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Variational methods with coupled Gaussian functions for Bose-Einstein condensates
with long-range interactions. I. General concept
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The variational method of coupled Gaussian functions is applied to Bose-Einstein condensates with long-range
interactions. The time dependence of the condensate is described by dynamical equations for the variational
parameters. We present the method and analytically derive the dynamical equations from the time-dependent
Gross-Pitaevskii equation. The stability of the solutions is investigated using methods of nonlinear dynamics. The
concept presented in this article will be applied to Bose-Einstein condensates with monopolar 1/r and dipolar
1/r3 interaction in the subsequent article [S. Rau et al., Phys. Rev. A 82, 023611 (2010)], where we will present
a wealth of phenomena obtained using the ansatz with coupled Gaussian functions.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
(BECs) with 52Cr atoms [1,2], with a strong dipole-dipole
interaction has given new impetus to theoretical investigations
of BEC with long-range interactions.

The theoretical description of BECs in the dilute limit in the
framework of the extended Gross-Pitaevskii equation (GPE) is
well known. The derivation of the extended GPE from a many-
particle Schrödinger equation is part of many textbooks on
quantum mechanics or BECs [3]. For a long-range interaction
of the form Wlr(r,r ′) ∝ |r − r ′|α , the time-dependent GPE can
be brought into particle-number-scaled dimensionless form
using appropriate units (for monopolar or dipolar condensates,
see [4,5]) and reads[

−� + γ 2
x x2 + γ 2

y y2 + γ 2
z z2 + 8πasc|ψ(r,t)|2

+
∫

d3r ′Wlr(r,r ′)|ψ(r ′,t)|2
]
ψ(r) = i

d

dt
ψ(r,t). (1)

The terms in Eq. (1) describe the short-range contact
interaction between two particles, the s-wave scattering,
Vsc = 8πasc|ψ(r)|2, a harmonic model for external magnetic
trapping of the condensate, Vt = γ 2

x x2 + γ 2
y y2 + γ 2

z z2, and
long-range interactions between two particles,

Vlr(r) =
∫

d3r ′Wlr(r,r ′)|ψ(r ′)|2.

The mean-field energy reads

Emf = 〈ψ | − � + Vt + (Vsc + Vlr)/2|ψ〉. (2)

So far, in most publications one of two methods for solving the
GPE is used. The ground state for the GPE with long-range
interaction in Eq. (1) is obtained by minimizing the energy
functional (2) using different approaches.

The first method consists of numerical lattice calculations
[6], either the minimization of the energy with conjugate
gradients or imaginary time evolution of an initial wave
function using the split-operator method and fast Fourier
transform. The numerical calculations are, on the one hand,
very accurate if they are carried out on sufficiently large grids.

On the other hand, however, they may turn out to be laborious
and may take a long computational time.

The second well-established method is to use a simple
variational ansatz. A common ansatz is to assume a Gaussian-
type wave function [7–11]. This technique makes it possible to
gain physical insight, as it often provides qualitatively correct,
although quantitatively inaccurate results. The extension and
improvement of variational techniques for BECs with long-
range interactions is the major challenge of this article.

We propose, as a third approach, an improved variational
ansatz with coupled Gaussian functions. The method was
originally proposed by Heller [12,13] to describe atomic and
molecular quantum dynamics. Using the ansatz

ψ(x,t) =
∑

n

exp{i[(x − xt,n)At,n(x − xt,n)

+ pt,n(x − xt,n) + γt,n]}, (3)

where the symmetric matrix At,n, the vector pt,n, and the scalar
γt,n describe the width, momentum, and weight of the Gaussian
wave packet, respectively, Heller approximated the dynamics
of quantum wave packets following classical trajectories. The
method was recently successfully applied to the dynamics of
atoms in external fields [14,15] using up to N = 100 coupled
functions.

We apply this method to BECs with long-range interactions
using an ansatz with N coupled Gaussian functions centered
at the origin, xt,n = 0, and with pt,n = 0, viz.,

ψ(r,t) =
N∑

k=1

[
eiγ k

∏
α

(
eiak

αx2
α

)]
, (4)

where α ∈ {x,y,z} for a BEC without symmetries, α ∈ {�,z}
for an axisymmetric, and α = r for a spherically symmetric
BEC.

The ansatz in Eq. (4) is rather general and is not only able to
describe condensates with spherical or axial symmetry, but also
nonsymmetric condensates in arbitrary trap geometries or even
anisotropic solitons [16,17]. The method is also well suited for
long-range interactions because by its very nature it requires
integrals over the entire wave function which show a similar
behavior as the integrals for local interactions. Note that, as
is typical for a Gaussian basis set, the individual Gaussian
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functions in Eq. (4) are not orthogonal among each other. In
this article we present the theoretical concept of the method
and derive the necessary equations for arbitrary long-range
interaction. For monopolar (1/r) or dipolar (1/r3) interaction,
selected results have already been presented in [18]. Results
elaborated in more detail are subject of the subsequent article
[19]. With the use of multiple Gaussians and thus an extended
set of variational parameters, we are not only able to describe
the stable ground state and the metastable stationary states,
but can also identify the types of bifurcations where branches
emerge or stability changes take place.

