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We consider theoretically ionization of an atomic target by fast electron impact at large energy and momentum
transfer and in the presence of laser radiation. The laser electric-field amplitude is weak compared to the typical
field in the target. Two frequency regimes are investigated according to whether the laser frequency is (i)
much smaller than or (ii) resonant to the frequency of the transition from the ground to the first excited target
state. Fast incident, scattered, and ejected electrons are described using Volkov solutions. The dressing of the
bound-electron state by the laser field is accounted for within time-dependent perturbation theory in the case of the
low-frequency regime and within the rotating wave approximation in the case of a resonant one. The interaction
of the incident electron with the target is treated in the first Born approximation. For atomic hydrogen embedded
in a linearly or circularly polarized laser field, we discuss how the polarization-vector orientation influences
the momentum-dependent (e,2e) differential cross sections assisted by exchange of few photons between the
colliding system and the field. In addition, we inspect the dependence of the cross sections on the dressing of the
hydrogen state.
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I. INTRODUCTION

More than 40 years ago Smirnov and Neudatchin proposed
to use the (e,2e) method for measurement of electron-
momentum distribution in matter [1]. Since then the method
has developed into a powerful tool for exploring the electronic
structure of various systems ranging from atoms [2,3] and
molecules [4] to clusters [5] and solids [6]. In the literature
it is often referred to as electron momentum spectroscopy
(EMS) (see Refs. [7–10] and references therein). The key
feature of EMS is the kinematics of quasielastic knock-
out of the target electron by the fast incoming electron at
large energy and momentum transfer. This is realized under
the so-called high-energy Bethe ridge conditions, when the
energy and momentum transferred to the target are absorbed
by the ejected electron. Describing the fast incoming and
outgoing electrons by plane waves and involving the Born
approximation (in this connection see Ref. [11]), one obtains
the coincident differential cross section which is proportional
to the one-electron momentum density |ψ(q)|2 of the ionized
electron orbital. The shape of the cross section as a function of
kinematic variables depends strongly only on q and therefore
it is usually called the momentum profile [9].

Recently, the first kinematically complete (e,2e) measure-
ments in the presence of a laser field were realized [12].
The experiment was performed on the helium atom at an
impact energy of 1 keV and in the so-called asymmetric
kinematics involving small energy and momentum transfer.
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The laser radiation with the photon energy h̄ω = 1.17 eV and
the intensity I = 4 × 1012 W/cm2 was by itself insufficient
to produce any appreciable ionizing effect. This ensures that
the ionization yield was produced due to electron-helium
collisions. The measured (e,2e) cross sections demonstrated
marked differences as compared to the field-free analogs.
This notable advance in experimental studies on electron-
impact ionization indicates that the first laser-assisted EMS
measurements are feasible in the near future. Therefore a
corresponding theoretical consideration becomes desirable.

A number of theoretical works on laser-assisted (e,2e)
collisions in atomic systems have been published so far. Some
overview of these works can be found in Mittleman [13]
and two review articles [14,15]. To our knowledge, all the
published studies deal with the case of kinematics that involves
small energy and momentum transfer. Such a situation is
unsurprising because historically this type of (e,2e) kinematics
is much more often investigated, both experimentally and
theoretically, than that of EMS. Let us briefly summarize
the main theoretical findings concerning the laser-field effect
on the coincident differential cross sections. First, the cross
sections are seriously modified even by the presence of
low-intensity laser radiation. Second, they strongly depend
on the dressing of the atomic target states. The latter finding
is especially interesting from the viewpoint of perspectives of
laser-assisted EMS. Indeed, the EMS is known to be very
informative about the target electron states and hence one
might expect that it is able to provide valuable information
on the field-dressed target states as well.

The purpose of the present work is twofold: (i) to deliver
a theoretical consideration of the laser-assisted EMS and (ii)
to examine the potential of the method for exploring laser-
modified electron-momentum distributions in atomic systems.
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Our theoretical analysis is performed for laser electric-field
amplitudes that are much weaker than the intra-atomic field.
Two physically distinct frequency regimes are in focus. In the
first regime, the laser frequency is well below the frequency
required to induce one-photon transitions from the ground
target state. The dressing of the target states in this case
is adequately described within time-dependent perturbation
theory. In the second regime, the laser frequency is resonant to
the transition from the ground to the first excited target state.
This case of laser parameters allows one to treat the target
as a two-level system and solve the laser-target interaction
problem in a nonperturbative fashion. The theory developed
for both frequency regimes is illustrated below with numerical
examples in the case of an archetypical target, namely, the
hydrogen atom.

The article is organized as follows. In Sec. II, we formulate
the S matrix for the EMS method when the laser field is present
and derive the coincident differential cross sections using
several models of the field-dressed target state. Numerical
results for the laser-assisted momentum profiles from atomic
hydrogen are discussed in Sec. III. The role of the polarization-
vector direction is analyzed for both linearly and circularly
polarized laser fields. The conclusions are drawn in Sec. IV.
Atomic units (a.u., e = h̄ = me = 1) are used throughout
unless otherwise stated.

