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We present an implementation of the time-dependent configuration-interaction singles (TDCIS) method for
treating atomic strong-field processes. In order to absorb the photoelectron wave packet when it reaches the end
of the spatial grid, we add to the exact nonrelativistic many-electron Hamiltonian a radial complex absorbing
potential (CAP). We determine the orbitals for the TDCIS calculation by diagonalizing the sum of the Fock
operator and the CAP using a flexible pseudospectral grid for the radial degree of freedom and spherical harmonics
for the angular degrees of freedom. The CAP is chosen such that the occupied orbitals in the Hartree-Fock ground
state remain unaffected. Within TDCIS, the many-electron wave packet is expanded in terms of the Hartree-Fock
ground state and its single excitations. The virtual orbitals satisfy nonstandard orthogonality relations, which must
be taken into consideration in the calculation of the dipole and Coulomb matrix elements required for the TDCIS
equations of motion. We employ a stable propagation scheme derived by second-order finite differencing of the
TDCIS equations of motion in the interaction picture and subsequent transformation to the Schrodinger picture.
Using the TDCIS wave packet, we calculate the expectation value of the dipole acceleration and the reduced
density matrix of the residual ion. The technique implemented will allow one to study electronic channel-coupling

effects in strong-field processes.
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I. INTRODUCTION

With the invention of the technique of chirped pulse am-
plification (CPA), modern high-power laser systems can now
easily produce high repetition-rate femtosecond laser pulses,
leading to peak optical intensities greater than 10'* W /cm? or
as high as 10?° W/cm? in the focal region. The availability of
such intense radiation has opened up new and important venues
of research in atomic, molecular, and optical (AMO) physics.
High photon-flux radiation can drive atomic and molecular
systems into nonlinear regimes and initiate nonperturbative
single-atom and single-molecule intense-field phenomena,
including multiphoton ionization [1-17], above-threshold
ionization (ATI) [18-27], high-harmonic generation (HHG)
[28—42], and nonsequential multielectron ionization [43-52].

Understanding these field-induced phenomena has
tremendous technological implications. HHG, for example,
has been used as a convenient tool for the production
of coherent XUV and soft x-ray radiation [33-37] and
attosecond pulses [53,54]. These novel light sources have
enabled ultrafast molecular probing [55-72] and the study of
AMO physics in the attosecond regime [53,54,73-77]. As a
result, various theoretical methods have been developed to
investigate strong-field AMO physics. Among these methods,
solving the time-dependent Schrodinger equation provides
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the most accurate description. Unfortunately, this method is
practically unfeasible for many-electron atoms and molecules
beyond helium. Hence, many efforts have been devoted to
one-electron formulations of the strong-field problems.
These one-electron formulations are guided by the first
step in all the strong-field processes, in which an electron is
pulled away from the parent ion by the laser field. Treating
this electron as the only active electron has been shown
to be sufficient for accurate prediction of single-ionization
production [7,78-80], cutoff in the HHG spectrum [31,80], and
ATT photoelectron spectra [79] in different atoms. In spite of its
successes, this single-active-electron (SAE) approach has its
limitations. First, it cannot account for multielectron effects in
strong-field processes. For instance, Gordon et al. have shown
that the accurate inclusion of multielectron effects is necessary
to explain the scaling of the HHG radiation intensity with the
atomic number [39]. Second, the SAE theory lacks the dy-
namical description of the residual ion by focusing only on the
wave-packet dynamics of the excited electron. In particular,
the theory offers only a single-channel description, in which
the ion created is treated to be in a single ionic eigenstate.
Recent experimental efforts have now begun to require
an accurate strong-field description of the residual ion. It
was revealed from the ATI photo-electron spectrum that Xe™
ions in both the 5 p;/lz ground-state and the 5 pl_/l2 excited
manifolds were generated in an intense optical pulse [81,82].
Also, experiments at the Advanced Photon Source (APS)
using resonant x-ray absorption techniques have unveiled the
alignment dynamics of the residual Krt ions created in a
strong optical field [83,84]. Furthermore, complete quantum
ion state populations, which are the diagonal entries of the
ion density matrix in the ion eigenstates basis, were measured
experimentally and confirmed theoretically [85,86].
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An approximate one-electron approach that goes beyond
the SAE treatment is time-dependent configuration interaction
with single excitations (TDCIS). This is an ab initio electronic-
structure technique, where the time-dependent wave function
is restricted to spin-singlet conserving single-particle
excitations from the ground-state determinant. Rohringer and
coworkers have shown that TDCIS can be formulated as an
effective one-electron theory with coupled channels [87]. This
method includes the description of the electronic structure of
many-electron atoms and molecules through the Fock operator
and allows the determination of the ion density matrix, both
the diagonal and off-diagonal elements. Knowledge of the
off-diagonal matrix elements reveals the coherence properties
associated with the electronic wave-packet dynamics of the
residual ion [85,86,88,89]. Using a one-dimensional helium
model in a strong laser field, it was shown that TDCIS
is superior to the SAE approach [87]. There are other
rigorous effective one-electron approaches, including the
single-configuration and multi-configuration time-dependent
Hartree-Fock methods [78,90-92] and time-dependent
density-functional theory in the Kohn-Sham formulation
[93,94]. These methods have known limitations and
challenges [95-99]. Recently, Spanner and Patchkovskii used
a set of coupled time-dependent single-particle Schrédinger
equations derived from a multielectron wave-function ansatz
to examine multielectron effects in strong-field one-electron
ionization processes [100].