The article is organized as follows. In Sec. II we apply a
time-dependent variational principle to the GPE (1) and obtain
dynamical equations, which describe the time-dependence
of the variational parameters. In Sec. III we evaluate the
integrals that are needed to set up this nonlinear set of
dynamical equations. In Sec. IV we present different methods
for obtaining stationary solutions, and in Sec. V we investigate
the stability of those states. Conclusions are given in Sec. VI.

II. TIME-DEPENDENT VARIATIONAL PRINCIPLE

The first variational principle for optimizing a variational
wave function that comes to mind is minimizing the mean-
field energy functional. For few variational parameters the
analytical calculation is done easily, but it gets increasingly
difficult if more variational parameters are included in the wave
function. For a BEC with long-range interaction and more
than three parameters, it turns out to be almost impossible
to calculate all derivations analytically. Therefore, we will
introduce a different approach based on the Dirac-Frenkel-
McLachlan variational principle [20,21]. The application of
this variational principle yields a set of differential equations
for the parameters z of the trial wave function ψ(t) = ψ(z(t)),
where

z(t) = (z1(t),z2(t), . . . ,zM (t)) (5)

is the vector consisting of all M variational parameters. The
time dependence of a quantum system is described by the
respective Schrödinger equation or GPE

Hψ(t) = i
d

dt
ψ(t). (6)

The variational principle of McLachlan minimizes the dif-
ference between the left- and the right-hand side of the
respective Schrödinger equation (6) with respect to the trial
wave function,

I = ||iφ(t) − Hψ(t)||2 != min. (7)

For any t , ψ(t) is supposed to be fixed and given, and
the quantity I is minimized by varying φ. Afterward, φ is
set equal to φ = ψ̇ . The time dependence of the trial wave
function carries over to the time dependence of the variational
parameters, ψ(t) = ψ(z(t)). We consider variations of I in
Eq. (7) with respect to φ,

δI = 〈δφ | φ〉 + 〈φ | δφ〉 + i〈δφ | Hψ〉 − i〈Hψ | δφ〉
= 〈δφ | φ + iHψ〉 + 〈φ − iHψ | δφ〉, (8)

where the variation of the time derivative of the wave function
δφ carries over to variations of the parameters z,

|δφ〉 = |δψ̇(z,ż)〉 =
∣∣∣∣∂ψ̇

∂ z
δz
〉
+
∣∣∣∣∂ψ̇

∂ ż
δ ż
〉
. (9)

The first term vanishes, since we minimize I under the
condition that ψ(t) is fixed and therefore that all parameters z
are fixed as well, and we obtain

|δφ〉 =
∣∣∣∣ ∂

∂ ż

(
∂ψ

∂ z
ż
)

δ ż
〉

=
∣∣∣∣∂ψ

∂ z
δ ż
〉
. (10)

We insert Eq. (10) in Eq. (8), set φ = ψ̇ , and obtain as condition
for the vanishing variation of I

δI =
〈
∂ψ

∂ z
δ ż

∣∣∣∣ ψ̇ + iHψ

〉
+
〈
ψ̇ − iHψ

∣∣∣∣ ∂ψ

∂ z
δ ż
〉

= 0. (11)

The variational parameters z are complex quantities and
therefore the variations δżk and δż∗

k for k = 1, . . . ,M are
independent. Therefore, both brackets of Eq. (11) have to
vanish separately. This finally yields the equation〈

∂ψ

∂ z

∣∣∣∣ iψ̇ − Hψ

〉
= 0, (12)

which is easily transformed to an implicit dynamical set of
equations K ż = −ih for the variational parameters with

K =
〈
∂ψ

∂ z

∣∣∣∣ ∂ψ

∂ z

〉
, h =

〈
∂ψ

∂ z

∣∣∣∣Hψ

〉
.

Up to this point there has been no specification of the trial wave
function ψ or the Hamiltonian H . The variational principle
can be applied to both linear and nonlinear Hamiltonians.
In the following we apply the time-dependent variational
principle (TDVP) to a trial wave function given as coupled
Gaussian wave functions and derive dynamical equations for
the variational parameters of each Gaussian.

A. Dynamical equations for condensates without symmetries

We choose a superposition of N Gaussians as a trial wave
function,

ψ(r,t) =
N∑

k=1

gk =
N∑

k=1

ei(ak
xx2+ak

yy2+ak
z z2+γ k). (13)

The ak
α for α ∈ {x,y,z} denote complex Gaussian “width”

parameters in the three spatial directions and γ k the complex
amplitude and phase parameters. The system is described by
the extended GPE (1) with the Hamiltonian brought to the
scaled “natural” units for the respective long-range interaction,

Ĥ = −� + Veff(r), (14)

where Veff(r) = Vt (r) + Vsc(r) + Vlr(r) is the sum of the
trapping, scattering, and long-range potential. We use Eq. (12)
obtained from the TDVP for the complex variational parame-
ters,

z = (
γ 1, . . . ,γ N ,a1

x, . . . ,a
N
x ,a1

y, . . . ,a
N
y ,a1

z , . . . ,a
N
z

)
, (15)

and first calculate the time derivative ψ̇ of the coupled
Gaussian wave function. The derivation carries over to time
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derivatives of the Gaussian width and the amplitude and phase
parameters,

d

dt

N∑
k=1

gk =
N∑

k=1

i
(
x2ȧk

x + y2ȧk
y + z2ȧk

z + γ̇ k
)
gk. (16)