II. THEORY

We consider the process where, in the presence of a laser
field, a fast electron impinges on an atomic target and induces
(e,2e) collision at high impact energy and large momentum
transfer. As a result, a fast outgoing electron pair emerges
which is formed by the scattered and ejected electrons. The
target is supposed to have only one active electron that
participates in the laser-assisted (e,2e) collision. In what
follows, the incident, scattered, and ejected electron energies
and momenta are specified respectively by (E0,p0), (Es,ps),
and (Ee,pe).

A. Laser field

The laser field is assumed to switch on and off adiabatically
at t → −∞ and t → +∞, respectively. More specifically, the
turn on and off time δT of the laser pulse as well as the laser
pulse duration T are very long on a time scale typical for the
target and much longer than the collision duration. We consider
the case of a monochromatic elliptically polarized laser wave
with frequency ω and a wave vector k (k = ω/c). Without loss
of generality we suppose that the z axis is directed along k.
A typical situation is when the laser wavelength λ = 2π/k is
much greater than the spatial extent both of the target and of the
region where the electron-electron collision takes place. This
validates the use of the dipole approximation for the electric
component of the laser field:

E(t) = Ex êx cos ωt + Ey êy sin ωt, (1)

where Ex > 0 and Ey > 0 (Ey < 0) for right (left) polarization.
As remarked in Sec. I, the present study deals with situations

in which the electric-field amplitude E0 =
√
E2

x + E2
y is much

less than the typical field in the target ET . The vector potential
corresponding to (1) is

A(t) = Ax êx sin ωt + Ay êy cos ωt, (2)

with Ax = −cEx/ω and Ay = cEy/ω. Note that the case of
linear polarization derives from (1) on setting Ex = E0 and
Ey = 0, while that of circular polarization amounts to Ex =
|Ey | = E0/

√
2.

B. S matrix

In the field-free case, the collision mechanism under the
kinematical conditions of EMS is as follows. The incoming
electron knocks out a bound electron from the target, trans-
ferring a large amount of its energy and momentum to the
ejected electron. An important feature is that the value of the
momentum

q = ps + pe − p0, (3)

which is opposite to the recoil momentum of the ionized target,
is very small compared to the values of the incoming and
outgoing electron momenta. Another important feature is that
the incoming and outgoing electron energies are high enough
to describe all the asymptotically free electrons by plane
waves. Under these circumstances, the (e,2e) process closely
resembles collision of two free electrons with initial momenta
p0,q and final momenta ps ,pe. The scattering amplitude
is therefore appropriately evaluated within the plane wave
Born approximation (PWBA) framework which treats the
process to the lowest order in the interaction between the
colliding electrons. The presence of a laser field does not affect
the electron-electron interaction responsible for the (e,2e)
transition but it modifies both the free- and the bound-electron
states. Summarizing the above remarks, the S matrix for the
laser-assisted (e,2e) collision in the kinematical regime of
EMS is given by the expression

S = −i

∫ ∞

−∞
dt

〈
χps

(r0,t)χpe
(r1,t)

∣∣∣∣ 1

r01

∣∣∣∣ χp0 (r0,t)ψT (r1,t)

〉
,

(4)

where r01 = r0 − r1 · χp(r,t) is a nonrelativistic Volkov
wave [16] describing the motion of the free electron under
the action of the laser field. ψT (r1,t) is a wave function of the
target electron state dressed by the laser field.

C. Free-electron states

The Volkov wave solves the following Schrödinger
equation:

i
∂

∂t
χp(r,t) = HF χp(r,t), (5)

where1

HF = 1

2

(
p̂ + 1

c
A(t)

)2

(6)

1Hereafter we use the velocity gauge.
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is the free-electron Hamiltonian in the presence of the laser
field. For the vector potential given by (2) we have (see, for
instance, Ref. [17])

χp(r,t) = exp{i[p · r − γ sin(ωt + δ) − Et − ζ (t)]}, (7)

where E = p2/2 and

γ =
√
E2

xp2
x + E2

yp2
y

ω2
, δ = arcsin

⎛
⎝ Expx√

E2
xp2

x + E2
yp2

y

⎞
⎠ ,

ζ (t) = 1

2c2

∫ t

−∞
A2(t ′)dt ′.

D. Bound-electron states

The target wave function is a solution to the time-dependent
Schrödinger equation

i
∂

∂t
ψT (r1,t) = HT ψT (r1,t), (8)

where

HT = 1

2

(
p̂1 + 1

c
A(t)

)2

+ V (r1) (9)

is the Hamiltonian of the target in the presence of the laser
field. It is usual to seek a solution to Eq. (8) in the form of the
expansion

ψT (r1,t) =
∑

n

an(t)e−iEntψn(r1), (10)

where En and ψn are eigenenergies and eigenstates of the
target Hamiltonian in the absence of the laser field. The target
state (10) satisfies the boundary condition

ψT (r1,t → −∞) → exp(−iEgt)ψg(r1),

where Eg and ψg(r1) are the energy and wave function of the
undressed ground state of the target.