The purpose of this paper is to describe a full numerical
implementation of the three-dimensional TDCIS method with
an added radial complex absorbing potential (CAP). A set
of complex orbitals for the TDCIS calculation is determined
by diagonalizing the sum of the Fock operator and the CAP
using a flexible pseudospectral grid for the radial degree of
freedom and spherical harmonics for the angular degrees
of freedom. We found that this complex-orbital formulation
of TDCIS has computational advantages, because it allows
stable propagation of the TDCIS wave packet. Atomic units
are used throughout.

II. THEORETICAL BACKGROUND

In this section, we provide the theoretical background for
a complex-orbital formulation of TDCIS. We start in Sec. Il A
with the general description of an atom in linearly polarized
laser fields within the configuration-interaction singles (CIS)
model. Then, an expression for calculating expectation values
and the derivation of the reduced ion density are presented in
Secs. IIC and IID, respectively. In Sec. IIE we discuss the
Hartree-Fock equations for closed-shell atoms in the presence
of a CAP.

A. TDCIS with a CAP

Within the CIS model, excitations beyond a particle-hole
(1p-1h) excitation |®¢) with respect to the ground state, which
is in our case the Hartree-Fock (HF) ground state |®y), are not
considered. Therefore, the wave packet is written in terms of
| o) and | ),

(W(1)) = ao(t)| Do) + »_ atf ()| DY), ey
1
|BF) = —={ehy &y + El_éi}IDo), @

V2
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where i, j,k,l symbolize occupied orbitals, a,b,c,d symbolize
virtual orbitals, and p,q,r,s stand for occupied or virtual
orbitals. The operators 6;0 and ¢,, create and annihilate
electrons, respectively, in the spin orbital |¢,,), which is an
eigenstate of the modified Fock operator

FCAP|§0pa> = 8p|(ppa)s (3a)
Feap=F —inW, (3b)

where F is the Fock operator and —inW is the CAP.
The full Hamiltonian of our system is

H(t) = Feap + Ve — Vap — Enyp — E(1)3, €]

where VC is the electron-electron Coulomb interaction, Vi is
the Hartree-Fock mean-field potential, Eyr is the Hartree-Fock
ground-state energy, ? is the dipole operator, and £(¢) is the
electric field component of the strong-field laser pulse.

By projecting the time-dependent Schrodinger equation
onto the states |®g) and |P{), the equations of motion of
the expansion coefficients ag(#) and «f (¢) are obtained as

iqo(t) = —vV2E(1) Y e (1)), (5a)

i6 (1) = (ea — et (1) + Y _ etfl (D2(a.ii.a) — Via.iva'i))

i
i'a

=& {ﬁQO(t)Z(a,i) + ZOZ?,(I)Z(a,a')

a

— Z“?’(I)Z(i”i)} . (5b)

The projection is done with respect to the symmetric
inner product discussed in Sec. II C. The matrix elements in
Egs. (5) are defined via this symmetric inner product [101]:

Zp.g) = (@plZley), (6a)
Vip.g.rs) = (@p@ql1/P12]90r05). (6b)

We include parentheses in the subscripts of these matrix
elements in order to differentiate them from

Zp.qg = (@pl2leg), (7a)
Up.g.rs = (@p0q|1/F12l0r05), (7b)

which are defined by the standard Hermitian inner product.
Explicit expressions for the matrix elements in Egs. (5) may
be found in the Appendix.

B. Complex absorbing potential

When the wave packet reaches the end of the numerical grid,
artificial reflections arise. These lead to unphysical results, but
can be suppressed by applying a complex absorbing potential
(CAP) [102—-107] near the end of the grid. As aresult, the CAP
only affects virtual orbitals. Occupied orbitals are localized
near the origin and, therefore, are not influenced by the CAP.
Additionally, the CAP does not mix occupied with virtual
orbitals. The CAP strength 1 has to be chosen carefully to avoid
reflections either off the grid wall or off the CAP [105,107].
The explicit form of our CAP is

W(r) = h(r — raps)(r — Fans)?, (8)
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where h(x) is the Heaviside step function, and r is the distance
from the origin. This CAP is zero until a radius 7, after which
it is a quadratically growing potential.

C. Expectation values

Since ﬁCAp is not Hermitian, the orthogonality relations
for its eigenstates are not given in terms of the ordinary
Hermitian inner product. If |¢,) = |¢,) is a right eigenvector
of Feap, then (@, is generally not a left eigenvector. There
is, nevertheless, a one-to-one mapping between right and left
eigenvectors. The left eigenvector corresponding to |¢,) is
denoted (¢, |. The corresponding orthogonality relations read

((pp|§0q) = (¢p|§0q> = 8p,q~ (9)

From the orthogonality relations of the orbitals follow the
orthogonality relations of the 1p-1h excitations,

(d)f‘}d)i’) = ((I)ﬂd)f) = Sa,b(si,j. (10)

Since the |®{) are not orthogonal with respect to the
Hermitian inner product, we define an overlap integral between
1p-1h excitations as

(@f | @) = (®f | @) = 8. j(@al@s) = 81 joas.  (11)

Since the complex absorbing potential does not affect
the occupied orbitals ¢;, the orthogonality relation between
different ¢; survives in the Hermitian inner product in Eq. (11).