Second, we apply the Laplace operator of the Hamiltonian in
Eq. (14) in Cartesian coordinates,

−�ψ =
N∑

k=1

{−2i
[
ak

x + ak
y + ak

z

]
+ 4

[(
ak

x

)2
x2 + (

ak
y

)2
y2 + (

ak
z

)2
z2
]}

gk, (17)

and obtain the complete expression for the ket in Eq. (12),

iψ̇ − Hψ =
N∑

k=1

(−{x2ȧk
x + y2ȧk

y + z2ȧk
z + γ̇ k

}
− {

Veff(r) − 2i
[
ak

x + ak
y + ak

z

]
+ 4

[(
ak

x

)2
x2 + (

ak
y

)2
y2 + (

ak
z

)2
z2]})gk. (18)

The sorting of Eq. (18) according to powers of the coordinates
x,y,z results in a sum of products of a polynomial of second
order and the Gaussian gk ,

iψ̇ − Hψ

=
N∑

k=1

[
vk

0 + 1

2

(
V k

2,xx
2 + V k

2,yy
2 + V k

2,zz
2
)− Veff(r)

]
gk,

(19)

with the newly defined quantities

vk
0 = −γ̇ k + 2i

(
ak

x + ak
y + ak

z

)
, (20a)

1
2V k

2,α = −4
(
ak

α

)2 − ȧk
α; α ∈ {x,y,z}. (20b)

Now, we calculate the derivatives of ψ = ∑N
l=1 gl in Eq. (12)

with respect to the variational parameters z in Eq. (15) for each
l = 1, . . . ,N :

∂ψ

∂γ l
= igl,

∂ψ

∂al
α

= ix2
αgl ; α ∈ {x,y,z}. (21)

Finally, Eq. (12) results in the 4N -dimensional system of
equations〈
η2gl

∣∣∣∣∣
N∑

k=1

[
vk

0 + 1

2

(
V k

2,xx
2 + V k

2,yy
2 + V k

2,zz
2
)− Veff(r)

]
gk

〉

= 0, (22)

with l = 1, . . . ,N and η = 1,x,y,z, which can be sorted as

N∑
k=1

〈gl | gk〉vk
0 + 1

2

N∑
k=1

∑
α

〈gl|x2
α|gk〉V k

2,α =
N∑

k=1

〈gl|Veff|gk〉;

l = 1, . . . ,N ;
N∑

k=1

〈gl|x2
β |gk〉vk

0 + 1

2

N∑
k=1

∑
α

〈gl|x2
αx2

β |gk〉V k
2,α

=
N∑

k=1

〈gl|x2
βVeff|gk〉;

β ∈ {x,y,z}; l = 1, . . . ,N, (23)

where for a BEC without symmetries α,β ∈ {x,y,z}.
Equation (23) can be written in the form of a matrix equation,

Mv = r, (24)

with the Hermitian, positive definite 4N × 4N matrix M,

M =

⎛
⎜⎜⎜⎝

(1)lk (x2)lk (y2)lk (z2)lk
(x2)kl (x4)lk (x2y2)lk (x2z2)lk
(y2)kl (y2x2)kl (y4)lk (y2z2)lk
(z2)kl (z2x2)kl (z2y2)kl (z4)lk

⎞
⎟⎟⎟⎠ , (25)

where all terms are N × N matrices for k = 1, . . . ,N and
l = 1, . . . ,N . As an example, the term (x2)lk reads

(x2)lk =

⎛
⎜⎝

〈gl=1|x2|gk=1〉 · · · 〈gl=1|x2|gk=N 〉
...

...
〈gl=N |x2|gk=1〉 · · · 〈gl=N |x2|gk=N 〉

⎞
⎟⎠ . (26)

The terms denoted (y2)lk,(z2)lk,(x2y2)lk, . . . , are analogous
to the example and obtained by replacing the x2 with y2, z2,
x2y2, . . . , respectively. The vectors v and r in Eq. (24) are

v =

⎛
⎜⎜⎜⎜⎝

vk
0

1
2V k

2,x

1
2V k

2,y

1
2V k

2,z

⎞
⎟⎟⎟⎟⎠ , (27)

r =
N∑

k=1

⎛
⎜⎜⎜⎜⎝

〈gl|Veff|gk〉
〈gl|x2Veff|gk〉
〈gl|y2Veff|gk〉
〈gl|z2Veff|gk〉

⎞
⎟⎟⎟⎟⎠ , (28)

where each entry is a vector of length N for k = 1, . . . ,N and
l = 1, . . . ,N , respectively.

By solving the definitions of (vk
0,V

k
2) in Eq. (20) for the

time derivatives of the Gaussian parameters, we obtain 4N

dynamical equations for the Gaussian parameters z,

γ̇ k = 2i
(
ak

x + ak
y + ak

z

)− vk
0, (29a)

ȧk
α = −4

(
ak

α

)2 − 1
2V k

2,α; α ∈ {x,y,z}; k = 1, . . . ,N,

(29b)

keeping in mind that the quantities (vk
0,V

k
2) =

(vk
0,V

k
2,x ,V

k
2,y ,V

k
2,z) constitute the solution vector to the

linear set of Eq. (24). These linear equations contain basic
Gaussian integrals in the matrix (25) on the left-hand
side, as well as integrals with the interaction terms of
the Hamiltonian in the vector (28) on the right-hand side.
The necessary integrals will be calculated analytically in
Sec. III for condensates with rather general long-range
interactions.

