < b22 < 0 and b12 < b11.

Case b. b11 < b22 < 0 and −√
b11b22 < b12 <

√
b11b22.

Case c. b22 > b11 > 0 and b12 < −√
b11b22.

Case d. b11 < 0, b22 > 0, and b12 < b11.

This demonstrates the regions where the exact local-
ized nonlinear matter waves of the two-component BECs
can exist when the intracomponent interaction parameters
b11, b22, and intercomponent interaction parameters b12 are
spatiotemporally inhomogeneous. Cases a and b show that
the two-component BEC with two self-attractive atom-atom

interactions supports the exact localized nonlinear matter
waves, which is similar to the single-component one [14].
However, for cases c and d, it is surprising to see that the
exact novel localized nonlinear matter waves can be formed
in the two-component BECs with self-repulsive atom-atom
interactions. This is because in the two-component BECs, the
attractive interactions from the intercomponent interaction b12

(see case c), the second component (see case d), or both, induce
an effective attractive interaction in the self-repulsive one.

Now we only consider case c, which denotes two self-
repulsive atom-atom interactions and attractive intercompo-
nent interactions. The other cases can be studied in the same
way. Let us first provide the experimental parameters for
producing the quasi-1D two-component condensates com-
posed of N1 = N2 = 5 × 104 87Rb atoms [6,18], confined in a
cigar-shaped trap, with the ratio of the confining frequencies,
γ = ωx/ω⊥ of order O(10−2). Typically, we choose axial
frequency ωx = 70π Hz and radial frequency ω⊥ = 800π Hz
[19]. Then when taking the scattering lengths aij to be of
the order of nanometer, it turns out that the normalized trap
strength γ is typically of order O(10−2). The behavior of
the scattering lengths near a Feshbach resonant magnetic
field B0 is typically of the form as(B) = a[1 + �/(B0 − B)],
with a being the asymptotic value of the scattering length
far from the resonance, B0 being the resonant value of the
magnetic field, and � being the width of the resonance. In
our case, the scattering lengths are space and time dependent,
i.e., aij = aij (x,t), so the magnetic field B that we will use
should vary following the space and time. In real experiments,
such magnetic field may be generated by a microfabricated
ferromagnetic structure integrated on an atom chip [20]. In
the following, within the safe region we will always take the
parameters gij in Eq. (5) to be g11 = −1, g22 = −3, g12 = 2.

A. Breathing solitons

In order to investigate the dynamics of the explic-
itly exact solutions (15), we take special parameters
γ0,γ1, and ε in Eq. (12). When the ratio of the con-
fining frequencies γ of the harmonic potential is time
independent, that is, parameters γ1 = ε = 0, by solving
Eq. (14) we have λ = 1/ξ with ξ = [A − (A − B) cos2(γ0t) +√

ABγ0
2 − 1 sin(2γ0t)/γ0]1/2. Here ξ is the width of the

explicitly exact solutions (15) and
√

λ is its amplitude. We
further suppose c1 = c2 = 0, i.e., δ = 0. When the cigar-
shaped trap with axial frequency ωx = 70π Hz and radial
frequency ω⊥ = 800π Hz is considered, the ratio of the con-
fining frequencies γ = ωx/ω⊥ = 7/80. So from Eq. (12) the
parameter γ0 = γ = 7/80. In order to determine parameters
A and B in Eq. (13), we further consider the initial condition
of Eq. (11) as ξ (0) = √

3 and ξt (0) = 1/80.

We now investigate how the time- and space-modulated
nonlinearities bij control the dynamics of the localized nonlin-
ear matter waves. In the case of parameters γ1 = ε = δ = 0,
the nonlinearities in Eq. (2) become b11 = g11θ (t,x), b12 =
g12θ (t,x), b22 = g22θ (t,x) with θ (t,x) = − λ

2 e−3λ2x2
, which

are space-localized and time-periodic Gaussian nonlinearity,
as shown in Fig. 1. In all figures of this paper, the units of
space length and time are 5.34 µm and 0.4 ms, respectively.
In real BECs experiments, the Gaussian nonlinearity can be
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FIG. 1. (Color online) (a)–(c) demonstrate the examples of
spatiotemporal-dependent nonlinearities b11, b12, and b22 given by
Eq. (5) with parameters g11 = −1, g22 = −3, g12 = 2, γ1 = ε = 0,
and γ0 = 7/80. (d) demonstrates the nonlinearities b11, b12, and b22

for t = 0. Here and after, the units of space length and time are
5.34 µm and 0.4 ms, respectively.

generated by controlling the Feschbach resonances optically
or magnetically using a Gaussian beam.

In Fig. 2, we show the evolution of condensate density of the
wave functions ψ

(1)
1 and ψ

(2)
1 in (15) with the above parameters.