The expectation value of an operator A is defined via the
Hermitian inner product. By expanding (W(r)|A|W(r)) using
Eq. (1), we obtain

(A) = lo2) " Aj;+ Y 2vV2Re(oge Arg)
j ia

j
+ ZRe(ai“*(xf’/Aa,ar) — Z Re(a?*ag,AiﬁiOa,a’)

i,a,a i,i’,a,a

+ ) Re<a7*a;”oa,a,2ZA,,,>. (12)
J

i,a,a’

In order to compute the dipole acceleration, which is required
for describing high-harmonic generation, it is possible to
calculate the expectation value of the dipole moment and then
calculate its second time derivative [96]. Alternatively, the
expectation value of the dipole acceleration can be calculated
directly. To this end, we employ the dipole acceleration
operator obtained using the exact atomic Hamiltonian
[39,108]. In the atomic case, assuming that the laser field is
linearly polarized along the z axis, this operator is given by
Zcosb
a=—, (13)
P
where Z is the nuclear charge. Since atomic eigenstates are
parity eigenstates, it follows that a;; = 0. This simplifies the
evaluation of Eq. (12) when A=a.

D. Reduced ion density matrix

In order to construct the reduced ion density matrix
(IDM) from the state |\W(¢)), the trace over the unobserved
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photoelectron of the total density matrix j(¢) has to be
performed [109]:

M) = Trl ()],

b= 1w,
where Tr, stands for the trace over all virtual orbitals
a [cf. Eq. (16a)] and 5IDM(I) symbolizes the ion density
matrix. Since the virtual orbitals do not obey the Hermi-
tian orthogonality relations [see Egs. (10) and (11)], we
have to be careful to define the trace in Eq. (14a). The

explicit form of the density matrix can be derived from the
norm ||W(1)|[?,

(WOIW@) =) (WOID D |W(0)

1

=D (@[ WONYO|D) = Trlp@)],  (15)
I

(14a)
(14b)

where Tr stands for the trace over the entire configuration
space I, i.e., all 1p-1h excitations ®{ and the HF ground state
®,. Based on this, natural definitions of the traces over only
occupied and only virtual orbitals in the 1p-1h-configuration
space, which are symbolized by Tr; and Tr,, respectively,
are

(Tra[AONi; = Y (P IWO)(W(@)|®S),  (16a)

a

(LA = Y (D¢ IWO)(W(N)|DY).

i

(16b)

. AIDM
Hence, the matrix elements of 6~ (¢) have the form

AN =Y (V4w ONWD|DY) =Yt ()[a)()] 0pa.
a a,b

a7)

where we have used the explicit form of the wave function [cf.
Eq. (1)]. To analyze the impact of the CAP on the dynamics

A AIDM, | . . . . . .
of p(¢) and p ~ (¢), it is convenient to go into the interaction
picture (labeled )

W, (1) = P W),

A iFt § —iFt
A[ =e'"" Ae s

(18a)
(18b)

where A stands for any operator in the Schrédinger picture.
The time evolution of |\W;(¢)) is given by

.0 \ .\ . .
15|‘1’1(l)> = Ve, i — Var 1 — Enur — E0)Zr —inWIV¥,(1)).
(19)
Because of the CAP, the norm ||W;(¢)||? is not conserved. That
affects the time evolution of the trace of the IDM
AIDM

0]
ETfi [:01

t 9 2_ 9 U, ()|, (¢
()]+§|ao(t)l E( 1OV (0))

= -2 Te[W,; 5,1, (20)
where j,(t) = |W;(¢))(¥;(?)|. Since the probability that there
is no hole (Jag(t)]?) and the probability that there is a hole

(Tr; [ (1)]) should add up to one, we must correct 5, ()
for the loss of norm.
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In order to understand how to construct a corrected IDM,
ﬁ}DM(t), that does not lose norm over time and describes the
full interaction dynamics of the electrons, we have to analyze

the equations of motion (von Neumann equations) of /,(¢) and
IDM

()
0 4
&Pz(f) = —i[Ver — Vaarr — EO21.5 (O — nlp, (1), Wi},
(21a)
0 4 . A A
gﬁlDM(l) = —iTr [Ve,r — Varg — E@)21,0,(0)]]
— 20Tr [W 5, ()], (21b)

where {-,-} stands for the anticommutator. Equation (21a) can
be derived by taking the time derivative of Eq. (14b) and using
Eq. (19). In addition, we use the fact that

Tr[ W, 5,()] = Trl 5, (O W], (22a)
Te[W;] = Tr.[W; ). (22b)

Remember that W acts only on virtual orbitals. The first terms
on the right-hand side of Egs. (21) describe the dynamics of
the system (imaginary prefactor), and the second terms are
responsible for the norm decay of the density matrix (real
prefactor).