B. Dynamical equations for condensates with axial
or spherical symmetry

If the GPE describes a system that is constrained by, for
example, axial or spherical symmetry, the results obtained in
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Sec. II A may be adapted to the case at hand. Therefore, we
introduce respective coordinates (�,φ,z) for axial symmetry
and (r,θ,φ) for spherical symmetry and choose suitable trial
wave functions,

ψ(r,t) =
N∑

k=1

[
eiγ k

∏
α

(
eiak

αx2
α

)]
, (30)

where for axially symmetric BEC we have α ∈ {�,z}, and
for spherically symmetric, for example, monopolar BEC we
have α = r . These trial wave functions reduce the number of
complex parameters to 3N (ak

�,a
k
z ,γ

k) and 2N (ak
r ,γ

k) (k =
1, . . . ,N ), respectively, where N is the number of Gaussians.

The procedure is the same as in Sec. II A: First, we
calculate the time derivative ψ̇(t), which can be obtained
by Eq. (16) by simply setting ak

x = ak
y = ak

� and ak
x = ak

y =
ak

z = ak
r , accordingly. Second, the Laplace operator is applied

to the coupled Gaussian wave function, and, finally, with the
respective definitions of the vectors (vk

0,1/2V k
2,�,1/2V k

2,z)T and
(vk

0,1/2V k
2,r )T, the dynamical equations can be written as

γ̇ k = 2i
(
2ak

� + ak
z

)− vk
0,

(31)
ȧk

α = −4
(
ak

α

)2 − 1
2V k

2,α; k = 1, . . . ,N ; α ∈ {�,z}
for a BEC with axial symmetry (D = 2) and

γ̇ k = 6iak
r − vk

0,
(32)

ȧk
r = −4

(
ak

r

)2 − 1
2V k

2,r ; k = 1, . . . , N

for a BEC with spherical symmetry (D = 1). The quantities
(vk

0,1/2V k
2,�,1/2V k

2,z)T and (vk
0,1/2V k

2,r )T have to be calculated
from an adapted set of linear equations analogous to Eq. (23),
but for a BEC with axial symmetry, D = 2, with

α,β ∈ {�,z}, (33)

and for a BEC with spherical symmetry, D = 1, with

α,β = r. (34)

As in Eq. (24), we can rewrite both respective linear sets of
equations in the form of a matrix equation,

Mv = r, (35)

with the Hermitian, positive definite (D + 1)N × (D + 1)N
matrix M analog to Eq. (25), but with a reduced number
of blocks, {(�2)kl,(z2)kl, . . .} or {(r2)kl, . . .}, and the (D + 1)
N -dimensional respective vectors v and r for D = 2 and
D = 1.

We have applied the TDVP of Dirac Frenkel and McLachlan
to the extended GPE and a trial wave function with coupled
Gaussian functions. With the resulting dynamical Eqs. (29),
(31), and (32) in respective symmetries we can calculate the
time dependence of the wave function ψ by calculating the
time dependence of the variational parameters. To set up Eqs.
(29), (31), and (32), we have to solve the set of linear equations
for the quantities (vk

0,V
k

2,α), k = 1, . . . ,N ; α = x,y,z (α = �,z

and α = r , respectively) in Eq. (23). All integrals of the matrix
and the right-hand side are calculated analytically.

III. CALCULATION OF THE INTEGRALS

For clarity we sort all integrals as they appear in this matrix
equation: the integrals for the matrix (25) in Sec. III A and
the integrals of the right-hand side (28) in Sec. III B. Then we
calculate the mean-field energy and the chemical potential for
a BEC with long-range interaction in Sec. III C.

A. Computation of the matrix M

The integrals of the matrix M in Eq. (25) are all of the form
〈gl | gk〉, 〈gl|x2

α|gk〉, and 〈gl|x2
αx2

β |gk〉, with xα,xβ ∈ {x,y,z},
and each Gaussian function gk defined in Eq. (13). All integrals
are easily calculated from the simplest integral 〈gl | gk〉 with
the use of the relation

〈gl|x2λ
α x2ν

β V |gk〉 = (−i)λ+ν ∂λ

∂
(
ak

α

)λ ∂ν

∂
(
ak

β

)ν 〈gl|V |gk〉, (36)

with λ,ν = 0,1,2, . . . , and V an arbitrary potential.
To facilitate reading and to shorten the extensive terms

in integrals or integral solutions, we introduce the following
abbreviations:

akl
α = ak

α − (
al

α

)∗
, (37a)

aij
α = ai

α − (
aj

α

)∗
, (37b)

aklij
α = akl

α + aij
α , α ∈ {x,y,z}, (37c)

γ kl = γ k − (γ l)∗, (37d)

γ ij = γ i − (γ j )∗, (37e)

γ klij = γ kl + γ ij . (37f)

We start with

〈gl | gk〉 = eiγ kl

∫ ∞

−∞
eiakl

x x2
dx

∫ ∞

−∞
eiakl

y y2
dy

∫ ∞

−∞
eiakl

z z2
dz

= π3/2eiγ kl

√−iakl
x

√
−iakl

y

√−iakl
z

, (38)

where, as can be seen easily from the definition of the Gaussian
trial wave function (4), the imaginary parts of the widths
are to remain positive. Therefore, the imaginary parts of the
occurring combinations also fulfill Im[ak − al∗] > 0.

