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Grid-based methods for diatomic quantum scattering problems. III. Double photoionization
of molecular hydrogen in prolate spheroidal coordinates
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Our previously developed finite-element discrete-variable representation in prolate spheroidal coordinates is
extended to two-electron systems with a study of double ionization of H2 with fixed nuclei. Particular attention
is paid to the development of fast and accurate methods for treating the electron-electron interaction. The
use of exterior complex scaling in the implementation offers a simple way of enforcing Coulomb boundary
conditions for the electronic double continuum. While the angular distributions calculated in this study are
found to be completely consistent with our earlier treatments that employed single-center expansions in spherical
coordinates, we find that the magnitude of the integrated cross sections are sensitive to small changes in the
initial-state wave function. The present formulation offers significant advantages with respect to convergence
and efficiency and opens the way to calculations on more complicated diatomic targets.
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I. INTRODUCTION

The implementation of advanced nonperturbative meth-
ods for solving either the time-independent [1–3] or time-
dependent [4–6] Schrödinger equation has made it possible
to obtain essentially exact wave functions on a numerical
grid for atoms with two active electrons. These methods
have been particularly successful for studying the response
of simple atoms when exposed to intense, ultrashort xuv laser
pulses [7,8]. While there have been some efforts to extend such
studies to simple diatomic molecules in recent years [9–11],
the nonspherical nature of the interaction potentials necessarily
complicates the implementation. Indeed, fully differential
double ionization cross sections on molecules other than H2

have yet to appear.
In molecular applications, some consideration should be

given to the underlying representation that is used: For
diatomic targets, prolate spheroidal coordinates are a natural
choice, as we have shown in two earlier papers [12,13]
(referred to hereafter as I and II, respectively) where we
developed a finite-element discrete-variable representation
(FEM + DVR) in those coordinates and presented results for
the single-electron case of H2

+. Our purpose here is to extend
the FEM + DVR treatment in prolate spheroidal coordinates
to the case of molecular hydrogen. As in our earlier studies
of H2 double ionization based on single-center expansions
in spherical coordinates [9,14,15] we use exterior complex
scaling (ECS) [1] to simplify the imposition of outgoing-wave
Coulomb boundary conditions. In this connection, we must
mention the recent work of Serov and Joulakian [16], who
have also studied H2 double ionization in prolate spheroidal
coordinates using an ECS method. Their prolate spheroidal
exterior complex scaling (PSECS) approach differs from ours
by using a B-spline, rather than a FEM + DVR, basis to
expand the wave function, as well as a different prescription
for computing the one-electron (H2

+) testing functions that

*Present address: Department of Chemistry, University of Southern
California, Los Angeles, CA 90089.

are needed to construct the double ionization amplitudes.
The numerical results we obtain are somewhat different
from theirs, as are the conclusions about convergence of the
methods.

We will show that the use of FEM + DVR gives simple
formulas for constructing matrix elements of the electronic
repulsion potential, 1/|r1 − r2|, which are diagonal in the
indices corresponding to the FEM + DVR mesh points. These
properties, combined with the more rapid convergence of
the wave function in prolate spheroidal coordinates than
in spherical coordinates, give a very efficient method for
treating the electronic double continuum with diatomic
targets.

The outline of this paper is as follows. The theoretical
treatment is outlined in Sec. II. Section III details the basis
set and grid parameters used in the numerical calculations and
Sec. IV presents results and comparisons with earlier work.
We conclude with a brief discussion.

II. THEORY

A. FEM + DVR for H2 in prolate spheroidal coordinates

Procedures for constructing a grid-based set of functions
using finite elements and the DVR in prolate spheroidal
coordinates, along with explicit formulas for matrix elements
of all required one-body operators, have been given in I, so only
a brief summary will be given here. The electronic Hamiltonian
for H2 with fixed internuclear vector R is given as

H (r1,r2) = −1

2
∇2

1 − 1

2
∇2

2 − 1∣∣r1 − R
2

∣∣ − 1∣∣r1 + R
2

∣∣
− 1∣∣r2 − R

2

∣∣ − 1∣∣r2 + R
2

∣∣ + 1

|r1 − r2| (1)

(where atomic units are used throughout). Prolate spheroidal
coordinates (ξ,η,φ) are defined in the usual way by rotating a
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two-dimensional elliptical coordinate system (ξ,η) about the
focal axis of the ellipse:

ξ =
∣∣r − R

2

∣∣ + ∣∣r + R
2

∣∣
R

(1 � ξ � ∞),
(2)

η =
∣∣r − R

2

∣∣ − ∣∣r + R
2

∣∣
R

(−1 � η � 1),

where φ(0 � φ � 2π ) is the azimuthal angle. The Laplacian
in these coordinates is

