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The Siegert states of atoms in a static uniform electric field, defined as the solutions to the stationary Schrödinger
equation satisfying the regularity and outgoing-wave boundary conditions, are discussed. An efficient method to
calculate not only the complex energy eigenvalue, but also the eigenfunction for a general class of one-electron
atomic potentials is introduced. An exact expression for the transverse momentum distribution of the ionized
electrons in terms of the Siegert eigenfunction in the asymptotic region is derived. The method is illustrated by
calculations of the energy, ionization width, and transverse momentum distribution as functions of the electric
field for several lowest states of H, outer p shells of Ne, Ar, Kr, and Xe, and the active electron in H−. We also
discuss the ionization of Ar by the pulse of a unidirectional time-dependent electric field, which illustrates the
role of the Siegert states in the recently developed adiabatic theory of ionization of atoms by intense laser pulses
[O. I. Tolstikhin et al., Phys. Rev. A 81, 033415 (2010)].
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I. INTRODUCTION

When an atom is placed in a static uniform electric field
F, the atomic electron (we restrict our consideration to the
single-active-electron approximation) can be ionized. In weak
fields, the electron escapes from the atom by tunneling through
a potential barrier. The ionization rate in this case is expo-
nentially small in F , so the atom survives in the initial bound
state with an energy E0 during many atomic periods 2π/|E0|
before ionization occurs. Thus one arrives at the concept of a
quasistationary state. An important step in understanding the
nature of quasistationary states in quantum mechanics, which
enables one to exclude the influence of the initial conditions
from the consideration and focus on the properties of the
system per se, consists in associating them with the solutions
to the stationary Schrödinger equation that have only outgoing
waves in the asymptotic region [1]. The stationary Schrödinger
equation supplemented by the regularity and outgoing-wave
boundary conditions constitute an eigenvalue problem: The
solutions exist only for a discrete set of generally complex
values of the energy E of the system. This eigenvalue problem
was first formulated by Siegert [2], so its solutions are called
the Siegert states (SS’s). A concise review of early studies on
the theory of SS’s can be found in [3]. The theory has been
essentially advanced in [3–6], which has turned SS’s into
a powerful tool in stationary scattering calculations [7–16].
Applications of SS’s to nonstationary problems are discussed
in [17–20]. Quasistationary states are represented by the SS’s
for which ImE < 0 and |ImE| � |ReE|. The SS’s of an atom
in an electric field, also known as the Stark or LoSurdo-Stark
states, are the subject of the present paper. The SS that for
F = 0 coincides with the initial bound state in the tunneling
regime represents the quasistationary state mentioned above.
In sufficiently strong fields the electron can fly away through a
classically accessible window over the potential barrier. In this
case, ionization occurs during one atomic period, so the initial
bound state does not describe the system even approximately.

Meanwhile, the corresponding SS can be analytically
continued to any value of F . Whether this state preserves
some physical meaning in the overbarrier regime, when
|ImE| ∼ |ReE|, is one of the questions to be discussed in the
following.

One of the major characteristics of an atomic SS in an
electric field is its complex energy eigenvalue E as a function
of F . In the tunneling regime, the calculation of the real part
of the difference E − E0 defining the Stark shift is a textbook
application of perturbation theory [21]. Of main interest is
finding the imaginary part of E that defines the ionization
rate. The theoretical study of the field ionization of atoms
was pioneered by Oppenheimer [22]. Lanczos was the first
who applied the asymptotic approach to the solution of the
problem in the limit F → 0 [23]. The correct asymptotic
result for the ionization rate from the hydrogen atom in
the ground state, including the pre-exponential factor, was
obtained in [21]. The approach of [21] was later extended to the
hydrogen atom in an arbitrary bound state [24]. The extension
was not straightforward; Ref. [24] contains an interesting
review of errors made in earlier asymptotic treatments of the
problem. There exists an extensive literature devoted to exact
calculations of the Siegert eigenvalues E for the different states
of the hydrogen atom beyond the tunneling regime by various
analytical and numerical methods [25–34]. The hydrogen atom
occupies a special position in studies of the SS’s, because
the Schrödinger equation in this case allows separation of
variables in parabolic coordinates [21]. This greatly facilitates
the calculations and even makes the analysis of the global
structure of the Riemann surface of E as a multivalued analytic
function of F possible [35]. Another problem that allows an
accurate asymptotic [36] and numerical [37] treatment is the
field ionization from a zero-range potential, which is often
used to model negative atomic ions [38]. Some calculations by
the complex rotation method [28,39] of the ionization rates for
potentials with a non-Coulombic core modeling many-electron
atoms and ions are also available [40].
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A uniform electric field infinitely accelerates the ionized
electrons in the direction parallel to the field, but their
transverse momentum distribution (TMD) gets stabilized as
they recede from the atom. The TMD of the ionized electrons
is another important characteristic of the SS. However, we
are not aware of any calculations of TMD’s in the stationary
framework. To fill in this gap is one of the goals of this
paper.

The SS’s also emerge in the nonstationary context in
studies of the laser-atom interaction. Indeed, one can expect
that ionization of atoms by an alternating electric field of
sufficiently low frequency proceeds in the same way as
in a static field. One of the most widely used theory of
ionization of atoms by intense laser fields was proposed by
Keldysh [41]. In the development of this theory, analytical
expressions for the momentum distribution of photoelectrons
were obtained [42,43], for details see a review article [44].
In the low-frequency limit, which corresponds to small values
of the Keldysh parameter γ , the results of [42,43] yield a
formula for the ionization rate from an arbitrary n∗lm state,
where n∗ is an effective principal quantum number accounting
for a non-Coulombic core of the atomic potential [44]. For
the hydrogen atom in the ground state, this formula coincides
(apart from averaging over the laser period) with the F → 0
limit of the ionization rate in a static field [21]. It extends the
asymptotic results of [21,24,36] to a more general class of
potentials. Another result following from [42,43] in the limit
γ → 0 is a universal for m = 0 (i.e., independent of l and
details of the atomic potential) Gaussian shape of the TMD
with the width (F/κ)1/2, where κ = (2|E0|)1/2. These results
were later reproduced by other authors [45,46] and became
known as the Ammosov-Delone-Krainov theory; a history
of the problem is discussed in [47]. Thus a nonstationary
Keldysh theory has shed, implicitly, some new light on the
properties of stationary SS’s. It should be emphasized that the
Keldysh theory, and hence the results of [42,43,45,46], are
valid only for sufficiently weak fields F � κ

3 [44], which in
the low-frequency limit corresponds to the tunneling regime
of ionization.

The field ionization is the first step for a variety of processes
taking place in the interaction of atoms with intense infrared
laser pulses [48,49]. An accurate description of the photoelec-
tron wave packets created during each unidirectional half-cycle
of the laser field is necessary for the analysis and prediction
of experimentally observable photoelectron and harmonic
generation spectra as well as for retrieving from such spectra
the structural target information [50–52]. Lasers operating
both in the tunneling and overbarrier regimes of ionization
are currently available; a crossover between the two regimes
for neutral atoms in the ground state occurs at intensities
I ∼ 1015 W/cm2. Thus a theory capable of quantitatively
treating the intermediate and overbarrier regimes, where the
Keldysh-type theories [48,49] are valid only qualitatively or
do not apply at all, is needed.