1. Low-frequency regime

Let us consider the situation when ω � ωfg = Ef − Eg ,
where Ef is the energy of the first excited target state.
This means that the laser field can induce only multiphoton
transitions from the ground target state. The probability of such
transitions is very low due to the weakness of the field. Under
these circumstances, it is relevant to treat the time-dependent
interaction in the Hamiltonian (9),

W (t) = 1

c
A(t) · p̂1 + 1

2c2
A2(t),

as perturbation, when describing the laser influence on the
target states.

The gauge transformation an → exp[−iζ (t)]an removes
from the target Hamiltonian (9) the term quadratic in the
vector potential and the time-dependent perturbation treat-
ment can be developed in W (t) = A(t) · p̂1/c. In particular,
such an approach was adopted in the theoretical studies
on laser-assisted ionization of one-electron atoms and ions
upon charged-particle impact involving small energy and

momentum transfer [18]. The first order of the time-dependent
perturbation theory yields the field-dressed target state (10) as

ψT (r1,t) = exp{−i[Egt + ζ (t)]}
[
ψg(r1) + 1

2iω

×
∑
n�=g

(
eiωt 〈n|Exp̂1,x − iEyp̂1,y |g〉

ωng + ω

− e−iωt 〈n|Exp̂1,x + iEyp̂1,y |g〉
ωng − ω

)
ψn(r1)

]
, (11)

where ωng = En − Eg . Since ωng 	 ω, we may use in Eq. (11)
the low-frequency approximation ωng ± ω ≈ ωng . This yields
(see Ref. [19] for detail)

ψT (r1,t) = exp{−i[Egt + ζ (t)]}

×
(

1 + i

ω
(Exx1 sin ωt − Eyy1 cos ωt)

)
ψg(r1).

(12)

An alternative perturbation approach was employed in the
theoretical works devoted to the laser-assisted (e,2e) reactions
in atomic hydrogen [20] and helium [21] in asymmetric
coplanar geometry at small energy and momentum transfer.
After transforming in Eq. (10) from the velocity to the
length gauge, an → exp[−iA(t) · r1/c]an, one is left with the
perturbation interaction W (t) = E(t)r1 in the Hamiltonian.
Developing the time-dependent perturbation theory to first
order, one obtains

ψT (r1,t) = exp(−iEgt) exp

(
− i

c
A(t) · r1

)

×
[
ψg(r1) − 1

2

∑
n�=g

(
eiωt 〈n|Exx1 − iEyy1|g〉

ωng + ω

+ e−iωt 〈n|Exx1 + iEyy1|g〉
ωng − ω

)
ψn(r1)

]
. (13)

Equation (13) is simplified by employing low-energy and
closure approximations (see, for instance, Ref. [22]):

ψT (r1,t) = exp(−iEgt) exp

[
− i

c
A(t) · r1

]

×
(

1 − 1

ωcl
(Exx1 cos ωt + Eyy1 sin ωt)

)
ψg(r1),

(14)

where ωcl 	 ω is a “mean” target transition frequency (the
closure parameter).

Finally, the zeroth-order approximation to the solution of
Eq. (8), that is, the approach which was utilized in the early
theoretical studies on laser-assisted electron-atom ionizing
collisions (see, for instance, Refs. [23]), is given by the
field-free target state

ψT (r1,t) = exp(−iEgt)ψg(r1). (15)
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2. Resonant regime

When the laser frequency is close to or coincides with
ωfg = Ef − Eg , the main contribution to the field-dressed
wave function (10) is provided by the ground and first excited
target states. Therefore we can write down

ψT (r1,t) = e−iEgt ag(t)ψg(r1) + e−iEf t
∑

ν

afν
(t)ψfν

(r1),

(16)

where we have accounted for degeneracy of the excited
state. The expansion coefficients are found by substituting the
ansatz (16) in Eq. (8), projecting the left and right parts of the
Schrödinger equation onto the field-free states ψn (n = g,fν)
and then solving the resultant system of differential equations.
The latter can be done using the so-called rotating wave
approximation (RWA) [13] which neglects the fast-oscillating
terms ∝ e±i(ωfg+ω)t and ∝ e±iωt in comparison with the slow-
oscillating terms ∝ e±i(ωfg−ω)t . This procedure yields

a±
g (t) =

√
|�| + �

2�
exp[−iζ (t)] exp

(
− i

2
(� ∓ �)t

)
,

a±
fν

(t) = ∓
√

2Mfν,g√
�(|�| + �)

exp[−iζ (t)] exp

(
i

2
(� ± �)t

)
.

(17)

Here

Mfν ,g = ωfg

2ω
〈fν |Exx1 + iEyy1|g〉

and

� = ωfg − ω, � =
√

�2 + χ2
f,g (18)

are the resonance detuning and the generalized Rabi frequency,
respectively, while

χf,g = 2

√∑
ν

|Mfν,g|2

stands for the Rabi frequency. Note that according to Eq. (17)
the following relations hold true:

|a±
g (t)|2 +

∑
ν

|a±
fν

(t)|2 = 1, |a±
g (t)|2 � 1

2
,

(19)∑
ν

|a±
fν

(t)|2 � 1

2
.