∇2 = 4

R2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η
(3)

+
(

1

(ξ 2 − 1)
+ 1

(1 − η2)

)
∂2

∂φ2

]
, (4)

and the volume element is

dV = (R/2)6
(
ξ 2

1 − η2
1

)(
ξ 2

2 − η2
2

)
dξ1dξ2dη1dη2dφ1dφ2,

(5)
while the electron-nuclear attraction is

− 1∣∣r − R
2

∣∣ − 1∣∣r + R
2

∣∣ = − 4ξ

R(ξ 2 − η2)
. (6)

The amplitude for double ionization is obtained by solving
a driven equation for the first-order wave function obtained
when the radiation field is treated perturbatively:

(E0 + ω − H )�+
sc = ε · µ�0, (7)

where �0 is the wave function for the initial state of H2 with
energy E0, ω is the photon energy, ε is the polarization unit
vector, and µ is the electronic dipole operator. To solve this
equation, we expand the first-order wave function (scattered
wave) �+

sc (and �0) in a product basis of functions of the
electronic coordinates of each electron. For the “angular”
variables, we use ordinary spherical harmonics Ym

l (η,φ) in
the variables cos−1(η) and φ, while the “radial variables” ξ1

and ξ2 are discretized using FEM + DVR:

�+
sc =

∑
i,j,l1,l2,m

Cijl1l2m�il1m(r1)�jl2M−m(r2), (8)

where

�ilm(r) ≡ χim(ξ )Ym
l (η,φ), (9)

where χim is a DVR basis function and where we have used the
fact that the component of total electronic angular momentum,
M , along the internuclear axis is a good quantum number.

As outlined in I, specification of the elementary DVR
functions [17] depends on whether m is even or odd. For even
m, we chose

χim(ξ ) = 1√
wi

N∏
j �=i

ξ − ξj

ξi − ξj

, (10)

where (ξj ,wj ) are the points and weights associated with
an N -point Gauss quadrature. In the FEM + DVR scheme,
the ξ grid, which runs from 1 to some specified maximum
value ξmax, is divided into subintervals. In the first interval,
we use Gauss-Radau quadrature, which excludes the point
ξ = 1 as a quadrature point; Gauss-Lobatto quadrature, which
includes the endpoints as quadrature points, is used in the other
intervals, which ensures continuity across element boundaries.

For odd m the DVR functions are modified to account for
the nonanalytic behavior of the wave function at ξ = 1 [18,19]:

χim(ξ ) = (ξ 2 − 1)1/2√
wi

(
ξ 2
i − 1

)
N∏

j �=i

ξ − ξj

ξi − ξj

. (11)

The DVR functions so defined have the property of discrete
orthonormality at the quadrature points,

χim(ξj ) = δij /
√

wi, (12)

and provide a diagonal representation of any local operator
when the matrix elements are evaluated using the underlying
Gauss quadrature rule,∫

χim(ξ )f (ξ )χjm(ξ )dξ

≈
∑

k

χim(ξk)f (ξk)χjm(ξk)wk = δijf (ξi). (13)

However, as noted in I and II, the product basis defined in
Eq. (31) is not orthogonal in l1 and l2 because of the volume
element:〈

�il1m1�jl2m2

∣∣�i ′l′1m
′
1
�j ′l′2m

′
2

〉
= (R/2)6δii ′δjj ′δm1m

′
1
δm2m

′
2
Sm1l1l

′
1
(ξi)Sm2l2l

′
2
(ξj ), (14)

where

Smll′ (ξ )

≡
∫

Ym∗
l (η,φ)Ym

l′ (η,φ)(ξ 2 − η2)dηdφ

= δll′

(
ξ 2 − 2l2 − 2m2 + 2l − 1

(2l + 3)(2l − 1)

)
− δll′−2

1

(2l + 3)

×
(

(l + m + 1)(l − m + 1)(l + m + 2)(l − m + 2)

(2l + 1)(2l + 5)

)1/2

− δll′+2
1

(2l + 1)

×
(

(� + m − 1)(l − m − 1)(l + m)(l − m)

(2l − 1)(2l + 3)

)1/2

. (15)

For notational simplicity, we will not display integration limits,
with the understanding that the implied limits on ξ,η, and φ

are [1,ξmax],[−1,1], and [0,2π ], respectively.