The density profiles of the other component ψ
(1)
2 and ψ

(2)
2 can

also be plotted in the same way, which is similar to that of
ψ

(1)
1 and ψ

(2)
1 with different amplitudes. Figures 2(a) and 2(b)

demonstrate the density profiles of the wave function ψ
(1)
1

for n = 0,1, respectively, and Figs. 2(c) and 2(d) demonstrate
the density profiles of the wave function ψ

(2)
1 for m = 1,2,

respectively. Figure 2(e) demonstrates the width ξ = 1/λ and
amplitude

√
λ of the wave functions. It is observed that the

localized nonlinear matter waves are space localized and
time periodic, which are usually called breathing solitons.
Therefore, we have constructed some exact multisoliton
breathing solutions of the quasi-1D two-component BECs.
Here n and m are the order of the breathing solitons. It is
also observed that the amplitude and width of the localized
nonlinear matter waves vary periodically with respect to time.

B. Quasibreathing solitons

When the ratio of the confining frequencies γ of the
harmonic potential is time dependent, we can select proper
parameters γ0, γ1, and ε in Eq. (12) to formulate a type
of quasibreathing solitons in the two-component BECs.
We especially choose parameters γ0 = 7/80, γ1 = √

2, and
ε = 1/2. In this case, the two solutions of Eq. (14) are
Mathieu functions ξ1 = CM (49/3200, −1/2,

√
2t/2), ξ2 =

SM (49/3200, −1/2,
√

2t/2), where CM and SM refer to the
cosine and sine Mathieu functions, respectively, which are
in the stability region of Eq. (14). With these in mind, we
can construct the function λ from Eq. (13). In this section
we still assume parameter δ = 0. To determine the unknown

FIG. 2. (Color online) Dynamics of breathing solitons in two-
component BECs in quadratic potential with spatiotemporal-
dependent nonlinearities shown in Fig. 1. (a) and (b) demonstrate
the evolution of condensate density |ψ (1)

1 |2 for order n = 0 and 1,
respectively. (c) and (d) demonstrate examples of condensate density
|ψ (2)

1 |2 for order m = 1 and 2, respectively. (e) demonstrates the width
ξ (t) = 1/λ(t) (upper line) and amplitude

√
λ(t) (lower line) of wave

functions. The parameters are γ1 = ε = c1 = c2 = 0 and γ0 = 7/80.

The initial data for Eq. (11) are ξ (0) = √
3 and ξt (0) = 1/80.

parameters A and B in λ, we consider the initial condition of
Eq. (11) to be ξ (0) = √

3 and ξt (0) = √
6/6.

In this case, the nonlinearities in Eq. (2) are still space and
time dependent and the external potential is time dependent.
Next we study how these nonlinearities control the dynamics
of the the localized nonlinear matter waves. In Fig. 3 we show
the development of density profiles for the wave functions ψ

(1)
1

and ψ
(2)
2 in (15). The density profiles of the wave functions

ψ
(2)
1 and ψ

(1)
2 can also be plotted in the same way, which is

very similar to that of ψ
(1)
1 and ψ

(2)
2 except the amplitudes.

Figures 3(a) and 3(b) demonstrate the density profiles of the
wave functions ψ

(1)
1 for order n = 0, and Figs. 3(c) and 3(d)

demonstrate the density profiles of the wave functions ψ
(2)
2

for order m = 1. It is observed that the localized nonlinear
matter waves are space localized and time quasiperiodic,
which are quasibreathing solitons with orders n or m. We
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FIG. 3. (Color online) Examples of quasibreathing solitons in
two-component BECs in quadratic potential with spatiotemporal-
dependent nonlinearities in Eq. (5). (a) and (b) demonstrate the
evolution of condensate density |ψ (1)

1 |2 for order n = 0. (c) and (d)
demonstrate the evolution of condensate density |ψ (2)

2 |2 for order
m = 1. The parameters are c1 = c2 = 0, γ0 = 7/80, γ1 = √

2, and
ε = 1/2. The initial data for Eq. (11) are ξ (0) = √

3 and ξt (0) =√
6/6.

have constructed some exact quasibreathing soliton solutions
of the quasi-1D two-component BECs. It is also observed that
the amplitude and width of the quasibreathing solitons vary
quasiperiodically with respect to time.

C. Resonant solitons

If we let the parameters δ = 0, γ0 = 7/80, γ1 = 4,

and ε = 1/2, we are in the instability region of Eq. (11).
However, the solutions of Eq. (14) are also Mathieu func-
tions ξ1 = CM (49/25600, −1/16,2t),ξ2 = SM (49/25600,

−1/16,2t). After some algebra, we can also get the analytical
expression of function λ. In order to determine the unknown
parameters A and B in λ, we consider the initial condition of
Eq. (11) as ξ (0) = 1 and ξt (0) = 1.