Recently, we have initiated the development of the adiabatic
theory of ionization of atoms by intense laser pulses [53]. This
theory rests on a single parameter ε giving a ratio of the atomic
and laser time scales and becomes exact in the limit ε → 0
uniformly with respect to the amplitude of the laser pulse, that
is, it applies to weak as well as strong fields provided that

ε is sufficiently small. For neutral atoms in the ground state
(|E0| ∼ 13.6 eV) and infrared laser pulses of current interest
(λ ∼ 800 nm, ω ∼ 1.5 eV) we have ε ∼ ω/|E0| ∼ 0.1, so
the adiabatic theory should work well. A central object in this
theory is the SS that for F = 0 coincides with the initial bound
state of the target atom. The solution to the time-dependent
Schrödinger equation and resulting photoelectron spectrum is
expressed in terms of this state analytically continued to certain
generally complex values of F . In the one-dimensional zero-
range potential model considered in [53], the SS in question
can be easily calculated by solving a transcendental equation,
see Appendix C therein. To implement the adiabatic theory
[53] for realistic atomic potentials in three dimensions, one
needs to construct the corresponding SS. To address this issue
and thus to prepare grounds for further development [54] of
the adiabatic theory is the main goal of this work.

In the present paper, we introduce an efficient approach to
constructing the SS’s for a general class of atomic potentials.
The approach is based on the slow-variable discretization
method [55] in combination with the R-matrix propagation
technique [56]. It enables one to obtain not only the com-
plex energy eigenvalue E, but also the properly normalized
eigenfunction and hence the TMD of the ionized electrons.
The approach is illustrated by calculations of the energy,
ionization width, and TMD as functions of the electric field
F for a number of typical atomic potentials. As a preliminary
illustration of future applications of the SS’s in the adiabatic
theory [53,54], we also discuss one nonstationary problem,
namely, the ionization of Ar by a half-cycle laser pulse of
overbarrier intensity.

II. BASIC EQUATIONS

The stationary Schrödinger equation describing an electron
interacting with an atomic potential V (r) and a static uniform
electric field F = F ez reads (atomic units are used throughout
the paper) [− 1

2� + V (r) + Fz − E
]
ψ(r) = 0. (1)

The SS’s are represented by the regular solutions to this
equation which have only outgoing waves in the asymptotic
region; a precise formulation of these boundary conditions is
given in the next section. Let for F = 0 Eq. (1) have solutions
corresponding to bound states of the unperturbed atom. For
F > 0, these solutions turn into the SS’s we are interested
in. In contrast to Refs. [3–6], where we have dealt with a
complete set of SS’s, here we consider only one particular SS
that originates from a given bound state with the energy E0. In
the following, E and ψ(r) denote the corresponding eigenvalue
and eigenfunction; one should remember that these as well as
other characteristics of the SS introduced in the following
depend on F , which for brevity is not indicated explicitly. The
atomic potential V (r) may have a finite-range core, maybe
with the Coulomb singularity at r → 0, and an asymptotic
Coulomb tail at r → ∞. We restrict our consideration to
axially symmetric potentials. It is convenient to use parabolic
coordinates defined by

ξ = r + z, 0 � ξ < ∞, (2a)

η = r − z, 0 � η < ∞. (2b)
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Then our assumptions concerning V (r) can be formalized as
follows:

V (r) = V (ξ,η), (3a)

V (ξ,η)|η>ηc
= −Zas

r
, r = ξ + η

2
. (3b)

The parameter ηc defining the boundary of the core is
introduced to simplify the formulation; it is understood that
convergence of the results with respect to this parame-
ter is to be achieved in the calculations. The asymptotic
charge Zas characterizes the Coulomb tail. Local spherically
symmetric one-electron potentials in use to model neutral
atoms and atomic ions [57,58] comply with Eq. (3). The
hydrogen atom presents a special case in which the core
is absent and Eq. (3b) with Zas = 1 applies throughout the
interval (2b).

The solution to Eq. (1) will be sought in the form

ψ(r) = eimϕ

√
2π

ψ(ξ,η), (4)

where ϕ, 0 � ϕ < 2π , is the azimuthal angle of r about the
z axis, and m = 0, ± 1, ± 2, . . . , is the magnetic quantum
number of the unperturbed bound state. The Schrödinger
equation for ψ(ξ,η) reads [21][

∂

∂η
η

∂

∂η
− m2

4η
+ B(η) + Eη

2
+ Fη2

4

]
ψ(ξ,η) = 0, (5)

where

B(η) = ∂

∂ξ
ξ

∂

∂ξ
− m2

4ξ
− ξ + η

2
V (ξ,η) + Eξ

2
− Fξ 2

4
, (6)

is an operator acting on functions of ξ and depending on η as
a parameter. The real and imaginary parts of the eigenvalue E

define the energy and ionization width of the SS,

E = E − i

2
�. (7)

The eigenfunction will be normalized by

1

4

∫ ∞

0

∫ ∞

0
ψ2(ξ,η)(ξ + η) dξdη = 1. (8)

This formally coincides with the normalization condition for
bound states [21]. However, for F > 0, ψ(ξ,η) exponentially
grows in the asymptotic region, so the integral in Eq. (8) does
not converge in the usual sense of the word and requires a
regularization. Note that there is no complex conjugation in
Eq. (8), which is a general property of the theory of SS’s
[2–6].

III. ADIABATIC EXPANSION IN PARABOLIC
COORDINATES

Let us introduce the adiabatic basis defined by

B(η)φν(ξ ; η) = βν(η)φν(ξ ; η), ν = 0,1,2 . . . , (9a)

φν(ξ ; η)|ξ→0 ∝ ξ |m|/2, φν(ξ ; η)|ξ→∞ = 0. (9b)

Since the operator B(η) depends on E, the solutions to Eq. (9)
are generally complex. We order them by the number of zeros
ν (excluding the one at ξ = 0 for |m| > 0) in the limit F → 0,

when E converges to E0 and becomes real. The eigenvalues
βν(η) and eigenfunctions φν(ξ ; η) of B(η) depend on η as a
parameter (the term “adiabatic” is traditionally used to indicate
this dependence, it has nothing to do with adiabaticity in time).
For any η in the interval (2b), the different eigenfunctions are
orthogonal and we normalize them by

〈φν(ξ ; η)|φµ(ξ ; η)〉 ≡
∫ ∞

0
φν(ξ ; η)φµ(ξ ; η) dξ = δνµ. (10)

Similarly to adiabatic expansions in the Born-Oppenheimer
treatment of diatomic molecules [59] and hyperspherical treat-
ments of three-body Coulomb systems [60,61] and chemical
reactions [62,63], the solution to Eq. (5) can be sought in the
form

ψ(ξ,η) =
∑

ν

fν(η)φν(ξ ; η). (11)

Substituting this expansion into Eq. (5), one obtains a set of
coupled ordinary differential equations defining the coefficient
functions fν(η),
[

d

dη
η

d

dη
− m2

4η
+ βν(η) + Eη

2
+ Fη2

4

]
fν(η)

+
∑

µ

[
Pνµ(η)

(
2η

d

dη
+ 1

)
+ ηQνµ(η)

]
fµ(η) = 0,

(12)

where

Pνµ(η) =
〈
φν(ξ ; η)

∣∣∣∣∂φµ(ξ ; η)

∂η

〉
, (13a)

Qνµ(η) =
〈
φν(ξ ; η)

∣∣∣∣∂
2φµ(ξ ; η)

∂η2

〉
. (13b)

The regular solutions to Eq. (12) satisfy

fν(η)|η→0 ∝ η|m|/2. (14)

According to Eq. (3b), the adiabatic basis ceases to depend on
η for η > ηc. We also introduce the asymptotic basis defined
by

βν = βν(η)|η>ηc
, φν(ξ ) = φν(ξ ; η)|η>ηc

, (15)

or explicitly,
[

d

dξ
ξ

d

dξ
− m2

4ξ
+ Zas + Eξ

2
− Fξ 2

4

]
φν(ξ ) = βνφν(ξ ),

(16a)