B. Electron-electron repulsion integrals

Our strategy for evaluating matrix elements of the electron
repulsion operator parallels, as closely as possible, the proce-
dure we developed for FEM + DVR in a spherical basis. The
two-electron integral we seek to evaluate is

I ≡
∫

�̄il1m1 (ξ1η1φ1)�̄jl2m2 (ξ2η2φ2)
1

|r1 − r2|
×�i ′l′1m

′
1
(ξ1η1φ1)�j ′l′2m

′
2
(ξ2η2φ2)dV, (16)

where the bar on � indicates complex conjugation only of its
associated spherical harmonic. We begin with the Neumann
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expansion of 1/r12 in prolate spheroidal coordinates [20]:

1

|r1 − r2| = 8π

R

∞∑
l=0

l∑
m=−l

(−1)m
(l − m)!

(l + m)!

×P m
l (ξ<)Qm

l (ξ>)Ym
l (η1,φ1)Ym∗

l (η2,φ2), (17)

where P m
l and Qm

l are the regular and irregular associated
Legendre functions [21], respectively. Substituting the
Neumann expansion of Eq. (17) into Eq. (16) gives

I =
(

R

2

)6 8π

R

∞∑
l=|m|

(−1)m
(l − m)!

(l + m)!

×
∫

χim1 (ξ1)χi ′m′
1
(ξ1)χjm2 (ξ2)χj ′m′

2
(ξ2)

×P m
l (ξ<)Qm

l (ξ>)J lm
l1m1l

′
1m

′
1
(ξ1)J̄ lm

l2m2l
′
2m

′
2
(ξ2)dξ1dξ2, (18)

where

J lm
l1m1l

′
1m

′
1
(ξ )

=
∫

Y
m1∗
l1

(η,φ)Ym
l (η,φ)Y

m′
1

l′1
(η,φ)(ξ 2 − η2)dηdφ,

J̄ lm
l2m2l

′
2m

′
2
(ξ )

=
∫

Y
m2∗
l2

(η,φ)Ym∗
l (η,φ)Y

m′
2

l′2
(η,φ)(ξ 2 − η2)dηdφ. (19)

Note that there is no sum over m in Eq. (18) since it is fixed
by the selection rule m = m1 − m′

1 = m′
2 − m2.

The angular integrals J lm
l1m1l

′
1m

′
1

and J̄ lm
l2m2l

′
2m

′
2
(ξ ) can be done

analytically. Because of the factor (ξ 2 − η2) in the volume
element, the required angular integrals are of two general
types:

A
m1mm′

1

l1ll
′
1

=
∫

Y
m1∗
l1

(η,φ)Ym
l (η,φ)Y

m′
1

l′1
(η,φ)dηdφ

= (−1)m1

√
(2l1 + 1)(2l + 1)(2l′1 + 1)

4π

×
(

l1 l l′1
0 0 0

)(
l1 l l′1
−m1 m m′

1

)
(20)

and

B
m1mm′

1

l1ll
′
1

=
∫

η2Y
m1∗
l1

(η,φ)Ym
l (η,φ)Y

m′
1

l′1
(η,φ)dηdφ. (21)

To evaluate the B integrals, we can use η2 = 1
3 + 4

3

√
π
5 Y 0

2
along with the identity

Ym
l Y 0

2 = (−1)m
|l+2|∑

j=|l−2|

√
5(2l + 1)(2j + 1)

4π

×
(

2 l j

0 0 0

) (
2 l j

0 m −m

)
Ym

j (22)

to write

B
m1mm′

1

l1ll
′
1

= 1

3
A

m1mm′
1

l1ll
′
1

+ 4

3

√
π

5
(−1)m

×
|l+2|∑

j=|l−2|

√
5(2l + 1)(2j + 1)

4π

(
2 l j

0 0 0

)

×
(

2 l j

0 m −m

)
A

m1mm′
1

l1j l′1
. (23)

The complete angular integrals are

J lm
l1m1l

′
1m

′
1
(ξ ) = ξ 2A

m1mm′
1

l1ll
′
1

− B
m1mm′

1

l1ll
′
1

,
(24)

J̄ lm
l2m2l

′
2m

′
2
(ξ ) = (−1)m

(
ξ 2A

m2−mm′
2

l2ll
′
2

− B
m2−mm′

2

l2ll
′
2

)
.

The integrals over the radial variables in Eq. (18) cannot
be approximated accurately by Gauss quadrature over the
DVR mesh points because of the derivative discontinuity
in P m

l (ξ<)Qm
l (ξ>). We can however restore the validity of

the underlying quadrature with an approach similar to that
employed in our earlier studies that use a spherical coordinate
basis [1]. The approach is based on solving Poisson’s equa-
tion. We begin by defining the radial densities ρim1i ′m′

1
(ξ ) ≡

χim1 (ξ )χi ′m′
1
(ξ ) and ρjm2j ′m′

2
(ξ ) ≡ χjm2 (ξ )χj ′m′

2
(ξ ). We then

define the potential V
l2m2l

′
2m

′
2

jj ′ at r1 due to the distribution

ρjm2j ′m′
2
Y

m2
l2

Y
m′

2

l′2
:

V
l2m2l

′
2m

′
2

jj ′ (r1) =
∫ ρjm2j ′m′

2
(ξ2)Ym2∗

l2
(η2,φ2)Y

m′
2

l′2
(η2,φ2)

|r1 − r2|
× (

ξ 2
2 − η2

2

)
dξ2dη2dφ2, (25)

so that

I =
∫

ρim1i ′m′
1
(ξ )Ym1∗

l1
(η,φ)Y

m′
1

l′1
(η,φ)

×V
l2m2l

′
2m

′
2

jj ′ (ξ,η,φ)(ξ 2 − η2)dξdηdφ. (26)

Since the Green’s function for Poisson’s equation in prolate
spheroidal coordinates satisfies

∇2 1

|r1 − r2| = −
(

2

R

)3 4π

ξ 2 − η2
δ(ξ − ξ ′)δ(η − η′)δ(φ − φ′),

(27)
it follows that the potential V

l2m2l
′
2m

′
2

jj ′ satisfies

∇2V
l2m2l

′
2m

′
2

jj ′ (r)

= −
(

2

R

)3

4πρjm2j ′m′
2
(ξ )Ym2∗

l2
(η,φ)Y

m′
2

l′2
(η,φ). (28)

We next expand V
l2m2l

′
2m

′
2

jj ′ in spherical harmonics:

V
l2m2l

′
2m

′
2

jj ′ (r) =
∞∑
l=0

l∑
m=−l

v
l2m2l

′
2m

′
2

jj ′;lm (ξ )Ym
l (η,φ). (29)
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Substituting this expansion into Eq. (28), integrating from the
left with

∫
Ym∗

l (η,φ)(ξ 2 − η2)dηdφ, and using Eq. (3) gives[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
− l(l + 1) − m2

(ξ 2 − 1)

]
v

l2m2l
′
2m

′
2

jj ′;lm (ξ )

= −8π

R
ρjm2j ′m′

2
(ξ )J̄ lm

l2m2l
′
2m

′
2
(ξ ). (30)

To solve Eq. (30), we begin by expanding v
l2m2l

′
2m

′
2

jj ′;lm (ξ ) in the
FEM + DVR basis:

v
0 l2m2l

′
2m

′
2

jj ′;lm (ξ ) =
∑

i

diχim(ξ ). (31)

Substituting this expansion into Eq. (30), multiplying from the
left with another DVR basis function, and integrating over ξ ,
using the Gauss quadrature rule, gives a set of linear equations
that can be solved for the coefficients [d]:

di = −8π

R

∑
j

[Tlm]−1
i,j

δjj ′
√

wj

J̄ lm
l2m2l

′
2m

′
2
(ξj ), (32)

where Tlm is the matrix representation of the operator that
appears on the left-hand side of Eq. (30) in the DVR basis,
whose elements are given by

[Tlm]i,j = −
∫

∂χi(ξ )

∂ξ

∂χj (ξ )

∂ξ
(ξ 2 − 1)dξ

− δij

(
l(l + 1) − m2

ξ 2
i − 1

)
. (33)

The function v
0 l2m2l

′
2m

′
2

jj ′;lm (ξ ) vanishes at the endpoints of the
ξ grid. The physical solution we seek, on the other hand, is
finite at the grid endpoint, ξmax. Its value at ξmax, obtained by
substituting Eqs. (17) and (31) into Eq. (25), is

v
0 l2m2l

′
2m

′
2

jj ′;lm (ξmax) = 8π

R
Qm

l (ξmax)
(l − m)!

(l + m)!

×
∫

P m
l (ξ )ρjm2j ′m′

2
(ξ )J̄ lm

l2m2l
′
2m

′
2
(ξ )dξ.

(34)

We can construct a solution with the proper boundary

conditions by adding to v
0 l2m2l

′
2m

′
2

jj ′;lm (ξ ) components of the
homogeneous equation corresponding to Eq. (30), which is
just the Legendre equation. We can therefore write the general
solution to Eq. (30) as

v
l2m2l

′
2m

′
2

jj ′;lm (ξ ) = v
0 l2m2l

′
2m

′
2

jj ′;lm (ξ ) + αlm
jl2m2j ′l′2m

′
2
P m

l (ξ )

+βlm
jl2m2j ′l′2m

′
2
Qm

l (ξ ). (35)

We can take βlm
jl2m2j ′l′2m

′
2
= 0 because the physical solution must

be regular at ξ = 1. αlm
jl2m2j ′l′2m

′
2

is determined by the value

of v
l2m2l

′
2m

′
2

jj ′;lm (ξ ) at the grid endpoint (i.e., at ξ = ξmax) and is
therefore found to be

αlm
jl2m2j ′l′2m

′
2
= 8π

R

Qm
l (ξmax)

P m
l (ξmax)

(−1)m
(l − m)!