The field-dressed target state is thus given by

ψ±
T (r1,t) = exp

[
−i

(
Egt+ 1

2
(� ∓ �)t+ζ (t)

)]√
|�| + �

2�

×
(

ψg(r1) ∓ e−iωt
∑

ν

2Mfν ,g

|�| + �
ψfν

(r1)

)
. (20)

The target wave function evolves into ψ+
T (r1,t) or ψ−

T (r1,t)
according to whether � � 0 or � < 0.

E. Differential cross sections

In this subsection we derive fully and tripley differential
cross sections (FDCS and TDCS) for the models of the

field-dressed target state presented above. These are given by
Eqs. (12), (14), (15), and (20). In deriving the cross sections,
the following formulas are employed [24]:

eiz sin ξ =
∞∑

l=−∞
Jl(z)eilξ , Jl(z) = i−l

π

∫ π

0
dξeiz cos ξ cos(lξ ),

where Jl is a Bessel function of integer order. These formulas
allow us to write down

exp

(
− i

c
A(t)r

)

= exp

(
i

ω
Exx sin ωt

)
exp

(
− i

ω
Eyy cos ωt

)

= 1

π2

∞∑
l,l′=−∞

ei(l+l′)ωt i−l

∫ π

0
dξ

∫ π

0
dξ ′ cos(lξ ) cos(l′ξ ′)

× exp

(
i

ω
(Exx cos ξ − Eyy cos ξ ′)

)

=
∞∑

L=−∞
eiLωt iL

∫ 2π

0

dξ

2π

× exp

[
i

(
Lξ − 1

ω
(Exx cos ξ − Eyy sin ξ )

)]
. (21)

1. The case of (12)

Inserting solutions (7) and (12) into Eq. (4), we get

S =− 4iπ

|p0 − ps |2
∞∑

N=−∞
2πδ(Es +Ee−E0−Eg+Nω)FN (q),

(22)

where the function FN (q) is given by

FN (q) = eiNϕ

[
JN (α) + JN−1(α)

e−iϕ

2ω

(
Ey

∂

∂qy

+ iEx

∂

∂qx

)

+ JN+1(α)
eiϕ

2ω

(
Ey

∂

∂qy

− iEx

∂

∂qx

)]
ψg(q), (23)

with

α =
√
E2

x q2
x + E2

y q2
y

ω2
, eiϕ = Eyqy + iExqx√

E2
x q2

x + E2
y q2

y

,

ψg(q) =
∫

dr1e
−iq·r1ψg(r1),

and the momentum q as defined in (3). It should be noted that
in the field-free case the function (23) reduces to FN (q) =
δN0ψg(q). If the target is a hydrogenlike ion with nuclear
charge Z (g = 1s), Eq. (23) gives

FN (q) =
√

Z3

π

8πZ(q2 + Z2 − 4Nω)

(q2 + Z2)3
eiNϕJN (α)

= iN

√
Z3

π

4Z(q2 + Z2 − 4Nω)

(q2 + Z2)3

×
∫ 2π

0
dξ exp{i[Nξ − α cos(ξ − ϕ)]}, (24)
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where we have used the recurrence relation [24]

JN−1(z) + JN+1(z) = 2N

z
JN (z).

On the basis of (22) we can present the FDCS as

d4σ

dEsdEed�sd�e

=
∞∑

N=−∞
d3σNδ(Es +Ee−E0−Eg+Nω),

(25)

where the TDCS or momentum profile corresponding to
absorption (N < 0) or emission (N > 0) of N photons by
the colliding system is given by

d3σN = pspe

(2π )3p0

(
dσ

d�

)
ee

|FN (q)|2. (26)

Here(
dσ

d�

)
ee

= 4

|p0 − ps |4
(

1 + |p0 − ps |4
|p0 − pe|4 − |p0 − ps |2

|p0 − pe|2
)
(27)

is the half-off-shell Mott-scattering cross section that
takes account of exchange between the colliding
electrons.

2. The case of (14)

Substituting the target state (14) in Eq. (4), the FDCS can
be presented as

d4σ

dEsdEed�sd�e

=
∞∑

N=−∞
d3σNδ(Es + Ee + Up − E0 − Eg + Nω), (28)

where

Up = E2
0

4ω2
(29)

is the ponderomotive energy. The momentum profile in
Eq. (28) has the same form as (26), with, however
[cf. Eq. (23)],

FN (q) = iN
∫ 2π

0

dξ

2π
exp{i[Nξ − α cos(ξ − ϕ) − β sin(2ξ )]}

×
[

1 + i

ωcl

(
Ex sin ξ

∂

∂qx

+ Ey cos ξ
∂

∂qy

)]

×ψg

(
q + ex

Ex

ω
cos ξ − ey

Ey

ω
sin ξ

)
, (30)

where

β = E2
x − E2

y

8ω3
. (31)

When the target is a hydrogenlike ion with nuclear charge Z,
we derive

FN (q) = iN

√
Z3

π

∫ 2π

0
dξ

4Z exp{i[Nξ − α cos(ξ − ϕ) − β sin(2ξ )]}
[q2 + Z2 + 2Up − 2αω sin(ξ − ϕ) + 4βω cos(2ξ )]3

×
[
q2 + Z2 + 2Up − 2αω

(
sin(ξ − ϕ) + 2i

ω

ωcl
cos(ξ − ϕ)

)
+ 4βω

(
cos(2ξ ) − 4i

ω

ωcl
sin(2ξ )

)]
. (32)

Here the closure parameter can be estimated as ωcl ∼ Z2/2.
Since ω � ω21, where ω21 = E2p − E1s = 3Z2/8, the terms
proportional to the ratio ω/ωcl bring only a minor correction
to FN (q).