The application of the relation (36) to the norm integral (38)
provides with λ = 1, ν = 0 the integrals

〈gl|x2|gk〉 = π3/2eiγ kl

2
(−iakl

x

)3/2
√

−iakl
y

√−iakl
z

, (39a)

〈gl|y2|gk〉 = π3/2eiγ kl

2
√−iakl

x

(−iakl
y

)3/2√−iakl
z

, (39b)

〈gl|z2|gk〉 = π3/2eiγ kl

2
√−iakl

x

√
−iakl

y

(−iakl
z

)3/2
, (39c)

and with λ + ν = 2 the integrals

〈gl|x4|gk〉 = 3π3/2eiγ kl

4
(−iakl

x

)5/2
√

−iakl
y

√−iakl
z

, (40a)
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〈gl|y4|gk〉 = 3π3/2eiγ kl

4
√−iakl

x

(−iakl
y

)5/2√−iakl
z

, (40b)

〈gl|z4|gk〉 = 3π3/2eiγ kl

4
√−iakl

x

√
−iakl

y

(−iakl
z

)5/2
, (40c)

and

〈gl|x2y2|gk〉 = π3/2eiγ kl

4
(−iakl

x

)3/2(−iakl
y

)3/2√−iakl
z

, (41a)

〈gl|x2z2|gk〉 = π3/2eiγ kl

4
(−iakl

x

)3/2
√

−iakl
y

(−iakl
z

)3/2
, (41b)

〈gl|y2z2|gk〉 = π3/2eiγ kl

4
√−iakl

x

(−iakl
y

)3/2(−iakl
z

)3/2 . (41c)

Since the matrix is now complete, we turn to the more
challenging integrals needed for the right-hand side of Eq. (24),
that is, the vector r defined in Eq. (28).

B. Computation of the vector r

The right-hand side of Eq. (24) contains the trapping term,
Vt , the scattering term, Vsc, and the more complicated long-
range interaction term, Vlr. In the following equations, the gk

defined in Eq. (13) represents the individual Gaussians of the
trial wave function.

1. Trapping

We start with the term of the trapping potential,

〈gl|Vt |gk〉 = 〈gl|γ 2
x x2 + γ 2

y y2 + γ 2
z z2|gk〉

= π3/2eiγ kl (
γ 2

x akl
y akl

z + γ 2
y akl

x akl
z + γ 2

z akl
x akl

y

)
2
(− iakl

x

)3/2(− iakl
y

)3/2(− iakl
z

)3/2 .

(42)

For the right-hand side of Eq. (24) we also need the terms

〈gl|x2
αVt |gk〉,

with xα ∈ {x,y,z}. They are directly obtained with the help of
Eqs. (40) and (41).

2. Scattering

The second interaction term of Veff on the right-hand side
of Eq. (24) contains the nonlinear contact interaction Vsc =
8πasc|ψ(r)|2 of the s-wave scattering. Following the same
procedure as earlier, we start by calculating 〈gl|Vsc|gk〉, before
obtaining the terms 〈gl|x2

αVsc|gk〉 with xα ∈ {x,y,z} using the
relation (36),

〈gl|Vsc|gk〉 = 〈gl|8πasc|ψ |2|gk〉

=
N∑

i,j=1

∫
d3r (8πasc.g

l(r)∗gj (r)∗gk(r)gi(r))

= 8ascπ
5/2

N∑
i,j=1

eiγ klij√
−ia

klij
x

√
−ia

klij
y

√
−ia

klij
z

,

(43)

as long as Im a
klij
α > 0 for α ∈ {x,y,z}, which is true [see

Eq. (37) and note that Im[ak
α] > 0 for all width parameters].

Again we use relation (36) and get the three remaining
integrals:

〈gl|x2Vsc|gk〉 = 4ascπ
5/2

N∑
i,j=1

eiγ klij

(−ia
klij
x

)3/2
√

−ia
klij
y

√
−ia

klij
z

,

(44a)

〈gl|y2Vsc|gk〉 = 4ascπ
5/2

N∑
i,j=1

eiγ klij√
−ia

klij
x

(−ia
klij
y

)3/2
√

−ia
klij
z

,

(44b)

〈gl|z2Vsc|gk〉 = 4ascπ
5/2

N∑
i,j=1

eiγ klij√
−ia

klij
x

√
−ia

klij
y

(−ia
klij
z

)3/2
.

(44c)

3. Long-range interaction

The most challenging calculation surely is that
of the long-range interaction term Vlr = ∫

d3r ′Wlr

(r − r ′)|ψ(r ′)|2 [see Eq. (1)],

〈gl|Vlr|gk〉 =
N∑

i,j=1

∫
d3r

∫
d3r ′Wlr(r − r ′)gj∗(r ′)

× gi(r ′)gl∗(r)gk(r). (45)

Introducing relative (rel) and “center-of mass” (c.m.) coordi-
nates via (

r
r ′

)
= 1

2

(
1 1

−1 1

)(
r rel

rc.m.