In the case of no residual Coulomb interaction (VC, ] —
\A/HF, ; = 0) and no electric field [£(¢) = 0], the correct density
matrix has to be constant in time. The density matrix p 1 (1)
does not fulfill this requirement due to the CAP. Hence, the
equation of motion in Eq. (21a) has to be corrected such that
no term violates the norm conservation. The corresponding
von Neumann equations of the corrected density matrix and
the corrected IDM are

3 3 .

—pz(t) —p,(t) +n{p, (), W}
) = a—l[Vc,I — Vg — E021,0,(0)], (23a)
PPN = aﬁl,DM(r) + 20T, [W 5, (1)]

= —iTr,I[Ves — Vi — E@0)21,5,(1)]]. (23b)

The corrected density matrices, as defined in Egs. (23),
experience no damping. The norm of p;(¢) is conserved,
which can be seen by taking the trace of Eq. (23a). By
just taking the trace over all 1p-lh excitations, Eq. (23a)
reduces to

0 N N N
—(Tr; [PV D)) = =i T Teal Ve, — Vaarr — E@21,5, D11,

ot
—i(Do|[E(t)21. 5" (]| Do)

d 2
= ()l 24)

In the second step in Eq. (24), we used

(@7 |Ver = Var.s|®o) = (@ |21|¥f)
= (Pol2/|Po) =0, Va,i. (25)
, Hence, we can conclude that after the pulse £(¢) = 0, where
%|oz()(t)|2 = 0, the trace of ﬁ}DM(t) is constant in time. In

addition, p;(¢) fulfills the requirement [see Eq. (24)] that the
probability of leaving the atom in its ground state (loto()[?)
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and the probability to create 1p-1h excitations (Tr; [p]°M(#)])
add up to one at all times.

Since ﬁIDM(t) can be calculated quite efficiently from the
solutions of Egs. (5a) and (5b), it is sufficient to calculate the
correction matrix

8pPM@t) = pPM@y — 57N ). (26)

The equation of motion of §5;°M(7) can be derived from
Egs. (23b) and (26),

AIDM(t) = 2T [W; §,(0)]

= —iTr l[—inW;,8p1(O + 2nTe, [Wi 5, ()],
27)

where we used Eqgs. (22) to insert a commutator that includes
the CAP. In the Schrodinger picture, Eq. (27) transforms into

0 a b *
§5PIDM(I) =i(e; —&;)8p; (1) +2n ;}: wp.a0f (O] ()]

(28)

Here, it was exploited that ) . 0y cWie,a) = (s W|(pa) = Wpq.
The solution to Eq. (28) is

t
apiIBM(t) = 2p eitEimE / dt’ Z wpq of (')
-0 a,b

x [aft] e e, (29)

and hence, we have found an expression for the corrected IDM,

t
,O,I?M(t) _ ,OIDM(t)+277 ez(a, £ )t/ dt/
—0o0
X 3w af @O [al)] e @ (30)

a,b

Equation (30) is identical to the definition of the IDM in
Ref. [89], where the states | ') are eigenstates of F rather than
FCAP and fulfill different orthogonality relations. Therefore,
it was not obvious that both sets of basis states lead to a
formally identical expression. In contrast to Ref. [89], the exact
Coulomb interaction is considered in the current treatment.
As a consequence of the Coulomb interaction between the
excited electron and the ion, the IDM in the interaction
picture is not necessarily constant after the laser pulse is over.
However, since within the one-hole configuration space, the
one-hole channel states are eigenstates of the exact, laser-free
Hamiltonian, the IDM in the interaction picture becomes
constant if the excited electron is unbound and drifts away
from the ion.

E. Atomic Hartree-Fock equations

The theory formulated in Secs. II A-II D holds for any elec-
tronic system where the Born-Oppenheimer approximation
can be made. In the following, we focus our discussion on
closed-shell atoms, where the total orbital and spin angular
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momenta of the ground state are 0. The Fock operator for a
closed-shell atom is given by [110]
1

N V4
F=—-v?_-=2 2J; — K;), 31
5 F+Zij< ) 31)

which consists of a kinetic part (—V?/2), a Coulomb potential
due to the nucleus (—Z/r), and direct (2J;) and exchange (K;)
Coulomb interactions between the electrons. The CAP used in
this work (see Sec. IIB) preserves the spherical symmetry
of the atomic-structure problem, so that the one-electron
eigenfunctions of Feap = F —inW may be written as a
product of a (generally complex) radial function u,; and a
spherical harmonic Y ,,(8,¢),

nl(r)

<r709¢|(pp> = <r’97¢|§0p) = (pp(r705¢) Yl m(@ ¢)
(32)
The u, ; satisfy the radial self-consistent-field equations,
1 d?u, (r) aw+n z
_z dr2 { 2]"2 - 7 - lT]W(V) ul’l,l(r)
+ D @A+ 20 V(0.3 1. L3 Pt 1 ()
no,l,
I+,
=Y Y CUL 13 0,0,000 (g, Los 1,1 )it 1, ()
Norly L=[1—1,|
= Sn,lun,l(r)s (33)

where

(o) VL
O lin 1) = / drs 7). G4)
0

>

r< Zmin{rl,VZ}, r> Zmax{rlar2}’ (35)

and C(ly,lp,l3;m1,my,m3) is a Clebsch-Gordan coefficient
[111]. The summation over n,,l, in Eq. (33) extends over
all subshells occupied in the Hartree-Fock ground state. In our
calculations, the u, ;(r) are subject to the boundary conditions
un1(0) =0 and u, ;(rmax) = 0. Here, rmax stands for the end
point of the numerical grid employed (see Sec. III).