φν(ξ )|ξ→0 ∝ ξ |m|/2, φν(ξ )|ξ→∞ = 0. (16b)

Note, importantly, that the solutions φν(ξ ) do not depend on
Zas, and hence are universal functions of ξ for all potentials
of the type (3). Also note that these functions depend on E

and F only via a combination FE−3/2, which can be seen by
rescaling the independent variable. For η > ηc, the coupling
matrices (13) vanish and Eq. (12) takes the form
[

d2

dη2
+ 1 − m2

4η2
+ βν

η
+ E

2
+ Fη

4

]
η1/2fν(η) = 0. (17)
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For F > 0 and arg F = 0, the outgoing-wave solutions to these
uncoupled equations satisfy

fν(η)|η→∞ = fνf (η), (18a)

f (η) = 21/2

F 1/4η3/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
. (18b)

This asymptotic does not depend on the channel eigenvalue
βν , that is, apart from a constant coefficient fν , it is the same
for all channels. Substituting Eq. (18a) into Eq. (11), we obtain

ψ(ξ,η)|η→∞ = f (η)φ(ξ ), (19)

where

φ(ξ ) =
∑

ν

fνφν(ξ ). (20)

Thus, independently of the atomic potential, the outgoing-
wave solution to Eq. (5) acquires a separable form in the
asymptotic region. For the hydrogen atom, the adiabatic basis
does not depend on η and is determined by Eq. (16) throughout
the interval (2b), and only one term is present in expansions
(11) and (20) with fν(η) defined by Eqs. (14), (17), and (18).

Equations (9b), (14), and (18) specify the regularity
and outgoing-wave boundary conditions defining the SS’s.
Equations (14) and (18) can be satisfied simultaneously only
for special values of E, so we deal with an eigenvalue
problem. The eigenvalue E is complex and ImE < 0, so
the eigenfunction (19) exponentially grows with η. We now
can regularize the integral in Eq. (8). This can be done by
deforming the integration path in η from the real semiaxis
[0,∞) into a contour C in the complex η plane that runs to
infinity inside the sector 0 < arg η < 2π/3. For example, one
can use

C = [0,ηc] + [ηc,e
iπ/3 × ∞). (21)

The function ψ(ξ,η) can be analytically continued from the
real ray η ∈ [ηc,∞) to the complex part of this contour by
analytically continuing Eq. (17); no analytic continuation of
the atomic potential V (ξ,η) is needed. We note in passing that
this method of regularization of the normalization integral (8)
agrees with a general procedure developed in [64].

IV. TRANSVERSE MOMENTUM DISTRIBUTION

There is a flux of probability associated with the SS ψ(r)
whose density j(r) satisfies

∇j(r) = �|ψ(r)|2. (22)

In the asymptotic region, this flux represents the ionized
electrons which fly away from the atom in the direction
opposite to that of the electric field. In this section we discuss
the TMD in the outgoing flux.

A. General formula

For F > 0, the outgoing flux is directed toward z → −∞.
The atomic potential V (r) in Eq. (1) can be neglected for
sufficiently large negative z. This holds also for potentials with
the Coulomb tail, Zas = 0, since neither the function f (η) nor
asymptotic basis φν(ξ ) depend on Zas, and only the coefficients

fν in Eqs. (19) and (20) depend on the potential. Then ψ(r) in
the asymptotic region can be presented in the form

ψ(r)|z→−∞ =
∫

A(k⊥) eik⊥r⊥g(z,k⊥)
dk⊥

(2π )2
, (23)

where r⊥ = (x,y) = (r⊥ cos ϕ,r⊥ sin ϕ), k⊥ = (kx,ky) =
(k⊥ cos χ,k⊥ sin χ ), and

g(z,k⊥) = e−iπ/122π1/2(2F )−1/6Ai(ζ ), (24a)

ζ = 2e−iπ/3

(2F )2/3

[
E − Fz − k2

⊥
2

]
. (24b)

Here Ai(x) is the Airy function [65]. Thus the amplitude of
ionization with the transverse momentum k⊥ is given by

A(k⊥) = 1

g(z,k⊥)

∫
ψ(r) e−ik⊥r⊥dr⊥

∣∣∣∣
z→−∞

. (25)

Substituting Eq. (4) here, we obtain

A(k⊥) = eimχ

√
2π

A(k⊥), (26)

where

A(k⊥) = 2πe−imπ/2

g(z,k⊥)

∫ ∞

0
ψ(ξ,η)Jm(k⊥r⊥)r⊥dr⊥

∣∣∣∣
z→−∞

.

(27)

Equations (19) and (23) give two different representations of
the same solution to Eq. (1) in the asymptotic region, so one
can expect that the ionization amplitude A(k⊥) can be
expressed in terms of the function φ(ξ ). However, as far as
we know, such an expression does not exist in the literature.

To derive the desired relation, let us consider the asymp-
totics defined by

z → −∞, r⊥ = O(|z|1/2), k⊥ = O(|z|0). (28)

In this limit, we have

ξ = r2
⊥

2|z| + O(|z|−1), η = 2|z| + r2
⊥

2|z| + O(|z|−1), (29)

and

ψ(ξ,η)

g(z,k⊥)

∣∣∣∣
z→−∞

= 1

|z|1/2
exp

[
ik2

⊥|z|1/2

(2F )1/2
+ iF 1/2r2

⊥
2|2z|1/2

]
φ

(
r2
⊥

2|z|
)
.

(30)

In addition, the Bessel function in Eq. (27) can be substituted
by its asymptotics for large values of the argument. The product
of the exponential factor in Eq. (30) and Jm(k⊥r⊥) is a rapidly
oscillating function with a phase of order O(|z|1/2), so the
integral in Eq. (27) can be calculated using the steepest descent
method. The only saddle point contributing to the integral is
located at

r⊥ = k⊥|2z|1/2

F 1/2
, (31)

which agrees with Eq. (28). This point has a simple physical
meaning: the coordinate of an ionized electron accelerated
by the electric field at large times is (r⊥,z) = (k⊥t,−F t2/2),
independently of the initial conditions, which after eliminating
the time t leads to Eq. (31). The last factor in Eq. (30) has a
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phase of order O(|z|0), so it does not affect the position of the
saddle point. Calculating the integral in Eq. (27), we find

A(k⊥) = 23/2πi

F 1/2
φ

(
k2
⊥
F

)
. (32)

The TMD of the ionized electrons is thus given by

P (k⊥) ≡ |A(k⊥)|2 = 8π2

F

∣∣∣∣φ
(

k2
⊥
F

)∣∣∣∣
2

. (33)

This formula is the main analytical result of this work. Taking
into account Eq. (20), it expands the TMD in terms of the
asymptotic basis φν(ξ ) and coefficients fν . This expansion
plays a fundamental role in the present problem as, for
example, the partial-wave expansion of a scattering amplitude
in scattering theory [21,66]. For the hydrogen atom, only one
term is present in the expansion. This is yet another interesting
manifestation of the enhanced O(4) symmetry of the Coulomb
potential [21,67].