Figures 4(a) and 4(b) and 4(c) and 4(d) describe the
evolution of the condensate density profiles for the wave
functions ψ

(1)
1 with order n = 0 and ψ

(2)
2 with order m = 1,

respectively. It is shown that the density wave packets are
space localized and time resonant, which have the behaviors
of resonant solitons. At the beginning, resonant solitons are
localized nonlinear matter waves with low amplitude and
large width. After some time, their amplitudes become high
but widths become small; as time goes on their amplitudes
decrease and the widths increase gradually. The nonlinear mat-
ter waves demonstrate transitory resonant soliton behaviors.
These resonant soliton behaviors come from the coaction of
the time-dependent harmonic potential and the spatiotemporal
inhomogeneous interactions.

FIG. 4. (Color online) Examples of resonant solitons in two-
component BEC in quadratic potential with spatiotemporal-
dependent nonlinearities in Eq. (5). (a) and (b) describe the evolution
of condensate density |ψ (1)

1 |2 for order n = 0. (c) and (d) describe
the evolution of condensate density |ψ (2)

2 |2 for order m = 1. The
parameters here are c1 = c2 = 0, γ0 = 7/80, γ1 = 4, and ε = 1/2.

The initial data for Eq. (11) are ξ (0) = 1 and ξt (0) = 1.

D. Moving solitons

Finally, we consider the case of δ 
= 0, which will produce
more nonlinear matter waves. The time-dependent function
δ can be determined by Eq. (10) with Eq. (13). In this case,
the nonlinearities in Eq. (2) become more complicated, the
amplitude of the nonlinear matter wave seems more complex,
i.e.,

√
λe

1
2 δ2

, and the center of the solitons can move following
the time because of variable X =

√
π

2 erf(λx + δ). So for δ 
=
0, our localized nonlinear matter waves are localized moving
solitons. By choosing different parameters γ0, γ1, and ε one
can again derive moving breathing soliton solutions, moving
quasibreathing soliton solutions, and moving resonant soliton
solutions of the quasi-1D two-component BECs (2).

For brevity, we assume the ratio of the confining frequencies
γ of the harmonic potential is time independent to show the
dynamics of the moving breathing solitons. To do so, we still
choose γ0 = 7/80 and γ1 = ε = 0.

Figures 5(a) and 5(b) describe the evolution of the density
profiles for the wave function ψ

(1)
1 with orders n = 0,1,

respectively, and Figs. 5(c) and 5(d) describe the evolution
of the density profiles for the wave function ψ

(2)
1 with orders

m = 1,2, respectively. Figure 5(e) demonstrates the shapes
of the function

√
λ, the width ξ = 1/λ, and the amplitude√

λe
1
2 δ2

of the moving breathing solitons. It is found that the
localized nonlinear matter waves are space localized and time
periodically moving. The amplitude and width of the localized
nonlinear matter waves vary periodically with respect to time.
It is also observed that the amplitudes of the moving breathing
solitons are higher than the breathing solitons in Fig. 2.
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FIG. 5. (Color online) Dynamics of moving breathing solitons in
two-component BECs in a quadratic potential with spatiotemporal-
dependent nonlinearities in Eq. (5). (a) and (b) describe the evolution
of condensate density |ψ (1)

1 |2 for order n = 0 and 1, respectively.
(c) and (d) describe the examples of condensate density |ψ (2)

1 |2 for
order m = 1 and 2, respectively. (e) describes the width ξ (t) = 1/λ(t)

(upper line), amplitude
√

λ(t)e
δ2
2 (middle line), and function

√
λ(t)

(lower line). The parameters are the same as those in Fig. 2 except
for c1 = c2 = 1/2.

V. RESULTS OF NUMERICAL SIMULATIONS

In this section we study the coupled GP equations (2) nu-
merically. First, the dynamical stability of the exact localized
nonlinear wave solutions (15) in response to perturbation by
initial stochastic noise is done by direct numerical simulations.