The Hartree-Fock mean-field potential, > .(2J; — K;), de-
pends only on the occupied orbitals. However, all orbitals—
occupied and virtual—are influenced by the mean-field poten-
tial. On the other hand, since the CAP we have introduced in
Sec. II B starts far away from the origin such that occupied
orbitals are not affected, the Hartree-Fock mean field does not
depend on the CAP. Therefore, the occupied orbitals ¢; are
eigenstates of both F and I:"CAP, and may be calculated by
solving the self-consistent-field problem, Eq. (33), assuming
n = 0. After determining the ¢;, and thus fixing the Hartree-
Fock mean field, a single diagonalization of I:"CAP for nonzero
n gives the virtual orbitals ¢, .

The dual wave function of |¢,) is (¢,| rather than (¢,|, as
discussed in Sec. II C. The matrix representation of Eq. (33)
in a real basis gives rise to a complex symmetric eigenvalue
problem [106] (see Sec. III B). From this and from Eq. (32), it
follows that the spatial representation of (¢, | is given by

n,,l()

(pplr.0.¢) =Y, (0.0)——— (36)
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The corresponding orthogonality relations were given in
Sec. IIC.

III. NUMERICAL IMPLEMENTATION

In this section, we present our numerical method to
implement the three-dimensional TDCIS. In Sec. III A, our
choice of the pseudospectral grid for the radial degree of
freedom is discussed. Then, the atomic Hartree-Fock equations
on the numerical grid are shown in Sec. III B. In Secs. III D and
IITE we describe propagation schemes based on two different
ways of partitioning the Hamiltonian in Eq. (4).

A. Pseudospectral grid

Due to the nature of the strong-field problem, a grid is
required with sufficient density near the atomic nucleus to
describe the electronic structure of the atom, as well as far
from the nucleus to describe the wave packet of the ejected
electron. We have chosen a Gauss-Lobatto grid [112-115],
which uses as its grid points the roots of the first derivative
of the Nth-order Legendre polynomial (P,) as well as the
selected end points of the grid (r = 0 and r = rp,x). We map
these roots, which lie on the interval x € [—1,1], onto the
radial space of the atom [113] using

oy = L— 1% (37)
1—x+¢
L and ¢ are parameters which control the extent of the
grid and the density of the mapped points near the origin,
respectively.

Asdescribed in Ref. [113], a wave function ¢(x) may be ap-
proximated using a finite basis set of orthogonal polynomials.
Using Legendre polynomials P;(x),

N
$(xX) ~ Py (x) = Y aPi(x), (38)
=0

which may also be written in terms of cardinal functions
8k (x),

N
PN (x) =Y gelx)w (xi). (39)

k=0

Analytical functions of the wave function ¢(x) can now
be written in terms of analytical functions of the cardinal
functions. For the Gauss-Lobatto grid points, the second
derivative of gi(x), which is needed to calculate the radial
kinetic energy, is (for grid points not at the edge of the grid,
which we will not need)

Py (xp)
” 2) Nk
(xx) =d , (40)
S )
where
o _NWN+D
kK 3(1—x2)°
(41)
d®, = —#.
ok (xx — xp)?

023406-5



LOREN GREENMAN et al.

B. Atomic Hartree-Fock equations in the Gauss-Lobatto grid

After employing the mapping of Eq. (37), the Hartree-Fock
equations [Eq. (31)] read

” 2
(e 1Ry,

2\ ()3 dx | r(x)? dx?
{l(l—l—l) z

R o inW(r(x))} Uy (x)

Y @y 4 200 0.lo3 Molor (6t 1 (X)

noslo

I+,

=D > CULL; 0000 (g, L; L 7 (X))t 1, (X)

nosly L=[1—1,|

= gn,lun,l(-x)- (42)

In order to symmetrize the Laplacian, the function A(x) is
introduced such that

Ani(X) = /1" (Xt 1(x). (43)

After expanding A(x) with Eq. (39), substituting the
relation gi(xp) = & x and Ak | = A, ;(xr)/ Py (x) and using
Egs. (40) and (41), we obtain

3 L e o

=1 2r) )
I+1 4
2r(xp)? ()

+ Y o+ 2001, L3 1o, Lo r(xi DAY

noslo

- inW(r(xm)} A¥,

I+,
=" > CULL: 000 v P (.l n i (xe)) AL
no,lo L=|1=1lo|
= e, AL (44)

The integrals of Eq. (34) can now be written using the
quadrature

r(k,k’)ﬁ k Ak
V(k,k/ Q—H n,l 'l N(N+ 1)7
(45)

vl ) =)

k

where
r(k,k") < = min{r(xp),r(xp)},
(46)
r(k,k"- = max{r(xy),r(xp)}.