B. Weak-field limit

For a better understanding of the physical meaning of the
asymptotic basis φν(ξ ) and coefficients fν introduced in the
present formulation, as well as for relating our results to
previous studies, it is instructive to consider the deep tunneling
regime defined by

F � κ
3, κ = (2|E0|)1/2. (34)

This regime is characterized by the presence of a wide potential
barrier for the motion in η that extends from the atomic core to
the outermost turning point ηt ≈ −2E0/F � ηc for Eq. (17).
The ionization occurs by tunneling through the barrier. The
tunneling probability is exponentially small for F → 0, so we
have

� � E . (35)

Thus in the presence of a weak electric field the bound
atomic state turns into a narrow resonance. It should be
noted that resonance is an asymptotic notion which acquires
physical meaning only if the condition (35) is satisfied.
The SS’s representing resonances posses some additional
properties which do not hold in the general case [3,4,6]. The
eigenfunction ψ(r) in this case is almost real and coincides
with the unperturbed bound state in the region η <∼ ηm, where
ηm is defined by ηt � ηm � F/�2. Indeed, as can be seen
from Eqs. (18) and (19), which hold for η � ηt and hence
are valid for η ∼ ηm, the exponential growth of ψ(r) reveals
itself only beyond η ∼ F/�2. Taking into account Eq. (8), we
obtain ∫

η�ηm

|ψ(r)|2dr = 1 + O(�). (36)

Integrating both sides of Eq. (22) over the region η � ηm,
substituting into the left-hand side Eqs. (4) and (19), and using
Eq. (36), we find

� =
∑

ν

�ν + O(�2), �ν = |fν |2. (37)

Thus coefficients fν define the partial widths �ν of the SS for
ionization into channel ν. Relations similar to Eqs. (36) and

(37) hold also for SS’s representing resonances in three-body
Coulomb systems [13]. On the other hand, integrating both
sides of Eq. (22) over the region z � −ηm/2 and substituting
into the left-hand side Eq. (23), we obtain∫ ∞

0
P (k⊥)

k⊥dk⊥
(2π )2

= � + O(�2). (38)

Thus the total outgoing flux is equal to �, as one would expect.
It can be seen that (37) and (38) agree with the general formula
(33), as it should be. We recall that Eqs. (36) through (38) hold
only in the limit F → 0, when the condition (35) is satisfied.

For F = 0, the solutions to Eq. (16) are given by

βν |F=0 ≡ β(0)
ν = Zas − κ

(
ν + 1 + |m|

2

)
, (39a)

φν(ξ )|F=0 ≡ φ(0)
ν (ξ ) = κ

1/2s|m|/2e−s/2L̃(|m|)
ν (s), s = κξ,

(39b)

where L̃(α)
n (x) are the normalized generalized Laguerre

polynomials [65]. From the semiclassical solution to Eq. (17)
in the underbarrier region ηc < η < ηt , we obtain

fν |F→0 = f̃νF
−β(0)

ν /κ exp

(
− κ

3

3F

)
, (40)

where the coefficients f̃ν do not depend on F . Since β
(0)
0 >

β
(0)
1 > β

(0)
2 . . . , the dominant contribution to Eq. (33) for

F → 0 comes from the channel with ν = 0, unless it is
accidentally f̃0 = 0. Thus for a general potential of the type
(3) in the weak-field limit, the TMD P (k⊥) as a function of
k⊥ takes the form

P (k⊥)|F→0 ∝ k
2|m|
⊥ exp

(
−κk2

⊥
F

)
, (41)

and � as a function of F behaves as

�|F→0 ∝ F 1+|m|−2Zas/κ exp

(
−2κ

3

3F

)
. (42)

From Eqs. (37) and (40), one can also find the partial widths
�ν . For the hydrogen atom, the unperturbed bound state is
identified by parabolic quantum numbers (nξ ,nη,m) [21]. In
this case, only one coefficient f̃ν with ν = nξ differs from
zero, κ = 1/n, where n = nξ + nη + |m| + 1, and instead of
Eqs. (41) and (42) we have

P (k⊥)|F→0 ∝
[
φ(0)

nξ

(
k2
⊥
F

)]2

, (43)

and

�|F→0 ∝ F−1−|m|−2nη exp

(
− 2

3n3F

)
. (44)

Equations (43) and (44) coincide with Eqs. (41) and (42),
respectively, only for states with nξ = 0; otherwise, the
weak-field behavior of P (k⊥) and � for the hydrogen atom
differs from that for other atoms. We do not give explicit
expressions for the coefficients in Eqs. (41) through (44),
because these equations play only a secondary role in the
present work; our primary interest is in the exact results
beyond the weak-field limit to be reported in the following.

Equations (41) through (44) can be compared with the re-
sults of previous studies. As was mentioned in the Introduction,
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the asymptotics of � for F → 0 was considered by many
authors. The basic problem of the hydrogen atom in the ground
state was first treated in [22], where the exponential factor
in Eq. (44) was obtained. The correct pre-exponential factor
4F−1 was first obtained using the semiclassical approximation
in [21]. The asymptotics of � for an arbitrary bound state of the
hydrogen atom was obtained in [24]. Equation (44) agrees with
the results of [21,24]. Tunneling ionization from a finite-range
potential (Zas = 0) was first considered in [36]. It was shown
that the exponential factor in this case is similar to that for the
Coulomb potential, but the pre-exponential factor for the 1s

state is proportional to F instead of F−1. Equation (42) with
m = 0 agrees with the results of [36]. We are not aware of
any discussions of the TMD in the stationary framework; the
available results for P (k⊥) were obtained in the low-frequency
limit of the nonstationary Keldysh theory [41] in [42,43].
Equation (41) with m = 0 agrees with the Gaussian shape
of the TMD following from the results of [42,43] in the limit
γ → 0, for details see [44]. This result was reproduced by
subsequent authors [46]. In more recent studies, the origin of
the theoretical construction [41–43] that has led to Eq. (41)
and, more importantly, its limitations were forgotten, and the
Gaussian shape of the TMD for ionization by intense laser field
was attributed a universal character [68]. The present analysis
shows that Eq. (41) is indeed universal, that is, it applies to
all atoms, except for the hydrogen atom in excited states with
nξ = 0 and only in the deep tunneling regime (34). We will see
in the following that, beyond these limitations, the exact TMD
defined by Eq. (33) may qualitatively differ from Eq. (41).

V. ILLUSTRATIVE RESULTS

In practical calculations, instead of solving Eq. (12)
obtained by substituting the adiabatic expansion (11) into
Eq. (5), it is incomparably more efficient (less time consuming,
more accurate, and easier in implementation) to solve Eq. (5)
using the slow-variable discretization (SVD) method [55]. The
computational procedure used in the present calculations is
outlined in the Appendix. In the following we report some
illustrative numerical results.

A. Coulomb potential: H

Let us start with a purely Coulomb potential defined by
Eq. (3b) with Zas = 1 and ηc = 0, which corresponds to the
hydrogen atom. We consider four lowest SS’s of H originating
from the bound states with n = 1 and n = 2. The states are
labeled by their parabolic quantum numbers (nξ ,nη,m) in the
limit F → 0. The energies and widths for these states as
functions of F are shown in Fig. 1. The energy of the ground
state (0,0,0) first goes down, but then begins to rise, having a
minimum at F ≈ 0.736. Among the three states with n = 2,
the state (0,1,0) extends toward the direction of ionization
z → −∞, so it has the lowest energy and largest width. The
opposite is true for the state (1,0,0). The rotationally excited
state (0,0,1) behaves intermediately. For all the states, the
width monotonically grows with F . There is an extensive
literature on calculations of the complex energy eigenvalues
for the hydrogen atom in a static electric field [25–34]. For
the Coulomb potential, the SVD expansion (A6) contains only
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FIG. 1. (Color online) The energy E and width � for four lowest
Siegert states of H labeled by parabolic quantum numbers (nξ ,nη,m).
Solid lines: exact results. Dashed lines: the second-order perturbation
theory [21], for E , and semiclassical asymptotics [21,24], for �.

one channel, so it is easy to achieve relatively high accuracy
of the results. The results shown in Fig. 1 are converged
to at least ten significant digits; within this accuracy, they
coincide with the results reported in [25–34]. For comparison,
we also show the results of the second-order perturbation
theory [21] and semiclassical asymptotics [21,24]. One can
see that these approximations, which formally apply under the
condition (34), are valid quantitatively only at very small F .
For example, for the ground state, their error reaches 10%
already at F = 0.26 and F = 0.01 for E and �, respectively.
For states with n = 2, this happens at about eight times smaller
values of F , in accordance with Eq. (34).