(l + m)!

×
∫

P m
l (ξ )ρjm2j ′m′

2
(ξ )J̄ lm

l2m2l
′
2m

′
2
(ξ )dξ

= 8π

R

Qm
l (ξmax)

P m
l (ξmax)

(−1)m
(l − m)!

(l + m)!
δjj ′P m

l (ξj )

× J̄ lm
l2m2l

′
2m

′
2
(ξj ) (36)

and we can assemble the entire potential as

V
l2m2l

′
2m

′
2

jj ′ (ξ,η,φ)

=
∑
l,m

[ ∑
i

−8π

R
[Tlm]−1

i,j

δjj ′
√

wj

J̄ lm
l2m2l

′
2m

′
2
(ξj )χim(ξ )

+αlm
jl2m2j ′l′2m

′
2
P m

l (ξ )

]
Ym

l (η,φ). (37)

We can now complete the desired expression for the two-
electron integral. Substituting Eq. (37) into Eq. (26) and using
Eqs. (12) and (13) to simplify the integration over ξ give the
final working expression:

I =
(

R

2

)6 ∫
ρim1i ′m′

1
(ξ )Ym1∗

l1
(η,φ)Y

m′
1

l′1
(η,φ)V

l2m2l
′
2m

′
2

jj ′ (r)(ξ 2 − η2)dξdηdφ

= πR5

8

lmax∑
l=0

δii ′δjj ′J lm
l1m1l

′
1m

′
1
(ξi)

[
− [Tlm]−1

i,j√
wiwj

+ (−1)m
(l − m)!

(l + m)!

Qm
l (ξmax)

P m
l (ξmax)

P m
l (ξi)P

m
l (ξj )

]
J̄ lm

l2m2l
′
2m

′
2
(ξj ), (38)

where lmax = min(l1 + l′1 + 2,l2 + l′2 + 2), the latter identity
following from the properties of the 3 − j symbols that appear
in Eqs. (20) and (23).

C. Double ionization amplitude

The procedure for constructing the double ionization
amplitude follows the development outlined in Ref. [9].

The amplitude that gives the triple differential cross section
(TDCS) for double photoionization is

f (k1,k2) = 〈�(−)(k1,r1)�(−)(k2,r2)|

×
[
E + 1

2
∇2

1 + 1

2
∇2

2 + 1∣∣r1 − R
2

∣∣
023423-4
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+ 1∣∣r1 + R
2

∣∣ + 1∣∣r2 − R
2

∣∣ + 1∣∣r2 + R
2

∣∣
]
|�+

sc(r1,r2)〉

≡ 〈�(−)(k1,r1)�(−)(k2,r2)|E − H0|�+
sc(r1,r2)〉,

(39)

where E = k2
1/2 + k2

2/2 is the total photoelectron energy, �+
sc

is the first-order wave function of Eq. (7), and �(−)(k,r) =
�(+)∗(−k,r) is an H2

+ continuum eigenfunction with in-
coming momentum k. The integral in Eq. (39) is performed
over the finite, real portion of the underlying grid (i.e.
−1 � η1,η2 � 1, 0 � φ1,φ2 � 2π , 1 � ξ1,ξ2 � ξ0, where ξ0

lies on the real portion of the ECS grid). Equation (39) has
been shown to produce the physical breakup amplitude as ξ0

is increased, aside from a knowable, but irrelevant, overall
phase [22]. The use of H2

+ continuum eigenfunctions in
Eq. (39) is essential for producing numerically stable results,
since their orthogonality to the bound states of H2

+ eliminates
spurious contributions of the single ionization channels that
can contaminate the results.

Computation of the H2
+ continuum eigenfunctions in pro-

late spheroidal coordinates was detailed in I. �(−)(k,r) is first
partitioned into unperturbed and scattered wave components,

�
(+)
k (ξ,η,φ) = �

(+)
0 (ξ,η,φ) + �sc(ξ,η,φ), (40)

to get(
H − k2

2

)
�sc(ξ,η,φ) =

(
k2

2
− H

)
�

(+)
0 (ξ,η,φ). (41)

We use the fact that the asymptotic form of �
(+)
0 is determined

by the long-range behavior of the Coulomb interaction and
must coincide, for large ξ , with the atomic Coulomb function,
ψ (+)

c (k,r), with Z = 2, corresponding to an electron with
incoming momentum k. The explicit choice for �

(+)
0 is

�
(+)
0 (ξ,η,φ) =

(
2

π

)1/2 ∑
l,m

ileiηl

kr(ξ,η)
g(ξ )φ(c)

l,k(r(ξ,η))

×Ym
l (r̂(ξ,η,φ))Ym∗

l (k̂), (42)

where φ
(c)
l,k is the partial-wave Coulomb function, ηl is the

Coulomb phase shift, g(ξ ) is a cutoff function that goes to
zero as ξ → 1, and the mapping between spherical and prolate
spheroidal variables is given through

r = a
√

ξ 2 + η2 − 1,
(43)

cos θ = ξη√
ξ 2 + η2 − 1

.