)
, (46)

and keeping the Jacobian determinant (1/8) in mind, Eq. (45)
is transformed to

〈gl|Vlr|gk〉 =
N∑

i,j=1

eiγ klij

8

∫
d3r rel

∫
d3rc.m.Wlr(r rel)

× exp

{
i

4

(
akl

x (xc.m. + xrel)
2 + akl

y (yc.m. + yrel)
2

+ akl
z (zc.m. + zrel)

2 + aij
x (xc.m. − xrel)

2

+ aij
y (yc.m. − yrel)

2 + aij
z (zc.m. − zrel)

2
)}

,

(47)

with the abbreviations (37). We use the integral∫ ∞

−∞
ei[a(x+u)2+b(x−u)2]dx =

√
π√−i(a + b)

ei 4abu2

a+b , (48)

which, for Im[a + b] > 0, is easily transformed into a standard
Gaussian integral after completing the square in the exponent,
and solve the center-of-mass integral in Eq. (47)

〈gl|Vlr|gk〉 =
N∑

i,j=1

π3/2 eiγ klij√
ia

klij
x a

klij
y a

klij
z

I
klij

rel , (49)
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with

I
klij

rel =
∫

d3r rel

[
Wlr(r rel) exp

{
i

(
a

ij
x akl

x

a
klij
x

x2
rel + a

ij
y akl

y

a
klij
y

y2
rel

+ a
ij
z akl

z

a
klij
z

z2
rel

)}]
. (50)

The relative integral I
klij

rel depends on the specific form of
the two-particle interatomic interaction Wlr(r rel). The integral
obtained with the coupled Gaussian method is formally the
same as for the calculation with a single Gaussian trial wave
function, except for the complex coefficients in the exponent,
a

ij
α akl

α /a
klij
α for α ∈ {x,y,z}. Therefore, the method of coupled

Gaussian functions is applicable to all two-particle long-range
interactions which can be solved with the simple single
Gaussian wave function.

As an example, we present the results for the relative
integral for dipolar interaction

Wlr(r rel) = Wd (r rel) =
1 − 3 z2

rel
|r rel|2

|r rel|3 , (51)

where Irel can be expressed in terms of elliptic integrals
[16,17],

Irel = 4π

3

[
κxκyRD

(
κ2

x ,κ2
y ,1

)− 1
]
. (52)

κx,κy are complex combinations of the Gaussian widths,

κx =
√√√√a

klij
x a

ij
z akl

z

a
ij
x akl

x a
klij
z

, κy =
√√√√a

klij
y a

ij
z akl

z

a
ij
y akl

y a
klij
z

,

and RD is the elliptic integral of the second kind in Carlson
form [22,23],

RD(x,y,z) = 3

2

∫ ∞

0

dt√
(x + t) (y + t) (z + t)3

.

Numerically it is convenient to use Carlson’s formulation
for elliptic integrals because there are very fast converging
algorithms available [22,23] even for complex arguments
x,y,z ∈ C.

The three additional integrals 〈gl |x2
αVlr|gk〉 for xα ∈ {x,y,z}

needed to complete Eq. (24) are obtained using deriva-
tives of 〈gl|Vlr|gk〉 with respect to the Gaussian widths ak

α

[see Eq. (36)],

〈gl|x2
αVlr|gk〉 = −i

∂

∂ak
α

〈gl|Vlr|gk〉.

C. Energy functional and chemical potential

We calculate the mean-field energy and the chemical
potential,

Emf =
N∑

k,l=1

〈gl| − � + Vt + 1
2 (Vsc + Vlr)|gk〉, (53a)

µ =
N∑

k,l=1

〈gl| − � + Vt + Vsc + Vlr|gk〉. (53b)

The terms for trapping, scattering, and the long-range interac-
tion are evaluated in Sec. III B. We now calculate the kinetic
term and apply the Laplace operator to the coupled Gaussian
wave function,

〈gl|�|gk〉 = −2π3/2eiγ kl(
iakl

x akl
y akl

z

)1/2

∑
α=x,y,z

{ (
ak

α

)2

−iakl
α

− iak
α

}
. (54)

Now, all integrals that are needed for the linear equations for
the quantities (vk

0,V
k

2,α), k = 1, . . . ,N ; α = x,y,z in Eq. (23),
as well as all integrals for the mean-field energy and the
chemical potential have been calculated. We are able to set
up the dynamical equations for the Gaussian parameters.
These dynamical equations can be solved using three dif-
ferent methods, either by minimization of the mean-field
energy, by the search for fixed points of the dynamical
equations, or by imaginary time evolution of an initial wave
function.

IV. COMPUTATION OF THE GROUND STATE
AND EXCITED STATES

There are three different methods available for calculating
variational solutions. The solutions obtained via minimization
of the mean-field energy or via evolution of an initial wave
function in imaginary time, are limited to the stable ground
state. The method of a highly nonlinear root search of the
dynamical Eqs. (29) yields all stationary states of the GPE, the
ground state, and collectively excited states.

The sensitivity of the methods on the initial values greatly
differs. While the minimization and the imaginary time evolu-
tion are relatively robust, the root search requires sufficiently
accurate parameters, especially for an increasing number of
variational parameters. For more coupled Gaussian functions,
however, the minimization of the mean-field energy and the
imaginary time evolution get increasingly time consuming.
Results should therefore be obtained with the nonlinear root
search, the other two routines should only be used to calculate
appropriate initial values.