For the Coulomb potential, there is only one term in
Eq. (20), hence the TMD (33) is defined by the coefficient
fν and function φν(ξ ) for a single asymptotic channel. The
TMD’s for the same four states of H are shown in Fig. 2. To
bring the vastly different in magnitude results for the different
values of F to a common scale, we divide P (k⊥) by

N = F−1
∫ ∞

0
P (k⊥)k⊥dk⊥, (45)

and show it as a function of the scaled argument k⊥/F 1/2.
Another goal of such a normalization and scaling is to reveal
the dependence of the shape of the TMD on F , which is defined
by the channel function φν(ξ ), disregarding its magnitude
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FIG. 2. (Color online) The transverse momentum distributions
for the same four states of H as shown in Fig. 1. The normalization
factor N is defined by Eq. (45). Thick dashed lines: the weak-field
limit results from Eq. (43).

determined by the coefficient fν . If φν(ξ ) were independent of
F , as is the case in the weak-field limit, the different curves for
the same state in Fig. 2 would coincide. Indeed, one can see that
the TMD’s for the different states converge to those defined by
Eq. (43) as F → 0, and for the ground state this convergence
is faster than for states with n = 2. In the weak-field limit,
the width of the TMD in k⊥ grows ∝ F 1/2, see Eq. (43).
However, for larger values of F , this growth slows down, as
can be seen from the fact that the curves in Fig. 2 shrink to
the left as F grows. This is explained by the action of the term
Fξ 2/4 in Eq. (16a), which reduces the extent of the asymptotic
channel functions φν(ξ ) in ξ . In general, Fig. 2 shows that the
dependence of the shape of the TMD’s on F is rather strong,
and only for very weak fields are the results from Eq. (43)
correct quantitatively.

B. Potentials with non-Coulombic core: Ne, Ar, Kr, and Xe

Many-electron atoms are often described in the
single-active-electron approximation by potentials of the form

V (r) = −Zeff(r)

r
, (46)

where the effective charge Zeff(r) monotonically decreases
from the bare nuclear charge Z, at r = 0, to Zas = 1, at
r → ∞. Equation (46) complies with Eq. (3). A simple
analytical formula for Zeff(r) was proposed in [57],

Zeff(r) = Z − (Z − 1){1 − [(b/a)(ear − 1) + 1]−1}. (47)

The recommended values of the parameters a and b for
the different atoms can be found in [58]. This function
exponentially approaches its asymptotic value 1 with the
exponent a in the interval 1-2, so Eq. (3b) can be safely
imposed in the numerical calculations at ηc ∼ 30 − 50,
depending on the accuracy desired.

We consider an electron in the state with m = 0 in the
outer shells 2p, 3p, 4p, and 5p of the noble-gas atoms
Ne, Ar, Kr, and Xe, respectively. The binding energies |E0|
in these states obtained using Eqs. (46) and (47) with the
parameters from [58] are 0.811, 0.606, 0.459, and 0.486, while
the exact ionization potentials are 0.793, 0.579, 0.515, and
0.446, respectively. The error varies from 2% for Ne to 11%
for Kr. Such a poor accuracy of the binding energies results
from a compromise in attempting to simultaneously reproduce
several global atomic properties and is a price for simplicity
of this model potential [57,58]. More accurate one-electron
potentials are available in the literature [69,70], but for the
present illustrative purposes it is sufficient to use the one
described above.

The energies and widths for the SS’s of the four noble-gas
atoms as functions of F are shown in Fig. 3. The energy
behaves nonmonotonically. First it goes down, with |E −
E0| ∝ F 2, in agreement with the second-order perturbation
theory. Then it begins to rise. For Xe, it reaches a maximum at
F ≈ 0.37 and then rapidly goes down again. The same happens
for the other atoms at larger values of F ; the corresponding
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FIG. 3. (Color online) The energy E and width � for the
Siegert states of Ne(2p), Ar(3p), Kr(4p), and Xe(5p) in the
single-active-electron approximation with the model potential defined
by Eqs. (46) and (47), see Refs. [57,58]. The results labeled
by Kr′(4p) are obtained with slightly modified parameters of the
potential.
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TABLE I. Convergence of the Siegert eigenvalue E = E − i�/2
for Ar(3p) with respect to the number of adiabatic channels Nch in
the SVD expansion (A6). All digits in the last line for each value of
F are converged. a(b) means a × 10b.

F Nch −E �

0 5 0.600 804 0
10 0.605 514 0
15 0.605 671 0
20 0.605 683 0
25 0.605 684 0
30 0.605 685 0

0.05 5 0.603 928 0.270 883(−5)
10 0.607 101 0.237 055(−5)
15 0.607 143 0.236 645(−5)
20 0.607 144 0.236 633(−5)

0.1 5 0.612 559 0.560 766(−2)
10 0.614 940 0.538 148(−2)
15 0.614 960 0.537 965(−2)
20 0.614 961 0.537 961(−2)

0.2 5 0.614 810 0.939 032(−1)
10 0.616 802 0.931 251(−1)
15 0.616 812 0.931 216(−1)
20 0.616 812 0.931 215(−1)

0.5 5 0.522 728 0.242 062
10 0.523 586 0.241 715
15 0.523 588 0.241 714

1.0 5 0.463 957 0.585 915
10 0.464 171 0.585 483
15 0.464 172 0.585 482

maximum for Kr is located at F ≈ 0.94. For small F , the
width rapidly decreases with the increase of the binding energy
|E0|, so the smallest width corresponds to Ne, in agreement
with Eq. (42). However, the order of the curves may change
for larger F , as is the case for Kr and Xe. In fact, with the
parameters from [58], the binding energy of Kr is smaller
than that of Xe, which is wrong. By slightly modifying the
parameters in Eq. (47) for Kr (1.320 and 4.355 instead of 1.351
and 4.418 for a and b, respectively), we obtain |E0| ≈ 0.514,
which is much closer to the exact value 0.515 and restores the
correct order of the binding energies. The dashed lines in Fig. 3
labeled by Kr′(4p) are obtained with the modified parameters.
This illustrates the sensitivity of the results to a variation of
the potential.

For non-Coulombic potentials, several adiabatic channels
are to be included in the SVD expansion (A6) to obtain
converged results. The results shown in Fig. 3 are converged
to about six significant digits. The rate of convergence of
the Siegert eigenvalue E with respect to the number of
channels is illustrated in Table I. The convergence becomes
faster for larger F because the relative role of the term with
the electric field in Eq. (1) grows, and this term is exactly
separable in parabolic coordinates. To put it differently, the
extent of the adiabatic basis functions φν(ξ ; η) in ξ decreases
as F grows, hence the intervals between the eigenvalues
βν(η) grow, and the nonadiabatic couplings (13) become
weaker.
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FIG. 4. (Color online) The transverse momentum distributions
for the same four atoms as shown in Fig. 3. The normalization factor
N is defined by Eq. (45). Thick dashed lines: the weak-field limit
results from Eq. (41).