Substituting this integral into Eq. (44), the atomic Hartree-
Fock equations can be written as

1 1 1
_ = d(z), Ak
;{ 27 (o) )
I+  z
2r(x)*  r(aw)

- inW(r(xkf))} Al

2 1 /
— (4l +2)|A*  P———AF
+ Z N(N + 1)( + )| f’lnqlo| r(k,k/)> n,l

k,no.l,
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I+,

2
-y ﬁC(lLl[,;OOO)2
k,ng,lo L=|1—1,| (N + )
k,k)E , ,
r( )< k Ak ,[,,Aﬁ,[ — £n,lA£’[v (47)

o:lo* g
r(k kLt e

which is a complex symmetric eigenvalue problem.

C. Approximation for large angular-momentum Coulomb
matrix elements

In the context of TDCIS, two types of Coulomb matrix
elements of the form v’ i oy and v(a i o,y are of interest. In
the case that excited orbitals with large angular momenta are
important, a substantial number of Coulomb matrix elements
need to be computed. This computational task can be the bottle-
neck in solving the TDCIS equations.

To make this task manageable, we employ the approxima-
tions

Via,ir,iay = 0,

: ‘ )
—|Pa | >
r

if either I, or [, is larger than a threshold value L.qo,. These
approximations are valid for an excited electron that is far
away from the residual ion. We choose the value of L, such
that numerical convergence is reached.

(43)

Via,it,a',i) = O <<Pa

D. Numerical propagation scheme

In order to propagate the ground-state coefficient oy, we
directly apply the second-order finite-differencing scheme
[116] to Eq. (5a):

ap(t +dt) = ag(t — dt) + 2idtv2E(1) YD ol (Dz.a).

1 a

(49)

To propagate the coefficients o' (¢), we temporarily transform
to the interaction picture,

al(t) = e METE G (p). (50)
The propagation equation for & becomes
& (1) = —ie! = f2(1), (51)
where

i@ = Z Zafr (DQ2V,ivia) = Vi)
v

i

L

— &) {ﬁao(f)z(aﬁi) + Z o (D2(@.a)

— Z(x?,(l)Z(,‘/,i)} . (52)

Now we apply the second-order differencing scheme to
Eq. (51),

&'t +dt) = @t — dt) — 2idte" " f4(1),  (53)
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and then convert back to the Schrédinger picture,

al(t +dt) = e " Came DG+ dr)
— e_i(sa_si)(f+dt)&;l(t —dt) — 2l-dte—i(sa—si)dtﬁa(t)
= e HEamE G — dp) — 2idte ™ T fa(p),
(54)

Equations (49) and (54) are the equations used to propagate
the coefficients.

E. Complex-orbital versus real-orbital formulation of TDCIS

As shown in the previous section, the complex-orbital
formulation of TDCIS is rather compact, because the CAP
is chosen such that the occupied orbitals in the Hartree-Fock
ground state remain unaffected. However, this complex-orbital
formulation has the disadvantage that the usual physical
interpretation of the virtual orbitals is lost. It is therefore
natural to ask whether it is more advantageous to use a
real-orbital formulation of TDCIS. Real radial wave functions
u,(r) are obtained by diagonalizing F rather than FCAP.
The full Hamiltonian, Eq. (4), is left unmodified. Using the
real-orbital formulation, all integrals and orbital energies are
real. However, there is a CAP-dependent term in the equations
of motion for the wave-packet expansion coefficients [which
is absent in the complex-orbital formulation of Eq. (5)]. In
the following, we show that even though the real-orbital and
complex-orbital formulations are equivalent, the implementa-
tion of the complex-orbital formulation is numerically more
stable.

For simplicity, we performed the numerical comparison
using hydrogen exposed to a laser electric field with a peak
amplitude of 0.1 a.u. and an angular frequency of 0.057 a.u. In
this case, the V2 factors, the Coulomb matrix elements, and the
dipole matrix elements z; ;» in Eq. (5) disappear since there is
only one electron. In these tests, 800 radial grid points, 7ax =
130 (Sec. I1E), raps = 90 (Sec. I B), ¢ = 0.4 (Sec. Il A), and
dt = 0.004 (Sec. IIID) are employed. In order to accurately
reflect the strong-field physics, it is important to note that the
choice of CAP strength, which is characterized by n, is also
important apart from these parameters. With n = 1073, our
calculation performed with the complex orbitals reproduces
the hydrogen result obtained by Gordon and Kiértner [117].
This is not the case if a smaller value of 7 is chosen. Figure 1
shows that the expectation value of the dipole acceleration
obtained with » = 107 is noisier than that for » = 1073. This
is because the CAP with 5 less than 1073 is too weak to
absorb completely the photoelectron wave packet reaching the
end of the spatial grid, leading to reflections from the grid
wall.