The function g(ξ ) is introduced in order to cut off �
(+)
0 near

the one-center singularity at r = 0 (ξ = 1,η = 0), which is not
removed by the use of prolate spheroidal coordinates. With
this choice, we can solve the driven equations obtained from
Eq. (41) for each partial wave and then construct �

(+)
k (ξ,η,φ)

for any direction of k. Our approach differs from earlier work
on H2

+ continuum states using prolate spheroidal coordinates,
as well as the recent work of Serov and Joulakian on H2

double photoionization (DPI), where the asymptotic behavior
of the one-electron continuum states was expressed in terms
of two-center phase shifts [16,19,23–25].

The evaluation of Eq. (39) is simplified by taking advantage
of the fact that the operator (E − H0) in that equation
gives zero when operating to the left. With �+

sc(r1,r2) ex-
panded as in Eq. (8) along with an analogous expansion of
�(−)(k1,r1)�(−)(k2,r2),

[�(−)(k1,r1)�(−)(k2,r2)]∗

=
∑

ij l1l2m

i−(l1+l2)eiηl1 +iηl2 Yl1m(k̂1)Yl2M−m(k̂2)ck1
il1m

c
k2
j l2M−m

×�il1m(r1)�jl2M−m(r2), (44)

the six-dimensional volume integral can thereby be converted
into a five-dimensional surface integral, as was done previ-
ously in spherical polar coordinates [1,2]. The integrals in
η1,φ1,η2,φ2 can be performed analytically, leaving a surface
integral in ξ1 and ξ2. However, in this case, instead of reducing
the integral to an integral over an arc of constant

√
ξ 2

1 + ξ 2
2

by analogy to the polar coordinates formulation, we choose
to make the surface a rectilinear one. The surface segments
are the lines 1 < ξ1 < ξ0, ξ2 = ξ0 and 1 < ξ2 < ξ0, ξ1 = ξ0.
Equation (39) can then be evaluated as

f (k1,k2)

= 〈�(−)(k1,r1)�(−)(k2,r2)|E − H0|�+
sc(r1,r2)〉

=
∑

ij l1l2m

∑
i ′j ′l′1l

′
2

c
k1
il1m

c
k2
j l2M−mCi ′j ′l′1l

′
2m

i−(l1+l2)eiηl1 +iηl2

×Yl1m(k̂1)Yl2M−m(k̂2)δl2,l
′
2

R4

32

∫
χim(ξ )χi ′m(ξ )

× Sml1l
′
1
(ξ )dξ

(
ξ 2

0 − 1
)[

χjM−m(ξ0)
dχj ′M−m

dξ

∣∣∣∣
ξ=ξ0

−χj ′M−m(ξ0)
dχjM−m

dξ

∣∣∣∣
ξ=ξ0

]
+ 1 ↔ 2, (45)

where we have used Eq. (15) in the integration over the angular
variables and integration by parts, retaining only the surface
terms, for integrals involving derivative terms in ξ .

We conclude this section with the working expressions for
the DPI cross sections expressed in the velocity gauge. The
TDCS for double photoionization of the fixed-nuclei, aligned
molecule is given by

d3σ

dE1d�1d�2
= 4π2

ωc
k1k2|f (k1,k2)|2, (46)

while the corresponding single differential (SDCS) or energy-
sharing cross section is obtained by integrating the TDCS over
the ejection angles of the photoelectrons:

dσ

dE1
=

∫
d�1d�2

d3σ

dE1d�1d�2
. (47)

The SDCS is easily evaluated as the sum of the squared moduli
of the partial-wave amplitudes that determine f (k1,k2). For
linearly polarized incident radiation and randomly oriented
molecules, the physical SDCS is obtained as the weighted
average of � and � contributions:

dσ phys

dE1
= 1

3

(
dσ (�)

dE1
+ 2

dσ (�)

dE1

)
. (48)
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The total cross section is the integral of this SDCS from 0 to
E, the latter being the total photoelectron energy. Note that we
differ from some other authors who define the SDCS so that it
gives the total cross section when integrated from 0 to E/2.