Figures 6(a) and 6(b) show the numerical results for the
evolution of a breathing soliton solution (15) for j = 1 and
n = 0 with initial Gaussian noise. The other parameters are
g11 = 1, g22 = −3, g12 = 5, γ0 = 7/80, γ1 = ε = 0, and c1 =
c2 = 0, i.e., δ = 0. Figures 7(a) and 7(b) show the numerical
results for the evolution of a moving breathing soliton solution
(15) for j = 1 and n = 0 also with initial Gaussian noise. The
other parameters are the same as Fig. 6 but c1 = c2 = 1/2, i.e.,
δ 
= 0. Here the Gaussian noise is included by adding to the
first component a Gaussian-distributed random number with
mean 1/2 and unit variance, and the second component with

FIG. 6. (Color online) The evolution of a breathing soliton
solution (15) for j = 1 and n = 0 with an initial Gaussian noise
of level 5%. The other parameters are g11 = 1, g22 = −3, g12 = 5,
γ0 = 7/80, γ1 = ε = 0, and c1 = c2 = 0, i.e., δ = 0.

mean 2/3 and unit variance multiplied level 5%. It is observed
that the exact solution (15) for j = 1 and n = 0 is dynamically
stable for δ = 0, i.e., one order breathing soliton is stable, and
the exact solution (15) for j = 1 and n = 0 is dynamically
unstable for δ 
= 0, i.e., one order moving breathing soliton is
unstable.

We have tested the dynamical stability of the exact localized
nonlinear wave solutions (15) for other parameters by adding
certain initial stochastic noises with various intensities, such
as Gaussian distributed noise and uniform distribution noise.
Our numerical calculations show that only for order n = 0
(ground state) is the breathing soliton solution (15) with δ = 0
dynamically stable, while the moving soliton solution (15)
with δ 
= 0 is dynamically unstable for all n.

FIG. 7. (Color online) The evolution of a moving breathing
soliton solution (15) for j = 1 and n = 0 with an initial Gaussian
noise of level 5%. The other parameters are g11 = 1, g22 = −3,
g12 = 5, γ0 = 7/80, γ1 = ε = 0, and c1 = c2 = 1/2, i.e., δ = 0. It
is shown that the moving breathing solitons are unstable.
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FIG. 8. (Color online) Evolutions of stable vector bright solitons
in two-component BECs in quadratic potential with space-periodic
nonlinearities b11 = −5ρ, b12 = −2ρ, b22 = −4.5ρ, with ρ = 0.1 +
0.01 sin(x).

Second, we illustrate the effect of the general time- and
space-modulated nonlinearities on the nonlinear evolution of
the condensates. In Sec. III we have shown that the exact
localized nonlinear wave solutions (15) exists only for special
interaction parameters in Eq. (5). But for other cases of
interaction parameters bij , the coupled GP equations (2)
are nonintegrable. Thus we have to appeal to the numerical
simulation. Here, we still consider the quasi-one-dimensional
geometry characterized by the aspect ratio of the confining
frequencies γ = ωx/ω⊥ = 7/80.

In what follows, we investigate the effect of the interaction
parameters b11 = −5ρ, b12 = −2ρ, b22 = −4.5ρ with three
cases of special functions ρ. In the first case, we study the
situation in which the scattering lengths are space periodi-
cally modulated nonlinearities with ρ = 0.1 + 0.01 sin(x). As

FIG. 9. (Color online) Evolutions of stable breathing states in
two-component BECs in quadratic potential with time-periodic and
space-Gaussian nonlinearities b11 = −5ρ, b12 = −2ρ, b22 = −4.5ρ,
with ρ = 0.1 + 0.01 sin(t) exp (−x2).

FIG. 10. (Color online) Evolutions of stable vector bright solitons
in two-component BECs in quadratic potential with space weakly
linear nonlinearities b11 = −5ρ, b12 = −2ρ, b22 = −4.5ρ, with ρ =
0.1 + 0.001x.

shown in Figs. 8, we have performed numerical simulations
in the case of the so-called vector bright soliton solutions
with initial soliton amplitude A = 3 for the first component
and A = 1 for the second component. It is observed that the
space-periodic nonlinearities can support stable snake-shaped
vector bright solitons. In the second case, we demonstrate
the effect of time-periodic and space-Gaussian nonlinearities
with ρ = 0.1 + 0.01 sin(t) exp (−x2). It is shown that these
nonlinearities can support stable breathing states of the two-
component BECs, see Figs. 9. The third case demonstrates the
effect of space weakly linear-modulated nonlinearities with
ρ = 0.1 + 0.001x. As shown in Fig. 10, it is seen that these
nonlinearities can also support stable snake-shaped vector
bright solitons of the two-component BECs.

VI. CONCLUSIONS

In conclusion, we have constructed two families of exact
solutions of the two-component BECs with spatiotemporal in-
homogeneous nonlinearities in a harmonic potential. We show
that not only the attractive spatiotemporal inhomogeneous
interactions but the repulsive ones support novel localized
nonlinear matter waves in two-component BECs. Numerical
simulations are used to show the stability of our exact solutions
and dynamics of the two-component BECs with general time-
and space-modulated nonlinearities. We hope that this research
will stimulate further research on those topics and help us to
understand the behavior of nonlinear waves in systems with
spatially inhomogeneous nonlinearities.
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