To compare the results obtained with the complex orbitals,
we repeated the calculations using the real orbitals. We found
that, depending on the value of 7, the numerical propagation
using the real-orbital formulation may not be stable. Figure 2
shows that the expectation values of the dipole acceleration
obtained with the complex and real orbitals, respectively,
agree with each other when n = 1075, In this case, the
two formulations are numerically equivalent. However, for
n = 1073, which is required for an accurate description of the
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FIG. 1. (Color online) Effect of the CAP strength n on the
expectation value of the dipole acceleration calculated with the
complex-orbital formulation of TDCIS.

dipole acceleration, the numerical propagation of the wave
packet using the real orbitals diverges. The divergence persists
even after reducing dt by a factor of 10.
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FIG. 2. (Color online) The expectation value of the dipole
acceleration calculated with both the real-orbital (dashed line) and
complex-orbital (solid line) formulations of TDCIS using (a) n =
107> and (b) n = 1073,
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IV. RESULTS AND DISCUSSION

To demonstrate applications of our implementation of
TDCIS, we performed calculations on argon. First, we carried
out a convergence study with the 3p,y orbital active and
all other orbitals frozen. The laser field chosen was £(t) =
&p sin(wt), with an & of 0.125 a.u. and an w of 0.057 a.u.
Classically, an electron that can recollide with its parent ion
will travel ~ & /a)2 = 38.5 a.u. before recollision. Therefore,
to fully eliminate any CAP-induced perturbation of recolliding
trajectories, we have put our absorbing potential at rys =
90 a.u., and our grid wall at r,,x = 120 a.u., with a ¢ [Eq. (37)]
of 0.5. In general, the ¢ parameter was chosen as 60/ ryax.

The convergence of a number of different parameters is
illustrated in Fig. 3. Figures 3(a) and 3(b) show the conver-
gence with the CAP strength. Low n’s produced successively
greater oscillations due to reflections off the grid wall, while
the large 7 values did not have such obvious effects. However,
close examination of large n values such as the one shown
in Fig. 3(b) showed that reflections from the CAP did affect
the dipole acceleration by shifting the oscillations out toward
times around 113 a.u. An 5 of 5.0 x 1073 produced the
least amount of reflections off of either the grid wall or
the absorbing potential. It should be noted that this 7 is in
the region where the real-orbital formulation is numerically
unstable. At a grid size of 500 grid points, the dependence of
the dipole acceleration on the maximum angular-momentum

0.2 .
01t n=5e-3 —

01}
02}
-0.3 |
04}

Dipole Acceleration (a.u.)

-05

@

-0.6 e
95 100 105 110

70 75 80 85 90

0.1 T p—
0.05 | Lma=60 ——
ax—

0f Lmax=90, Leoy=8
-0.05 |

0.1 | .
-0.15 | <

02} AAS
-0.25 |

03} ./

-0.35

Dipole Acceleration (a.u.)

90 95 100 105 110
Time (a.u.)
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value allowed for the dipole (Lp.,x) and Coulomb (Lcou)
integrals was determined [Fig. 3(c)]. An Lp,x of 60 was
determined to be necessary for convergence of the dipole
acceleration, while for the Coulomb integrals an L., of 4
was sufficient. For the angular-momentum quantum numbers
between 5 and 60, the Coulomb interaction was approximated
as a % interaction (Sec. IIIC). Additionally, orbitals with
Hartree-Fock energies higher than 50 a.u. (real part of the
orbital energies) were determined to be unnecessary and
were not included in the propagation calculations. Finally,
the convergence of the size of the grid was found. Small
grids led to extra oscillations in the dipole acceleration, as
well as unphysical behaviors in the norms and density matrix
elements. The argon system converged at a grid size of 750 grid
points, although 1000 grid points were used for the following
calculations.

Figure 4 shows the difference in the calculated dipole accel-
eration for the single-channel TDCIS method and the single-
channel Hartree-Slater method [39], which approximates the
exchange correlation using a local function. The added effects
of using the exact nonlocal exchange potential can be seen in
the figure. At the peak of the dipole acceleration, the TDCIS
method peaks slightly sooner than the Hartree-Slater method.
The oscillation after the peak is shorter for the TDCIS method.
Finally, there are a greater number of smaller oscillations
after the trough of the TDCIS dipole acceleration than for
the Hartree-Slater method.

0.1 r
0.05 |

-0.05 |

(b)
105 106 107 108 109 110 111 112 113

-0.25

2 ‘ ‘
° 250 grid points
01 r 500 grid points
0t 750 grid points -------
1000 grid points
_01 L
-0.2
-0.3
_04 L
-0.5
_06 L
-0.7 o
-0.8 ‘ ‘ ‘ ‘ :
o0 70 80 90 100 110
Time (a.u.)

FIG. 3. (Color online) The convergence of the dipole acceleration of argon with the 3p, orbital active. (a), (b) Convergence with the
CAP strength. (c) Convergence with maximum angular momentum for the dipole (L ,x) and Coulomb (L) integrals. (d) Convergence with
the size of the pseudospectral grid. Convergence is reached at a CAP strength of 5 x 1073, an Ly, of 60, an L.y, of 4, and a grid size

of 750.
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FIG. 4. (Color online) A comparison of the dipole acceleration of
the single-channel TDCIS and Hartree-Slater methods. The nonlocal
exchange effects are evident.