The TMD’s for the noble-gas atoms are shown in Fig. 4.
For small F , the results are close to the Gaussian distribution
defined by Eq. (41). This corresponds to the situation where
the lowest asymptotic channel with ν = 0 gives a dominant
contribution to Eqs. (20) and (33). However, for larger F , the
behavior of P (k⊥) becomes nonmonotonic. This is explained
by the emergence of a nonnegligible contribution from the
channel with ν = 1. The dependence of the coefficients fν in
Eq. (20) on F is illustrated in Fig. 5. In agreement with the
analysis of Sec. IV B, only f0 survives for F → 0. For larger
F , f1 becomes comparable with f0. As is seen from Fig. 5,
for Ar in the interval of F under consideration, the ionization
dominantly occurs in the lowest two channels with ν = 0
and ν = 1; the contributions from higher channels rapidly
decay with ν and remain negligible. An interference of the
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FIG. 5. (Color online) The asymptotic coefficients fν for Ar(3p).
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contributions from these two channels results in the behavior
seen in Fig. 4. As F grows, the Gaussian shape of P (k⊥)
changes qualitatively: a maximum at k⊥ = 0 first turns into a
minimum, and then again becomes a maximum. For example,
for Ar, a change from a maximum to minimum occurs for
the first time between F = 0.3 and F = 0.4; indeed, this is
where f1 reaches an appreciable value, see Fig. 5. We again
conclude that the dependence of the shape of the TMD’s on F

is rather strong, and for sufficiently large F Eq. (41) becomes
wrong qualitatively.

C. Finite-range potential: H−

We finally consider a finite-range potential modeling the
force that binds the outer electron in a hydrogen negative
ion,

V (r) = −V0 exp
(−r2/r2

0

)
. (48)

With the parameters V0 = 0.383 1087 and r0 = 2.5026, this
potential reproduces the correct values of the binding energy
|E0| = 0.027 7510 and s-wave scattering length for the e−H
interaction [19]. It was used in [19,20] for the analysis
of photodetachment of H− by high-frequency laser pulses.
Equation (48) complies with Eq. (3) with Zas = 0 and
ηc ∼ 20.

The energy and width for the SS of H− as functions of
F are shown in Fig. 6. The binding energy in the present
case is very small, so the effective strength of the electric
field F/κ

3 for the same value of F is larger than that for
neutral atoms, see Eq. (34). The interval where E depends on
F quadratically (the second-order Stark shift) is so narrow
that it cannot be seen in the scale of Fig. 6. The width �

rapidly grows with F and becomes equal to |E | already at
F = 0.025. The TMD’s for several values of F are shown
in Fig. 7. Only for as weak fields as F = 0.001 the exact
TMD approaches that defined by Eq. (41). For larger F , in
contrast to the noble-gas atoms, the TMD for H− preserves a
bell-like shape, but its width is essentially smaller than that
following from Eq. (41). Such a difference in the behavior of
the shape of the TMD is explained by the relative phase of
the first two terms in Eq. (20) near ξ = 0, which results in
destructive interference, for potentials with a Coulomb tail,
and constructive interference, for finite-range potentials.
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FIG. 6. The energy E and width � for the Siegert state of H−

in the single-active-electron approximation with the model potential
defined by Eq. (48).
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FIG. 7. (Color online) The transverse momentum distributions
for H−. The normalization factor N is defined by Eq. (45). Thick
dashed line: the weak-field limit results from Eq. (41).

VI. TRANSVERSE MOMENTUM DISTRIBUTION OF
PHOTOELECTRONS IN THE ADIABATIC REGIME

The present study of the atomic SS’s in a static electric field
is motivated by their applications in the adiabatic theory of
ionization of atoms by intense laser pulses [53]. Even though a
thorough development of this theory for the three-dimensional
case is not finished yet [54], the present work would be
incomplete without at least a preliminary illustration of the
role played by the SS’s in the laser-atom interaction problem.
To provide such an illustration, we consider ionization of Ar
described by the same one-electron potential as previously
by a linearly polarized half-cycle pulse of a time-dependent
electric field F(t) = F (t)ez, where

F (t) = −F0 sin2(πt/T ), 0 � t � T . (49)

The pulse amplitude F0 = 0.414 (I = 6.0 × 1015 W/cm2)
is chosen to be well above the boundary F ≈ 0.2 between
the tunneling and overbarrier regimes of ionization for the
3p (m = 0) state of Ar. We report calculations for the pulse
duration T = 45.48 (1.1 fs). A characteristic time scale
for this pulse can be estimated by T/2, so the adiabatic
parameter [53] in this case is ε = 4π/(|E0|T ) ≈ 0.46, which
is just the onset of the adiabatic regime. We are fully aware
that Eq. (49) is far from realistic laser pulses. However, our
goal here is to analyze the structure of a single photoelectron
wave packet created by a unidirectional pulse of electric field,
and to this end Eq. (49) is a quite suitable model.

We solved the time-dependent Schrödinger equation and
calculated the two-dimensional photoelectron momentum
distribution P (k⊥,kz) using a program described in [71,72];
the same program was used in [50–52]. The results are shown
in Fig. 8(a). Let us first discuss the extent of this distribution
in the longitudinal component kz of the photoelectron
momentum. In the adiabatic regime for the present pulse,
there is a one-to-one correspondence between kz and the
moment of ionization t given by the classical equation [53]

kz(t) = −
∫ T

t

F (t ′) dt ′, 0 � t � T . (50)

This equation implies that the photoelectron appears in the
continuum at the moment t with zero initial velocity and
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FIG. 8. (Color online) (a) The photoelectron momentum distri-
bution P (k⊥,kz) for Ar(3p) generated by a half-cycle pulse (49)
with F0 = 0.414 and T = 45.48 obtained by solving the time-
dependent Schrödinger equation. (b) The corresponding normalized
photoelectron momentum distribution P̃ (k⊥,kz) defined by Eq. (51).
(c) The normalized photoelectron momentum distribution in the
adiabatic approximation obtained from Eqs. (51) and (53).

its further motion is driven only by the electric field. We
emphasize that Eq. (50) is not taken for granted, but follows
from the adiabatic theory [53]. According to Eq. (50), electrons
ionized at earlier (later) stages of the pulse have larger (smaller)
values of kz. Thus the photoelectron momentum distribution
must be localized between kz(T ) = 0 and kz(0) = F0T/2 ≈
9.41. Indeed, one can see that P (k⊥,kz) rapidly vanishes
beyond the upper boundary of this interval. However, this func-
tion also decays to the left of a sharp maximum at (k⊥,kz) ≈
(0,8.5). The latter behavior is explained by depletion. The sur-
vival probability for the present pulse is P0 = 1.39 × 10−2. Al-
most complete ionization occurs in the initial rising part of the
pulse, so the probability to survive until later moments, which
contribute to smaller values of kz in the spectrum, is small.

Equations (49) and (50) establish a correspondence between
the longitudinal momentum kz and the value of the electric
field F at the moment of ionization t ; this defines a function
F (kz). For example, kz = 8.5 corresponds to t ≈ 11.64 and
F ≈ 0.21; this is the beginning of the overbarrier regime in
the rising part of the pulse. There is another moment t ≈ 33.84
and momentum kz = 0.91 corresponding to the same value of
F ; this is the end of the overbarrier regime in the falling part of
the pulse. The maximum field F = F0 = 0.414 corresponds to
t = T/2 = 22.74 and kz = F0T/4 ≈ 4.70. For kz > 8.5, the
distribution in k⊥ (i.e., the TMD of the photoelectrons) looks
more or less like a Gaussian. We wish to analyze the TMD

of the electrons ionized in the essentially overbarrier regime
corresponding to the interval 0.91 < kz < 8.5. To eliminate the
effect of depletion, we normalize the photoelectron momentum
distribution shown in Fig. 8(a) for each value of kz,

P̃ (k⊥,kz) = P (k⊥,kz)∫ ∞
0 P (k⊥,kz) dk⊥

. (51)

This function is shown in Fig. 8(b). Now one can clearly see
what happens with the TMD beyond the tunneling regime. The
main feature to be noticed in the figure is a dark spot centered
at (k⊥,kz) ≈ (0,4.70). This spot appears because a maximum
of P̃ (k⊥,kz) as a function of k⊥ at k⊥ = 0 turns into a minimum
as kz moves from the upper classical boundary of the spectrum
kz ≈ 9.41 to 4.70, which corresponds to the rising part of the
pulse. This evolution is repeated in the reverse order as kz

moves further to the lower classical boundary of the spectrum
kz = 0 in the falling part of the pulse. At the maximum of the
pulse, F = 0.414 and kz ≈ 4.70, the minimum of P̃ (k⊥,kz) at
k⊥ = 0 is most pronounced. The maximum of P̃ (k⊥,kz) for
this value of kz is located at k⊥ ≈ 0.7, which corresponds to
k⊥/F 1/2 ≈ 1.1. All these observations agree with the behavior
of the TMD for Ar(3p) as a function of k⊥ and F shown in
Fig. 4.