A. Minimization of the mean-field energy

One method of obtaining the ground state of the GPE
is to minimize the mean-field energy functional in Eq. (2).
For multiple coupled Gaussians, the analytical calculation
of all derivatives with respect to the variational parameters,
for example, for calculating the gradient, is not possible.
Therefore, we use a numerical minimization routine that uses
the energy function values only. For an increased number of
Gaussian parameters, the accuracy of this method is limited,
but the results may be used as initial values for a root search of
the dynamical equations, which provides much more reliable
and accurate results.

B. Root search for fixed points of the dynamical equations

The full three-dimensional calculation for condensates
with long-range interaction includes 4N complex variational
parameters of the wave function. We search for these solutions
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of the nonlinear dynamical Eqs. (29), (31), and (32) where
the dynamic is trivial, that is, the stationary states. The
phase of all Gaussians is defined by the chemical potential
[see Eq. (55)].

We use a wave function with N complex amplitude and
phase parameters γ k, . . . ,γ N . Since the wave function has to
be normalized, we have to ensure 〈ψ |ψ〉 = 1. In summary, we
have to find roots of the following system of equations:

ȧk
x = −4

(
ak

x

)2 − 1
2V k

2,x

!= 0,

ȧk
y = −4

(
ak

y

)2 − 1
2V k

2,y

!= 0,

ȧk
z = −4

(
ak

z

)2 − 1
2V k

2,z

!= 0, (55)

γ̇ k = 2i
(
ak

x + ak
y + ak

z

)− vk
0

!= −µ,

〈ψ | ψ〉 − 1
!= 0,

for k = 1, . . . ,N . The quantities v0 and V2,x,y,z constitute
the solution vector to the set of Eqs. (23). The right-hand
side (28) of this set of equations contains the integrals of
contact, trap, and long-range interaction. The calculation
of the dipolar interaction yields elliptic integrals which
are evaluated with the help of fast converging algorithms
[22,23].

The root search itself is highly nonlinear and may be
performed with an algorithm based on the Powell hybrid
method [24]. The success and the speed of any numerical
root search greatly depends on the number of variational
parameters. Therefore, we reduce the number of parameters
prior to this routine as much as possible. Since the ground state
of, for example, dipolar condensates in an axially symmetric
trap is axially symmetric, ak

x = ak
y ≡ ak

�, it is possible to reduce
the first 3N equations in Eqs. (55) to 2N equations. For
condensates with 1/r interaction, the wave function as well
as the stationary states are spherically symmetric. Therefore,
we are able to further reduce the number of width parameters
using ak

x = ak
y = ak

z ≡ ak
r .

C. Imaginary time evolution

The third method for finding solutions of the GPE is the
imaginary time evolution of an initial wave function. Although
the calculation for a distinct scattering length may take a long
time, the routine is rather insensitive to the choice of the
initial parameter values, even for a large number of variational
parameters. Therefore, the imaginary time evolution is very
useful in the context of the calculation of very accurate input
values for the root search.

We substitute t → τ = it in the GPE and calculate the
(imaginary) time evolution of the dynamical equations. For
the linear Schrödinger equation this leads to a damping of
all states with a factor according to their respective energy
eigenvalues exp(−Enτ ). Sufficiently long integration with
respect to the imaginary time coordinate and renormalizing
yields the ground state of the Hamiltonian. The method can
also be applied to the nonlinear GPE.

In a next step, we linearize the dynamical equations in the
vicinity of the fixed points in order to analyze the stability and

possible bifurcations. We can also calculate fluctuations δψ of
the stationary wave function.

V. STABILITY PROPERTIES OF THE VARIATIONAL
FIXED POINTS

The standard method for analyzing the stability of solutions
of the GPE is to perturb the wave function of the solution and
linearize the GPE, which leads to the Bogoliubov–de Gennes
equations [3]. In this section, we make a different approach and
apply methods of nonlinear dynamics to analyze the stability
of the condensates.

The application of the TDVP to a wave function consisting
of coupled Gaussian functions in Sec. II led to a set of dynam-
ical equations. In Sec. IV we described methods for searching
for stationary solutions of the Eqs. (55). Minimization of the
mean-field energy, imaginary time evolution, or root search
yield variational parameters zFP for stationary solutions of the
GPE, so-called “fixed points” (FPs). In the case of N coupled
Gaussian functions these parameters are 3N complex widths,
N for each ak

x,a
k
x,a

k
z and N complex amplitude and phase

parameters γ k:

zFP = (
γ k,ak

x,a
k
y,a

k
z

)FP
; k = 1, . . . ,N. (56)

In the case of an axially or spherically symmetric BEC,
the procedure that follows is the same, but with re-
duced sets of subscripts, (�,z) or even (r) for the width
parameters.

We will investigate the stability of these stationary solutions
with the help of a perturbation of the parameters at the fixed
point. If the parameter set for the stationary solution is indeed
the minimum of the mean-field energy, we expect the solution
to be stable. In this case small changes of the variational
parameters will only result in a quasiperiodic oscillation
confined to the vicinity of the original fixed point. By contrast,
as we will see, if the stationary fixed point is a hyperbolic
fixed point, small perturbations will lead to an exponential
growth of the solution. For the following calculation of the
stability matrix, it is irrelevant which method was used to
obtain the parameters of the stationary solution in the first
place.