3. The case of (15)

This case differs from the previous one in (30), namely,

FN (q)

= iNψg(q)
∫ 2π

0

dξ

2π
exp{i[Nξ−α cos(ξ−ϕ)+β sin(2ξ )]}.

(33)

Using (33) in the case when the target is a hydrogenlike ion
with nuclear charge Z, we receive

FN (q) = iN

√
Z3

π

4Z

(q2 + Z2)2

×
∫ 2π

0
dξ exp{i[Nξ − α cos(ξ − ϕ) + β sin(2ξ )]}.

(34)

If the laser field is circularly polarized then, in accordance
with (31), β = 0 and Eq. (34) acquires the form [cf. Eq. (24)]

FN (q) =
√

Z3

π

8πZ

(q2 + Z2)2
eiNϕJN (α). (35)

4. The case of (20)

Using Eq. (20) in the S matrix (4), the FDCS reads

d4σ±

dEsdEed�sd�e

=
∞∑

N=−∞
d3σ±

N δ

(
Es + Ee − E0 −Eg − �

2
± �

2
+ Nω

)
,

(36)

where the momentum profile has the form

d3σ±
N = pspe

(2π )3p0

(
dσ

d�

)
ee

|F±
N (q)|2, (37)
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with

F±
N (q) = eiNϕ

√
|�| + �

2�

(
JN (α)ψg(q)

∓ eiϕJN+1(α)
∑

ν

2Mfν ,g

|�| + �
ψfν

(q)

)
. (38)

If the target is a hydrogenlike ion with nuclear charge Z, then
fν = 2pm (m = 0,±1) and according to (38) we arrive at

F±
N (q) = eiNϕ

√
|�| + �

2�

√
Z3

π

8πZ

(q2 + Z2)2

×
[
JN (α) ∓

(
2

3

)5 2αω2

|�| +�

(q2 + Z2)2(
q2 + Z2

4

)3 JN+1(α)

]
,

(39)

where the generalized Rabi frequency is given by

� =
√

�2 +
(

8

9

)5
ω2

21

ω2

E2
0

Z2
.

III. RESULTS AND DISCUSSION

In this section, we present and analyze the results of
numerical calculations of the momentum profiles for the
laser-assisted (e,2e) process in symmetric noncoplanar EMS
kinematics (see, for instance, Ref. [2]). In this kinematics,
the scattered and ejected electron angles with respect to the
incident electron direction are θs = θe = 45◦, the incident
electron energy is E0 = 2 keV − Eg , and the scattered and
ejected electron energies are Es = Ee = E. As a target we
consider atomic hydrogen (Z = 1, Eg = −0.5 a.u.). The
TDCS is studied as a function of q which is varied by scanning
the out-of-plane azimuthal angle of the ejected electron φe.
We examine such a range of q values that in the absence
of the laser field the effects of distortion of the plane waves
and the second Born effects are negligible [3]. Thus, one can
safely neglect these effects in the presence of the laser field
as well.

In the case of linear polarization (LP), we inspect the
following two orientations of the laser electric field: E ‖
p0 (LP1) and E ‖ ζ (LP2), where ζ = [p0 × ps]. In the
case of circular polarization (CP), the following two ori-
entations of the laser wave vector are inspected: k ‖ ζ

(CP1) and k ‖ p0 (CP2). Note that below the Cartesian
components of q refer to the coordinate system determined
by the laser wave and polarization vectors as specified in
Sec. II A.

A. Low-frequency regime

We choose the parameters of the laser field to be the same as
those of the Nd-doped yttrium aluminum garnet laser utilized
in the pioneering laser-assisted (e,2e) measurements [12]: the
photon energy is ω = 1.17 eV and the intensity is I = 4 ×
1012 W/cm2. The laser frequency is well below the 1s →
2p transition frequency ω21 = 10.2 eV and the electric-field

amplitude E0 ≈ 10−2 a.u. is much weaker than the typical field
in the hydrogen atom, EH ∼ 1 a.u.

Three perturbation models for the field-dressed state of
atomic hydrogen are involved in the present calculations,
namely, those given by Eqs. (12), (14), and (15). Note that, for
a given number of photons exchanged between the colliding
system and the laser field, the value of the final electron energy
E within model (12) is shifted from that within models (14)
and (15) by a half of the ponderomotive energy (29). For
the present choice of the laser parameters the energy shift
is about 0.21 eV. Due to the energy shift the minimal value
of q, which is realized in the in-plane geometry (φe = 0),
within model (12) is also shifted from that within models (14)
and (15). The momentum shift is about 2.5 × 10−3 a.u. if
N � 2 and therefore is insignificant for the analysis carried
out below.