The multichannel capacity of the TDCIS framework was
tested by performing calculations of the ion density matrix
elements for argon with only the 3 py orbital active as well as
with all 3 p orbitals active (see Fig. 5). For the case in which
only the 3p, orbital is active, the population of the orbital
increases in two steps corresponding to the two half-cycles of
the driving potential. There are minor oscillations especially
in the second half-cycle. When all 3p orbitals are active,
the population of the 3p, orbital follows a similar pattern
but is smaller than the single-channel case. The oscillations
of the 3py population are slightly smaller as well for the
three-channel case. Importantly, the combined populations
of the 3p, and 3p_, orbitals are more than 10% of the
3po population. This result conflicts with the models that
ignore channel coupling and assume that these populations
are sufficiently small.

0.7 T

3pg 0nly, Pap 3p, ——
06 | all 3p-orbitals, pgy 35,

all 3p-orbitals, pgp, | 3p - +P3p, 3p,

05

IDM Element

0.2

0.1

0 20 40 60 80 100
Time (a.u.)

FIG. 5. (Color online) The ion density matrix elements are
compared for the single-channel case and the three-channel case.
The 3 p; element plus the 3p_; element comprises more than 10% of
the 3 py element in the three-channel case.
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V. CONCLUSION

We have developed a time-dependent configuration-
interaction singles formalism with a complex absorbing po-
tential in order to describe strong-field atomic processes in the
nonperturbative regime. Previous theoretical approaches have
relied on a single active electron approach, while with TDCIS,
multichannel processes can be investigated. Two-electron
reduced density matrix (2-RDM) methods [118-122] may
provide a framework in the future for examining laser-field
interactions with the inclusion of explicit electron correlation
and additional multireference states. The flexible pseudospec-
tral grid allows us to calculate orbitals with sufficient density
in each region of the space in order to describe weakly
bound and ionized electrons as well as strongly bound atomic
electrons. We have also shown that applying the CAP in the
Hartree-Fock step is more numerically stable than applying
it in the propagation step. This leads to a non-Hermitian
modified Fock operator, as well as complex orbitals which
are orthogonal with respect to a symmetric inner product.
Using these complex orbitals, a reduced ion density matrix
was formulated in order to determine the populations and
coherences of the one-hole states. The dipole acceleration of
argon was calculated as well, which requires overlap integrals
between the complex orbitals.

The TDCIS dipole acceleration for argon with its 3pg
orbital active was converged on the pseudospectral grid and
then compared with the dipole acceleration calculated using
the Hartree-Slater method. Local potential approximations are
used in many theoretical treatments of strong-field processes.
We determined that using the nonlocal exchange of the TDCIS
method significantly affects the dipole acceleration. We then
used the ion density matrix to compare the populations of
the 3p orbitals of argon in single-channel and multichannel
calculations. In the single-channel calculations, only the
3po orbital was allowed to be active. When all 3p orbitals
were open for excitation, the population of the 3p, orbital
decreased as expected, although the time evolution was
similar in shape. However, the combined 3p; and 3p_;
populations were determined to be greater than 10% of
the 3po population. This is a significant occupation, and it
shows that methods which assume a single channel do not
take into account possibly important effects. The TDCIS
method provides a multichannel approach for nonperturbative
strong-field processes which can be used to study effects that
previous theoretical methods did not take into account.
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APPENDIX: CALCULATING INTEGRALS

Using the orbitals represented on a quadrature grid, we
compute one- and two-body matrix elements, which are
needed to solve the TDCIS equation of motion. For a general
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one-electron operator f, its matrix element defined by the
symmetric inner product is given by

foa = f drdde sin0Y; , (©.¢)u,1,(r)f(r.0.9)
X Yy, m, 0, ®)un,1,(r). (AT)

We perform the quadrature, such that

foan = N(N . / dodg sm@ZAnP LY, (0.9)

X f.0,0)A% | Vi, m, 0.). (A2)
To obtain f,,, which is defined by the conjugated inner
product, we replace Ak ol in Eq. (A2) with its complex
conjugate.

Using Eq. (A2), all one-electron integrals can be con-
structed. For the overlap integrals, the angular part becomes a
§ function, and we are left with

2 k

o q = (Slp'lel(smp’mq Z m(Aﬁp,lp)*Anq,lq’ (A3)
k

For the nonconjugated dipole integrals (Z = r cos 8), we need
for the propagation, using the relation Y; o = % cos 0 and the
fact that the integral of three spherical harmonics can be written
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using Clebsch-Gordan coefficients [111],

2[ + 1
Z(p,q):‘/y _I_lc(lqs 1p;0,0,00Cy, 1,1 ,my,0,m )

2
Z—Ak AF ) Ad
8 — N(N +1) npdy A0, T XK (A4)

We also need the conjugated dipole acceleration integrals (@ =
Z cosB/r?),

/21 1
+ €y 113 0.0,00C g, lys mg 0.m))

L
: ; N(N + 1) (An” ”) A"llvlq r(xk)z' (AS5)

The nonconjugated two-electron Coulomb integrals are also
required for the propagation, and they are constructed using a
two-index quadrature. The expansion

L L

.
e D Y 01 )Y L m(02.0)
> y="1

o
(A6)

is used. Thus, the angular part of the Coulomb integrals reduce
to Clebsch-Gordan coefficients, and the radial part becomes

NL

o ok e rkEDE
Vipgon = A | Ax Ak AL TAET
k’k/ k] >

(AT)
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