To observe the time dependence of the perturbations, we
use the dynamical equations for the Gaussian parameters (29).
The fixed point obviously fulfills Eqs. (55),

γ̇ k(zFP) = −µ,
(57)

ȧk
α(zFP) = 0,

for α = x,y,z; k = 1, . . . ,N . For small deviations from the
fixed point, we first split the preceding equations into real (Re)
and imaginary (Im) parts (indicated with the tilde z → z̃) in
order to linearize them,

δ ˙̃z = Jδ z̃. (58)

δ z̃ denotes the deviation of the variational parameters from
those at the fixed point, z̃ = z̃FP + δ z̃, and J denotes the
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8N × 8N -dimensional real valued Jacobian matrix at the fixed
point

J = ∂
(
γ k,Re,γ k,Im,ak,Re

α ,ak,Im
α

)
∂
(
γ l,Re,γ l,Im,a

l,Re
β ,a

l,Im
β

) , (59)

with α,β = x,y,z and k,l = 1, . . . ,N . The eigenvalues of J
determine the characteristic stability of the fixed point in whose
surroundings the linearization takes place. In the coordinates
given by the eigenvectors of J , all differential equations take
the form

δ ˙̃zi = λiδ z̃i ; i = 1, . . . ,8N, (60)

which have the simple solution

δ z̃i(t) = δ z̃0
i e

λi t . (61)

The eigenvalues occur in pairs; that is, if λi is an eigenvalue,
−λi is also an eigenvalue of J . Since the Jacobian matrix is
not symmetric, the eigenvalues λi are real or complex, and
there are two possibilities. If all eigenvalues λi are purely
imaginary, the time evolution of the perturbation remains
confined, since the solution (61) is oscillating. In contrast,
if at least one of the real parts of the eigenvalues (Re λi) is
nonzero, any perturbation in the direction of the corresponding
eigenvector will grow exponentially.

Using this method we observe the behavior under small
perturbations. We are able to investigate the stability of any
fixed point that we obtain, for example, from a root search of
the dynamical equations.

For unstable fixed points the methods of nonlinear dynamics
also allow us to gain insight in the collapse mechanism by
analyzing variations of the wave function characterized by the
respective eigenvectors

δ z̃i = (
δγ

k,Re
i ,δγ

k,Im
i ,δa

k,Re
α,i ,δa

k,Im
α,i

)T
, (62)

with k = 1, . . . ,N ; α ∈ {x,y,z}. If this eigenvector δ z̃i is
axially symmetric, that is, δak

x,i = δak
y,i for all k, the per-

turbation of the condensate is symmetric. If, however, the
eigenvector breaks the axial symmetry, that is, δak

x,i = −δak
y,i

for all k, the perturbation leads to an asymmetric oscillation
or collapse of the condensate, depending on whether the
respective eigenvalue is purely real or imaginary.

With the variations of the variational parameters of the
eigenvector we calculate the expansion of the wave function at

the fixed point and get the solution for the linearized variation
of the wave function

δψi(r,t) =
N∑

k=1

(∑
α

[
ix2

αδa
k,Re
α,i − x2

αδa
k,Im
α,i

]

+ iδγ
k,Re
i − δγ

k,Im
i

)
gk|FP(r)eλi t , (63)

with α ∈ {x,y,z}. The respective eigenvalue is denoted λi and
gk|FP is the unperturbed Gaussian k at the fixed point.

Is the approach based on the stability eigenvalues of the
Jacobian fully equivalent to solutions of the Bogoliubov–de
Gennes equations [3]? Probably not. Although the ansatz in
Eq. (4) is quite general and not restricted to spherical or
axial symmetric condensates, it allows for the description
of the subset of excitations which are consistent with the
ansatz (4). To obtain all solutions of the Bogoliubov–de
Gennes equations with a variational approach, the ansatz must
be further generalized. This will be the objective of future
work.

VI. CONCLUSION

We used an ansatz with several coupled Gaussian functions
to obtain an improved variational description of the dynamics
of BECs. We applied a TDVP to the GPE and obtained
dynamical equations for the variational parameters with the
improved variational method of coupled Gaussian functions.
We discussed methods for solving these equations and an-
alyzing the stability using methods of nonlinear dynamics.
When can we expect the proposed variational methods to be
better than a grid method? This is hard to say in general. The
variational ansatz with a finite number of Gaussians is still an
approximation. However, grid calculations are only “exact” in
the limit of a small step size and thus an infinitely large grid.

For a GPE with long-range monopolar (1/r) and dipolar
(1/r3) interaction, the improved variational results, the con-
vergence, and comparisons with numerical calculations will
be subject of the subsequent article [19]. It will be shown that
a low number of Gaussians is sufficient to obtain converged
results, and thus the number of parameters in the variational
computations is significantly smaller compared to calculations
on grids, and that a wealth of new phenomena is obtained by
using the ansatz with coupled Gaussian functions.
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E. Maréchal, L. Vernac, J.-C. Keller, and O. Gorceix, Phys.
Rev. A 77, 061601(R) (2008).

[3] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Oxford Science Publications, Oxford, UK, 2008).

[4] I. Papadopoulos, P. Wagner, G. Wunner, and J. Main, Phys. Rev.
A 76, 053604 (2007).
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