III. COMPUTATIONS

To facilitate comparisons with earlier work, we have carried
out fixed-nuclei calculations of H2 DPI at its equilibrium,
R = 1.4 bohr, for 75 eV photon energy. We have performed
calculations at the equilibrium H2 geometry, R = 1.4 bohr, to
compare with our earlier calculations. The ξ grid for these
calculations was subdivided into eight evenly spaced real
intervals, each of length 8.0, running from 1.0 to 65.0 and
an additional complex element of length 15.0 and a rotation
angle of 30◦. We use 14th-order DVR in each interval. For
the angular expansion, we retained terms up to lmax = 6.
The ground-state H2 energy, obtained using only the first
two real ξ elements, was −1.17442 hartree, in excellent
agreement with the accurate value of −1.17447 hartree results
of Wolniewitz [26]. We note that calculations in spherical
coordinates reported in Ref. [9] using a single-center expansion
with lmax = 7 give a target energy of −1.16908 hartree, which
is 0.15 eV higher than the accurate value.

IV. RESULTS

Figure 1 shows TDCS results for a case previously
considered. The two photoelectrons both lie in the plane
defined by the molecule and the polarization axis. The angle
between the molecule and the polarization axis is 20◦, while
the fixed electron, with 80% of the available energy, is
at 40◦ to the polarization axis. For this arrangement, the
TDCS is small and has roughly equal contributions from
the �u and �u components of the wave function. Evidently,
the present results are uniformly smaller than those we
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FIG. 1. (Color online) TDCS for double photoionization of H2

for 75 eV photon energy. The molecule, ejected electrons, and
polarization vector are coplanar. All angles are measured from the
polarization axis. The angle between molecule and polarization axis
is θmol = 20◦; the angle between fixed electron (with 80% of available
energy) and polarization axis is θ1 = 40◦; the angle between the
molecule and the fixed electron is 20◦.

reported in Ref. [9], which were obtained using a single-
center expansion in spherical coordinates. Curiously, a single
scaling factor of 1.23 brings the two results into perfect
agreement.

It turns out that for any geometry, a simple renormalization
of the earlier single-center results brings them into perfect
agreement with the present calculations. This is demonstrated
with the results displayed in Figs. 2–4, which show results for
different orientations of the fixed electron and different energy
sharings. The scaling factor needed to bring the present and the
earlier calculations into agreement only depends on the energy
sharing. That factor varies from 1.34 for equal energy sharing
to 1.23 for 20% energy sharing, independent of the relative
orientation of photoelectrons and molecular orientation with
respect to the polarization axis.

The present results could not be changed by increasing
the grid size, the DVR order, or the number of angular
terms retained in solving for the scattered wave or the H2

+
continuum functions. A careful convergence study had also
been carried out in the earlier single-center ECS study, so the
differences seen in the absolute magnitude of TDCS from the
two studies were surprising. The observed differences led us
to suspect that they might be attributable to differences in the
initial-state target wave functions. There is 0.15 eV difference
in the ground-state target energies. Since both calculations
were carried out at 75 eV photon energy, this difference
results in a slightly smaller total photoelectron energy in
the present calculations. However, we checked that changing
the photoelectron energy could not account for the observed
differences.

Single-center expansions are notoriously difficult to con-
verge and first-order changes in the wave function only change
the energy in second order. This observation, coupled with the
fact that the amplitude for double ionization is a sensitive
probe of electron correlation, being effectively zero in an
independent particle treatment, led us to suspect that the
differences we were observing might be attributable to small
differences in the initial-state wave functions themselves. To
test this hypothesis, we recomputed the initial-state target wave
function using lmax = 2 in the angular expansion, which gave
an energy of −1.1732 hartree, only one millihartree higher
than the original value. We then solved the driven equation for
the scattered wave using this initial-state wave function, but
with the original basis set parameters and angular terms up to
lmax = 6 in both �+

sc and �(−). The results in Fig. 5 show a
significant rise in the magnitude of the TDCS resulting from
the change in the target-state wave function, giving values
much closer to those reported in Ref. [9]. We conclude that the
magnitude of the TDCS depends very sensitively on the quality
of the initial-state wave function, while the relative shape of
the angular distribution is less sensitive to small changes in the
target-state wave function.

Figure 6 compares the calculated � and � components of
the SDCS, as well as the β parameter, with the earlier results.
It is easy to verify that the SDCS values differ by precisely the
same factors reflected in the TDCS. At equal energy sharing,
the ratio is 1.34, while at 20%/80% energy sharing, the ratio is
1.23. The β parameter depends only on a ratio of cross sections
and thus the present results for this quantity agree well with
our earlier values.