Figures 1–4 present the numerical results for the momentum
profiles corresponding to the collision geometries specified
above and different numbers of photons emitted or absorbed
by the electron-hydrogen system. The magnitude of TDCS
is largest when N = 0 and falls substantially with increasing
the number of exchange photons, and such behavior is true
not only for the |N | � 2 but also for the |N | > 2 processes,
which are not shown in Figs. 1–4 as being superfluous for the
purposes of the present analysis. This observation is readily
explained by the fact that the laser field is weak and is
far off the resonant regime—the probability of multiphoton
processes rapidly decreases when the number of involved
photons increases.

In Figs. 1 and 3, the momentum profiles for N = 0
within all three models of the field-dressed hydrogen state
are close to the field-free momentum profile. The reason
is that the latter is, up to a kinematical factor, determined
by the 1s momentum density |ψ1s(q)|2 while the former by
approximately |J0(α)ψ1s(q)|2. The argument of the zero-order
Bessel function is constant (in the LP1 geometry) or practically
constant (in the CP1 geometry) and its value is α ≈ 0.2, and
hence J0(α) ≈ 1 [24].

In contrast to Figs. 1 and 3, the laser-assisted momentum
profiles for N = 0 displayed in Figs. 2 and 4 markedly
differ from the field-free result. The observed difference
is due to the Bessel function J0(α), whose argument is
estimated as α ≈ 5.4 × q in the LP2 case and α ≈ 3.8 × q

in the CP2 case and hence, in contrast with the LP1 and
CP1 cases, it varies in a wide range when the azimuthal
electron angle φe is scanned. The oscillations in the laser-
assisted momentum profiles observed in Figs. 2 and 4 can
be attributed to the Bessel functions JN (α). This conclusion
is supported by the fact that the nodes in the momentum
profiles coincide with the nodes of the Bessel functions. Since
J−N (α) = (−1)NJN (α) [24], the oscillating structures for N

and −N are similar. Another difference as compared with
the LP1 and CP1 cases is that the magnitude of the TDCS
in the LP2 and CP2 geometries decreases more slowly when
increasing the number of exchange photons. Our calculations
show that this relatively slow decrease extends to the |N | >

2 results, which, as was already noted, are not presented
here.

Let us analyze the dependence of the momentum profiles
on the model for the field-dressed hydrogen state. All three
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FIG. 1. (Color online) Noncoplanar symmetric momentum profiles in the LP1 geometry. When N = 0, solid curve shows the result in the
absence of a laser field. Dashed curve corresponds to Eq. (12), dotted curve to Eq. (14), and dash-dotted curve to Eq. (15).

considered models yield more or less the same order of
magnitude for the TDCS, excepting the case of LP1 geometry
when N = ±2 (see Fig. 1). Specifically, in that particular case,
the TDCS using model (12) is two orders of magnitude smaller

than those using models (14) and (15). This finding can be
attributed to the role played by the parameter β [see Eq. (31)]
in Eqs. (32) and (34). As can be seen, this parameter is absent
in Eq. (24). Moreover, in the CP1 geometry (Fig. 3), which
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FIG. 2. (Color online) The same as in Fig. 1 but in the LP2 geometry.

among the others inspected is physically most close to the
LP1 one, there is no such remarkable difference between the
models when N = ±2 because β = 0 in this case.

As follows from the results presented in Figs. 1–4, when
using the models (12) and (14) the photon absorption processes

(N < 0) dominate those of photon emission (N > 0). This
means that the system tends to absorb net energy from the
radiation background. In contrast, when using the field-free
hydrogen state (15) the photon emission processes are on a par
with or even dominate those of photon absorption. This feature

023410-8



LASER-ASSISTED ELECTRON MOMENTUM SPECTROSCOPY PHYSICAL REVIEW A 82, 023410 (2010)

FIG. 3. (Color online) The same as in Fig. 1 but in the CP1 geometry.

indicates that it is the hydrogen atom that tends to absorb net
energy from the radiation background.

As a general observation, the momentum profiles are rather
sensitive to the perturbation treatment of the laser dressing

of the hydrogen state. The sensitivity, however, depends
on the number of exchange photons. For example, when
N = 0, the results using models (12) and (15) are practically
indistinguishable, especially in the CP1 and CP2 cases. The
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FIG. 4. (Color online) The same as in Fig. 1 but in the CP2 geometry.

reason is that Eqs. (24) and (35) are identical for N = 0. The
sensitivity also depends on whether the laser field is linearly
or circularly polarized. For example, the differences between

the results using the field-dressed states (12) and (14) are more
pronounced for the linearly polarized field, that is, in the LP1
and LP2 geometries.
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B. Resonant regime

The laser frequency is resonant to the 1s → 2p hydrogen
transitions and the laser electric-field amplitude is taken as
E0 = 10−4 a.u. The laser pulse duration is assumed to be such
that T � �−1, where � is the width of the 2p state due to
spontaneous emission and photoionization. This ensures that
the populations of the 1s and 2p states are governed by the
solution (17). Taking into account the present choice of the
laser-field strength, we thus obtain the condition T � 10−10 s.
At the same time, T must be long on an atomic scale (∼10−17 s)
and much longer than the electron-electron collision duration
(∼10−17–10−16 s). Another important restriction is that the
laser pulse turn on and off time δT must be much longer
than the time necessary for the dressed state (20) to be built.
The latter can be roughly estimated as the inverse Rabi fre-
quency 1/χ2p,1s . For E0 = 10−4 a.u. we have χ2p,1s � 7.45 ×
10−5 a.u. and hence δT 	 10−13 s.