The adiabatic theory [53,54] enables us to elevate this
qualitative consideration to a quantitative level. According to
this theory, the survival probability is given by

P0 = exp

(
−

∫ T

0
�|F=|F (t)|dt

)
≈ 1.35 × 10−2, (52)

where � is the width of the SS originating from the initial
bound state of the atom, which should be taken for the
momentary absolute value of the electric field. This result
is very close to the exact one 1.39 × 10−2. The photoelectron
momentum distribution in the extreme adiabatic regime ε → 0
takes the form

P (k⊥,kz) ∝ P (k⊥)|F=F (kz). (53)

Here P (k⊥) is the TMD for the SS defined by Eq. (33), which
should be taken for the value of F that corresponds to the given
value of kz according to Eqs. (49) and (50). The coefficient in
Eq. (53) may depend on kz, but does not depend on k⊥. This co-
efficient cancels out upon substituting into Eq. (51), so Eq. (53)
is sufficient for calculating the normalized photoelectron
momentum distribution in the adiabatic approximation. The
result is shown in Fig. 8(c). This distribution is symmetric with
respect to the line kz ≈ 4.70 because of the symmetry of the
pulse (49), and vanishes beyond the upper classical boundary
of the spectrum kz ≈ 9.41. A more careful analysis involving
analytic continuation to complex values of F shows [54] that
the adiabatic approximation can be extended to the classically
inaccessible region kz > 9.41, which, however, goes beyond
the scope of the present paper. Apart from this region, one
should admit that Figs. 8(b) and 8(c) look very similar. Some
visible differences between the exact and adiabatic results can
be attributed to the lack of adiabaticity for the present pulse.
Thus the TMD of photoelectrons in the adiabatic regime is
determined by the TMD for the corresponding SS.

We can now return to a question raised in the Introduction:
Do the SS’s have some physical meaning in the overbarrier
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regime? In spite of the artificial character of the pulse defined
by Eq. (49) from the standpoint of laser physics, such a
pulse is in principle possible, so the photoelectron momentum
distribution shown in Fig. 8 is observable. Moreover, when
an atom is irradiated by a realistic few-cycle laser pulse of
sufficiently high intensity, almost complete ionization occurs
during the first unidirectional half-cycle of the field, so the
photoelectron wave packet created should be similar to the
one shown in Fig. 8. As follows from the present results and
will be shown in more detail in [54], the structure of such a
wave packet is determined by the properties of the SS. We thus
conclude that the atomic SS’s in a strong electric field acquire
physical meaning in the nonstationary context of the adiabatic
theory [53], and their properties are observable experimentally.
Of course, this conclusion is restricted by the validity of the
single-active-electron approximation.

VII. CONCLUSION

In this paper, we have introduced an efficient method to
calculate the atomic Siegert states in a static electric field. The
method enables one to obtain the eigenvalue and properly
normalized eigenfunction for a selected Siegert state as
functions of the electric field for a general class of one-electron
atomic potentials. The complex Siegert eigenvalue defines the
energy and ionization width of the state, see Eq. (7). An exact
expression for the transverse momentum distribution of the
ionized electrons in terms of the Siegert eigenfunction in the
asymptotic region is derived, see Eqs. (19) and (33). Thus
the method yields also the transverse momentum
distribution—an important characteristic of the Siegert states
that, to the best of our knowledge, was not discussed previ-
ously. The method is illustrated by calculations for a number of
typical atomic potentials. Although we have considered only
spherically symmetric potentials, the method is formulated
for a more general class of axially symmetric potentials, so
it is capable of treating, e.g., linear molecules aligned along
the electric field. By coupling the different m components
in the present formulation, the method can be extended
to any arbitrarily oriented molecules. This is important for
applications development that is in progress.

The ionization of atoms by a static electric field is un-
doubtedly one of the fundamental problems of atomic physics.
The main contribution of the present work to this problem
is the analysis of the transverse momentum distribution and
Eq. (33). A practical virtue of the atomic Siegert states in
an electric field stems from their applications in the adiabatic
theory of ionization of atoms by intense laser pulses [53].
The computational method introduced in this work makes the
extension of this theory to the three-dimensional case [54]
possible.
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APPENDIX: NUMERICAL PROCEDURE

The numerical procedure implementing the approach dis-
cussed in the main text and used in the calculations is based
on the SVD method [55] in combination with the R-matrix
propagation technique [56]. An essential element of this pro-
cedure is the discrete variable representation (DVR) [73–75];
all necessary details on constructing DVR’s associated with
the different types of classical orthogonal polynomials can
be found in [76]. A similar procedure is widely used in
scattering calculations; see, e.g., [76–83]. However, there
are two important differences: (a) the solution of interest
here satisfies the outgoing-wave boundary conditions, and (b)
here we deal with an eigenvalue problem. These differences
deserve a consideration. In the following we briefly discuss
the present procedure.

The adiabatic basis. Equations (9) and (16) are solved
by expansion in terms of the DVR basis constructed from
the generalized Laguerre polynomials L

(|m|)
n (sξ ) [76]. This

basis exactly incorporates the boundary conditions (9b) and
(16b). The scaling factor s defines the extent of the DVR
basis functions in ξ ; a proper choice of this parameter may
accelerate convergence of the expansion. For all states of H
and the ground state in non-Coulombic potentials (e.g., for H−)
good performance is achieved with s = κ, see Eq. (34). For
excited states in non-Coulombic potentials [e.g., for Ar(3p)]
because of the coupling with lower adiabatic channels, it is
more efficient to use s defined by Eq. (34) with E0 substituted
by something intermediate between E0 and the energy of the
ground state. Further acceleration of the convergence can be
achieved by making the choice of s dependent on F .

The inner region, 0 � η � ηc. The bulk of the calculations
is associated with solving Eq. (5) in the inner region. We divide
it into Nsec sectors with the boundaries at η̄k ,

0 = η̄0 < η̄1 < · · · < η̄Nsec = ηc. (A1)

Consider the kth sector,

η̄− ≡ η̄k−1 � η � η̄k ≡ η̄+. (A2)

Introduce the Bloch operator [84],

L = η [δ(η − η̄+) − δ(η − η̄−)]
∂

∂η
. (A3)

The R-matrix basis in the sector is defined by[
∂

∂η
η

∂

∂η
− L − m2

4η
+ B(η) + Ēη

2
+ Fη2

4

]
ψ̄(ξ,η) = 0.