023423-6



GRID-BASED METHODS FOR . . . . III. DOUBLE . . . PHYSICAL REVIEW A 82, 023423 (2010)

0 60 120 180 240 300 360
0

5

10

T
D

C
S

 (
b/

sr
2 eV

)

present result

ref. 9
(present) X 1.23

0 60 120 180 240 300 360
0

5

10
present result

ref.9
(present) X 1.23

0 60 120 180 240 300 360
θ

2
(deg)

0

0.5

1

1.5

2

T
D

C
S

 (
b/

sr
2 eV

)

present result

ref. 9
(present) X 1.23

0 60 120 180 240 300 360
θ

2
(deg)

0

0.5

1

1.5

2
present result

ref. 9
(present) X 1.23

θ
N

=90
o θ

N
= 60

o

θ
N

= 30
o

θ
N

= 0
o

FIG. 2. (Color online) TDCS for double
photoionization of H2 for 75 eV photon energy.
The molecule, ejected electrons, and polariza-
tion vector are coplanar. The fixed electron, with
20% of the available energy, is perpendicular
to the polarization axis. �N indicates the angle
between the polarization axis and the molecular
axis.

The only other theoretical treatments of differential DPI
cross sections available for comparison are the time-dependent
close-coupling (TDCC) treatment of Colgan, Pindzola, and
Robicheaux [10] and the recent PSECS study of Serov and
Joulakian [16]. The TDCC study presented TDCS results for
the same kinematic arrangements shown in Figs. 2–4. Those
results are in excellent agreement with present results in shape,
while the magnitudes of the TDCC TDCS are somewhat
larger than the present values, but generally smaller than those
presented in Ref. [9]. Colgan et al. report a value of −0.802 for
the β parameter at equal energy sharing, which is within 1%
of what we find. However, since they do not report values for
the SDCS, we cannot see whether the scaling we have found
between integrated cross sections and TDCS applies to their
results. The only TDCS values reported by Serov and Joulakian
are for the single case shown in Fig. 1. Curiously, their results
are in almost perfect agreement, in shape and magnitude, with

our earlier single-center ECS results, while their SDCS results
are ∼8% larger than the single-center values, or ∼38% larger
than the present results. While we can point to an inconsistency
between the magnitudes of the TDCS and SDCS reported in
the PSECS study, we are at a loss to explain its origin.

V. DISCUSSION

The present study extends our development of an exterior
scaled, finite-element discrete-variable representation in pro-
late spheroidal coordinates to study double ionization of two-
electron molecular targets. The present development retains
much of the simplicity and efficiency of the FEM + DVR
in spherical coordinates. We have shown that an analogous
approach for constructing matrix elements of the electronic
repulsion potential, 1/|r1 − r2|, based on solving Poisson’s
equation in spheroidal coordinates gives a representation
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FIG. 3. (Color online) Same as in Fig. 2,
except the fixed electron has 50% of the available
energy.
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FIG. 4. (Color online) Same as in Fig. 3,
except the fixed electron is parallel to the
polarization axis.

which is diagonal in the radial DVR indices and a corre-
spondingly sparse representation of the Hamiltonian. Prolate
spheroidal coordinates are a natural choice for studying
diatomic targets and the angular expansion of the wave
function converges very rapidly in this coordinate system.

We have found that, while the shapes of the fully differential
double ionization cross sections converge rapidly and are com-
pletely consistent with our earlier calculations, the magnitude
of the DPI cross sections shows a surprising sensitivity to small
changes in the target wave functions.

To extend the present development to more complex
molecular targets, we could adopt an approach similar to that
outlined in our two recent studies of double photoionization
of Be and Li [27,28]. The idea would be to use a hybrid
basis where all but two active electrons are described using
molecular orbitals, while the two active electrons are described
using primitive FEM + DVR functions. The molecular orbitals
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FIG. 5. (Color online) TDCS for 75 eV photon energy and equal
energy sharing, with the fixed electron perpendicular to the molecular
axis. The present result is compared with those of Ref. [9] and with
a calculation in which the initial state is calculated using lmax = 2 in
prolate coordinates.

would be expanded in the same underlying DVR basis,
but since their radial extent is limited, we could exploit
the finite-element aspect of the FEM + DVR to use DVR
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FIG. 6. (Color online) SDCS and β parameter for H2 DPI at
75 eV photon energy. The present results are compared with those of
Ref. [9].
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functions that span only the first few elements in constructing
the molecular orbitals. The remainder of the DVR grid
representation is left untouched and describes the continuum
portions of the wave function. Such an approach retains
much of the simplicity of the original FEM + DVR approach,
while allowing for a straightforward extension of the method
to study double ionization of targets with more than two
electrons.
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