Figures 5–8 present the numerical results for the momentum
profiles corresponding to different collision geometries and
values of the reduced resonance detuning parameter η =
�/χ2p,1s . The results are shown only for the cases of no photon

FIG. 5. (Color online) Noncoplanar symmetric momentum pro-
files in the LP1 geometry. When N = 0, solid curve shows the result
in the absence of a laser field. Dashed curve corresponds to η = 0,
dotted curve to η = 0.5, and dash-dotted curve to η = 1.

FIG. 6. (Color online) The same as in Fig. 5 but in the LP2
geometry.

exchange (N = 0) and one-photon absorption (N = −1). For
other cases (N �= 0, −1) the absolute values of the momentum
profiles are orders of magnitude smaller due to the weakness
of the field and the nonresonant character of the relevant
multiphoton processes. In other words, the free electrons’
coupling to the laser field introduces very minor corrections as
compared to the field-free situation; and what really matters is
the resonant dressing of the hydrogen atom.

It can be seen that the results for N = 0 are practically
insensitive to collision geometry. The origin of this feature
lies in the properties of Eq. (39). For the present set of
laser parameters and collision geometries the value of the
argument of the Bessel functions occurring in Eq. (39) is
α < 10−3. Therefore one can use the following approximate
expressions [24]:

JN�0(α) = 1

N !

(
α

2

)N

, JN<0(α) = (−1)|N |

|N |!
(

α

2

)|N |
.

According to these estimates, for N = 0 the contribution to
Eq. (39) from the term containing J1(α) is strongly suppressed
and hence the momentum profile is almost fully determined
by (up to a kinematical factor) |a1s |2|ψ1s(q)|2, where the
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FIG. 7. (Color online) The same as in Fig. 5 but in the CP1
geometry.

population of the 1s state |a1s |2 (see Table I) does not depend
on collision geometry.

In contrast to the case of no photon exchange, the results for
N = −1 exhibit a strong dependence on collision geometry.
The consideration analogous to that in the case N = 0 yields
that the momentum profile for N = −1 is determined by (up
to a kinematical factor) |a2p|2|ψ2p(q)|2, where the population
of the 2p state |a2p|2 (see Table I) does not depend on
collision geometry but the momentum density |ψ2p(q)|2 of
the ionized 2p orbital does. Usually in EMS studies one deals
with unpolarized atomic targets. This means that one measures
the momentum profile spherically averaged over directions of
q (see, for instance, Ref. [9]). In the present situation, however,
the laser electric field polarizes the target state and the direction
of q becomes important. According to Eq. (17), the polarized
2p state is given by the mixture of the 2p+1 and 2p−1 states.
In the LP case, one has

∣∣ψLP
2p (q)

∣∣2 = 8πq2
x(

q2 + 1
4

)6 , (40)

which means that the momentum density is maximal (zero)
when q is parallel (perpendicular) to the laser polarization

FIG. 8. (Color online) The same as in Fig. 5 but in the CP2
geometry.

vector. In the LP1 geometry (Fig. 5), the value of qx does
not vary and equals to the minimal value of q (qmin =
0.01 a.u.). Therefore the shape of the N = −1 momentum
profile depends only on the denominator in (40). In the LP2
geometry (Fig. 6), the absolute value of qx varies in a wide
range starting from zero. This explains why the N = −1
momentum profiles in this case are orders of magnitude larger
and have different shapes than those in the LP1 geometry.
Moreover, in sharp contrast to the LP1 case, the momentum
profiles for N = −1 are appreciably larger in magnitude than
those for N = 0, notifying that in the LP2 geometry the EMS
processes from the polarized 2p state dominate those from the

TABLE I. The values of populations of the 1s and 2p states,
|a1s |2 and |a2p|2, calculated in accordance with RWA (17) as functions
of the reduced resonance detuning parameter η.