(A4)

This equation differs from Eq. (5) by the term with L, which
incorporates the R-matrix boundary conditions. Introduce a
new variable x in the sector,

η(x) = s(xc + x), − 1 � x � 1, (A5a)

s = η̄+ − η̄−
2

, xc = η̄+ + η̄−
η̄+ − η̄−

. (A5b)
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Let xi and πi(x), i = 1, . . . ,NDVR, be the Gaussian quadrature
points and DVR basis functions compatible with the boundary
conditions for the solution to Eq. (5) at the ends of the sector,
and ηi = η(xi). In the first sector, to incorporate the regularity
boundary conditions (14), the DVR basis is constructed from
the Jacobi polynomials P

(0,|m|)
n (x); in all subsequent sectors,

we use the Legendre polynomials Pn(x) [76]. The solutions to
Eq. (A4) are sought in the form of the SVD expansion [55]

ψ̄(ξ,η) =
NDVR∑
i=1

Nch∑
ν=1

ciνπi(x)φν(ξ ; ηi), (A6)

where Nch is the number of adiabatic channels included in the
calculations. Substituting this expansion into Eq. (A4), one
obtains an algebraic SVD eigenvalue problem,

∑
jµ

KijOiν,jµcjµ −
[
βν(ηi) + Ēηi

2
+ Fη2

i

4

]
ciν = 0, (A7)

where Kij is the DVR kinetic energy matrix,

Kij = 1

s2

∫ 1

−1

dπi(x)

dx
η(x)

dπj (x)

dx
dx

+
∫ 1

−1
πi(x)

m2

4η(x)
πj (x) dx, (A8)

and Oiν,jµ is the overlap matrix for the adiabatic bases at the
different quadrature points,

Oiν,jµ = 〈φν(ξ ; ηi)|φµ(ξ ; ηj )〉. (A9)

The DVR matrix (A8) can be calculated analytically using
the formulas given in [76]; the overlap matrix (A9) is
calculated numerically using the Gaussian quadrature defining
the Laguerre DVR in ξ . The eigenvalues and eigenvectors of
Eq. (A7) and the corresponding solutions to Eq. (A4) will be
denoted by

Ēn, cn
iν, ψ̄n(ξ,η), n = 1,2, . . . ,NSVD, (A10)

where NSVD = NDVRNch. The solutions are orthogonal in the
region (2a) and (A2) with the weight η. We normalize them by
∫ η̄+

η̄−
〈ψ̄n(ξ,η)|ψ̄m(ξ,η)〉ηdη = s

∑
iν

cn
iνc

m
iνηi = δnm. (A11)

Let R(η; E) denote the R-matrix [85] for the solutions to
Eq. (5) defined with respect to the adiabatic basis; the defining
equation reads

〈φν(ξ ; η)|ψ(ξ,η)〉 =
∑

µ

Rνµ(η; E)

〈
φµ(ξ ; η)

∣∣∣∣∂ψ(ξ,η)

∂η

〉
.

(A12)

Using the solutions to Eq. (A7), one can propagate R(η; E)
through the sector. The propagation is accomplished by means
of the equation [56]

R(η̄±; E) = ±R(±,±) −R(±,∓)[R(η̄∓; E) ±R(∓,∓)]−1R(∓,±),

(A13)

where the matrices R(±,±) are given by

R(±,±)
νµ = 2

NSVD∑
n=1

f̄ n
ν (η̄±)f̄ n

µ (η̄±)

Ēn − E
. (A14)

Here

f̄ n
ν (η̄±) = η̄

1/2
± 〈φν(ξ ; η̄±)|ψ̄n(ξ ; η̄±)〉

= η̄
1/2
±

∑
jµ

cn
jµπj (±1)O±

ν,jµ, (A15)

are the surface amplitudes of the R-matrix eigenfunctions, and

O±
ν,jµ = 〈φν(ξ ; η̄±)|φµ(ξ ; ηj )〉, (A16)

are the surface overlap matrices. Solving Eq. (A7) for each
sector in the inner region (A1) and applying Eq. (A13), one
can propagate R(η; E) between any two boundary points η̄k .
We also have〈

φν(ξ ; η)

∣∣∣∣∂ψ(ξ,η)

∂η

〉∣∣∣∣
η=η̄±

=
∑

µ

D(±)
νµ (E)

〈
φµ(ξ ; η)

∣∣∣∣∂ψ(ξ,η)

∂η

〉∣∣∣∣
η=η̄∓

, (A17)

where

D(±)(E) = ∓
(

η̄∓
η̄±

)1/2

[R(η̄±; E) ∓ R(±,±)]−1R(±,∓).

(A18)

The outer region, η > ηc. Here, Eq. (5) reduces to un-
coupled equations (17) which can be solved by the standard
fourth-order Runge-Kutta method [86]. However, it is difficult
to achieve high accuracy in the calculations by applying
the outgoing-wave boundary condition (18) on the real axis
because the solution rapidly oscillates and approaches this
asymptotics very slowly. The way of resolving this difficulty
is an important technical novelty of the present procedure. We
solve Eq. (17) along the steepest descent contour C̃ defined by

Re
∫ η

ηc

[
1 − m2

4η′2 + βν

η′ + E

2
+ Fη′

4

]1/2

dη′ = 0 → η ∈ C̃.

(A19)

This contour begins at η = ηc and runs to infinity parallel to the
ray arg η = π/3, hence Eqs. (18) amount to zero asymptotic
boundary condition for fν(η) on C̃. We start from a point
η∞ ∈ C̃, for which the integral in Eq. (A19) has a sufficiently
large value, and propagate the solution of Eq. (17) along C̃ to
ηc by the Runge-Kutta method. Because of the finite accuracy
of the calculations, independently of the initial conditions for
fν(η), only the exponentially growing solution (i.e., the one
we need) survives in the propagation. Remarkably, this well-
known numerical instability, which usually causes problems in
calculations, plays a positive role in the present case. We thus
obtain the solutions to Eqs. (17) and (18) up to yet unknown
constant coefficients. At a later stage of the calculations, we
use C̃ instead of the complex part of the contour (21) for
normalization of the SS.
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The matching condition. From Eq. (14), for the regular
solutions to Eq. (5) we have

Rνµ(0; E) = 0. (A20)

From the fact that Eq. (12) become uncoupled in the outer
region η > ηc, for the outgoing-wave solutions to Eq. (5) we
have

Rνµ(ηc; E) = rνδνµ, rν = fν(η)

f ′
ν(η)

∣∣∣∣
η=ηc

, (A21)

were rν , ν = 0, . . . ,Nch, are defined by the solutions to
Eqs. (17) and (18) discussed previously. Equations (A20)
and (A21) provide the boundary conditions for the R-matrix
propagation. Starting from Eq. (A20) and propagating R(η; E)
through k sectors to the right, we obtain Rleft(η̄k; E). On the
other hand, starting from Eq. (A21) and propagating R(η; E)
through Nsec − k sectors to the left, we obtain Rright(η̄k; E).
The requirement of continuity of the solution to Eq. (5) and

its derivative with respect to η at η = η̄k leads to the matching
condition

det[Rleft(η̄k; E) − Rright(η̄k; E)] = 0. (A22)

The values of E for which this equation is satisfied are the
Siegert eigenvalues. We solve Eq. (A22) iteratively, starting
from the known solution E = E0 for the selected SS for F = 0
and incrementing F by sufficiently small steps. At each step,
we seek the zero of the smallest eigenvalue of the matrix in
Eq. (A22) closest to the solution E found in the previous step
using the Newton method [86]. The eigenfunction ψ(ξ,η) is
then constructed by propagating the corresponding eigenvector
using Eqs. (A12), (A13), (A17), and (A18). Applying the
normalization condition (8), we finally obtain the asymptotic
coefficients fν in Eq. (18a). In this way, the SS can be
analytically continued to any value of F . We note that this
procedure works also for complex F , which is essential for its
applications in the adiabatic theory [53,54].
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