η |a1s |2 |a2p|2

0 0.5 0.5
0.5 0.7236 0.2764
1 0.8536 0.1464
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1s state. In particular, the maximal value of the momentum
profile for N = −1 is an order of magnitude larger than that
for N = 0 when the exact resonance (η = 0) is realized and,
according to Table I, the 1s and 2p states are equally populated.
This result conforms with the fact that an electron in the 2p

state is less bound and hence it is easier to knock out than that
in the 1s state. In the CP case, one has

∣∣ψCP
2p (q)

∣∣2 = 4π
(
q2

x + q2
y

)
(
q2 + 1

4

)6 , (41)

which means that the momentum density reaches its maximal
value in the plane perpendicular to the laser wave vector k.
The CP1 and CP2 cases can be analyzed in a similar manner
as the LP1 and LP2 ones. Without loss of generality we
suppose that the x axis is parallel to p0. Then in the CP1
geometry (Fig. 7) the value of qx is the same as in the LP1
case (qx = 0.01 a.u.) and the value of qy ranges from 0 (when
q = 0) to approximately 0.08 a.u. (when q = 1 a.u.). Thus,
in accordance with a comparison of Eqs. (40) and (41), at
q ∼ 0 the CP1 momentum profile for N = −1 is twice smaller
in magnitude than the respective LP1 one, whereas at larger
values of q it is comparable to or even exceeds the LP1 one in
magnitude. In the CP2 geometry (Fig. 8), the value of qx varies
in the same range as in the LP2 case and the absolute qy value
is given by qy � q2

x/(2
√

E) ≈ 0.08q2
x . Therefore, qy plays an

unimportant role in (41) and the CP2 momentum profile for
N = −1 is given by simply the respective LP2 one scaled by
a factor of 1/2.

The behavior of the momentum profile with respect to
the reduced resonance detuning parameter η can be readily
understood from the above analysis and Table I. Namely,
in the case of exact resonance (η = 0) the absolute value
of the momentum profile for N = 0 is minimal while that
for N = −1 is maximal. With increasing (decreasing) η the
N = 0 momentum profile scales up (down) in the same way
as does the 1s population |a1s |2 while the N = −1 momentum
profile scales down (up) in the same way as does the 2p

population |a2p|2 = 1 − |a1s |2. Note that, following (19),
|a1s |2 = |a2p|2 = 0.5 when η = 0 and |a1s |2 > 0.5, |a2p|2 <

0.5 when η �= 0. Another remark is that for not too large values
of |η| the cases of η and −η are practically indistinguishable.
This reflects the smallness of the generalized Rabi frequency
�, which thus very slightly affects the value of the final
electron energy E, and the smallness of α discussed above,
which makes the terms describing interference of the 1s and
2p contributions [∝ JN (α)JN+1(α)] to the TDCS negligible.

IV. SUMMARY AND CONCLUSIONS

In summary, we have delivered a theoretical analysis of
the EMS of an atomic system in the presence of laser
radiation with the electric field amplitude being much smaller
than the intra-atomic field. By analogy to the PWBA in the
field-free case, the Volkov wave Born approximation has been
formulated for evaluation of the laser-assisted momentum
profiles. This approximation accounts for laser modification
of plane waves, which traditionally describe the incoming and
outgoing electron states of the EMS method in the absence of
external fields. To assess the potential of EMS for studying

the field-dressed target states, several dressing mechanisms
depending on the laser frequency have been involved in the
present analysis. Numerical calculations of the momentum
profiles assisted by few-photon emission or absorption have
been carried out in the case of atomic hydrogen embedded in
a background laser field of linear or circular polarization. The
results exhibited notable dependencies on collision geometry,
number of transferred photons, and the dressing of the atomic
state.

For the low-frequency, nonresonant laser field, we have
found that the dressing of the atomic state even only to
first order of time-dependent perturbation theory crucially
influences the laser-assisted momentum profiles. Moreover,
different versions of the first-order perturbation approach have
different effect on the results. These findings reflect a rich
potential of the laser-assisted EMS for elucidating the dressing
mechanism even in such situations where the laser-field effect
on the target states is considered to be far from being strong. In
the resonant regime, even a very weak laser field can efficiently
couple the ground and excited target states. And our analysis
shows that this coupling can characteristically manifest itself
in the laser-assisted momentum profiles. Namely, one observes
typical EMS momentum profiles from the ground and excited
states, populations of which depend on laser parameters. In
addition, the momentum profile from the excited state directly
reflects the laser polarization.

Some comments should be made regarding possible re-
alization of the EMS measurements in the presence of a
resonant laser field. Presently no laser sources exist which
operate at the frequency resonant to the 1s → 2p transition
in atomic hydrogen. More suitable candidates for the target
in this respect would be the alkali-metal-like atoms or ions,
for example, such as lithium and sodium atoms, where the
energy separating the ground and first excited states is much
smaller and thus the resonance condition for these states can
be achieved with available lasers. Note that similar qualitative
effects as those determined in this work can be expected for
such more complex atomic systems.

Finally, it is useful to draw a parallel between the laser-
assisted EMS and so-called (γ,eγ ) spectroscopy, which is
based on x-ray Compton scattering, for both methods provide
the same information about the target electron state in the
field-free situation (see, for instance, Ref. [9]). First theoretical
considerations of the laser-assisted Compton scattering were
undertaken in Ref. [25]. There it was found that even a
relatively weak laser field seriously modifies the Compton
profile compared to the field-free case, in which it is given by
the projection of the momentum density on the direction of
momentum transfer. Recently, theoretical calculations of the
FDCS for Compton scattering in the presence of laser radiation
were reported in Ref. [26]. Only energy spectra of the scattered
photons and recoil electrons were examined there. At the same
time, it would be interesting to investigate the laser-field effect
on the momentum distributions, similarly to what has been
done in this work.
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