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We calculate the photon energy distribution and the total cross section for the Compton scattering on the K
electrons for the case when the photon wave length is much smaller than the size of the K shell. We show that at
the energies of the order of the binding energy I of the K electron most part of the spectrum is governed by the
low-energy behavior. The total cross section has a local maximum at the energies (1.5–2)I , reaching the values of
the order 1 barn. At higher photon energies the spectrum curves have two maxima, corresponding to low-energy
ejected photons or electrons. The cross sections in the whole region are calculated. The actual calculations are
carried out employing the nonrelativistic Coulomb functions, thus being valid for the single-electron atoms.
However, the main features of the analysis are expected to be true for many-electron ions and neutral atoms. The
results of the present analysis may be useful in calculations of the laser-induced and laser-assisted processes.
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I. INTRODUCTION

Theoretical investigations of the Compton scattering on
bound electrons started many decades ago [1] and are going
on until now [2]. The latest developments are reviewed in
[3]. The earlier calculations focused on the case, when the
outgoing electron obtained the nonrelativistic energies [4].
Later much attention was devoted to the Compton scattering
of hard photons, causing the ejection of relativistic electrons
[5]. These calculations were reviewed in [6]. Most of the
experiments on the photon scattering have been focused on
the case of the hard photon scattering on the targets with large
nuclear charge Z [7]. Recent development of the methods for
measuring the Compton scattering on bound electrons [8] is
expected to provide new data. Construction of new powerful
lasers stimulated studies of ionization processes. Experiments
with the photons carrying the energies up to several keV are
going on or are planned [9]. This motivates a more detailed
analysis of interaction of the photons with the internal atomic
shells [10,11]. On the other hand, the theory of nonrelativistic
Compton scattering from the bound electrons is not complete
yet.

The nonrelativistic Hamiltonian of interaction between the
photons and electrons is

H = −e
A · p
mc

+ e2 A2

2mc2
. (1)

To obtain the amplitude of the Compton scattering one should
include the first term of the Hamiltonian in the second-order
perturbation theory. This provides the pole terms. The second
term should be included in the first order, providing the
“seagull” terms, known also as the A2 terms. The early
calculations were restricted to the seagull term, which is the
only one that contributes in the nonrelativistic approximation
in the case of free electrons [4,12,13]. It was noted, however
[14], that the seagull terms are quenched when the wave length
of the photon becomes much larger than the size of the bound
state, and thus the pole terms should be included at lower
photon energies.

Calculations of the pole terms are much more complicated,
since they involve the propagator of the atomic electrons.
These calculations were focused on the case of the hydro-
genlike atoms. The general expressions for the amplitude
of the Compton scattering from the K-shell electrons of a
hydrogenlike atom were obtained in [14–18]. These authors
use different representations of the nonrelativistic Coulomb
Green functions. In these papers, the amplitude was presented
in terms of special functions or their integral representations.
Although paper [19] contained some numerical data on the
amplitudes and triple differential cross sections, consistent
computations of the energy distributions and cross sections
have not been carried out yet.

In the present paper, we calculate the energy distributions
and total cross sections of the nonrelativistic Compton scat-
tering from the K electrons of the hydrogenlike atoms with
the charge of the nucleus Z. We use the system of units with
h̄ = c = 1. In these units the binding energy of the K electron
is I = η2/2m, with m denoting the electron mass, η = mαZ

has the meaning of averaged momentum of the K electron, and
α = 1/137 is the fine structure constant. The incoming photon
is characterized by the energy ω1 and momentum k1, k1 = ω1.
In a similar way for the ejected photon, k2 = ω2. We consider
the nonrelativistic case ω1 � m and (αZ)2 � 1.

We employ the approach, developed in [17], where the
explicit expression for the nonrelativistic Coulomb propagator
in momentum space [20] has been used. Equations of [17]
need additional evaluation before they can be used for the
computations. This was done in [21], where they were used
for calculation of the two-photon ionization of an atom.
The amplitude of the Compton scattering can be obtained
from that of the latter process by changing the sign of
the linear momentum of the ejected photon k2 and of the
energy ω2.

Until the ratio ω1/I is of the order of unity, the amplitude is
dominated by the pole terms. For all Z the amplitudes and the
differential cross sections are expressed in terms of variables
x1(2) = ω1(2)/I and are presented by universal functions of
these parameters, thus the corresponding amplitudes FP(ωi,Z)
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are indeed the functions of the ratios x1(2) = ω1(2)/I [14]. The
same refers to the cross section σ (ω1,Z) = σ (x1). We calculate
these “universal”(scaled) functions for the energy distributions
of the ejected photons and for the cross sections. For these
energies the seagull term is quenched by a small factor of the
order ω2

1/η
2 ∼ (αZ)2 [14] being thus of the order of relativistic

corrections to the pole terms.
The situation changes if we go to larger values of ω1 � I .

The role of the seagull contributions increases. The seagull
terms provide the main contribution to the energy distribution
of the ejected photons dσ/dω2 in the region ω1 − ω2 ∼ I ,
corresponding to the low energy of ejected electrons ε ∼ I ,
while the rest of the spectrum is dominated by the pole terms.
Note that the seagull terms depend on the scaled variables x1(2)

and on the nuclear charge Z separately.
We shall restrict ourselves to the case,

ω1 � η, (2)

in other words, the wavelength of the incoming photon is much
larger than the size of the bound state. The case of larger photon
energies is well studied—see [3] and references therein. Under
condition (2) the seagull and pole terms do not interfere. Thus,
the energy distribution can be written as

dσ (ω1,ω2)

dω2
= dσP(ω1,ω2)

dω2
+ dσSG(ω1,ω2)

dω2
, (3)

with the lower indices P and SG denoting the contributions
of the pole and seagull terms correspondingly. Since the first
term on the right-hand side of Eq. (3) depends on the ratios
xi = ωi/I , while the second one depends also on Z, the total
distribution (3) does not scale and depends on both xi and
Z. We shall see that in the energy region (1) the distribution

1
Z2

dσSG(ω1,ω2)
dω2

depends only on x1 and x2.

At certain value of x1 = x̃1, estimated as x̃1 ∼ 1/(αZ)2/5,
ω1 ∼ η(αZ)3/5, the contribution of the seagull terms to the total
cross section becomes equal to that of the pole terms. At larger
values of x1 the seagull terms dominate. We calculated the
values x̃1(Z) and the corresponding ω̃1(Z). Since the seagull
contribution increases rapidly in this energy region, we can
assume that the seagull dominates for all ω1 > ω̃1. Note that
the part of the spectrum where ω1 − ω2 ∼ ω1 � I , that is,
where the energies of the ejected electrons ε � I is still
determined by the pole terms.

At ω2 � ω1,I the pole terms exhibit an infrared divergent
behavior dσ (ω1,ω2)/dω2 ∼ 1/ω2. This is a manifestation of
the general low-energy theorem [22]. Similar divergent terms
are contained in the radiative corrections to the photoeffect. In
the total cross section of photoionization (i.e., in the sum of the
cross section of the photoeffect with the radiative corrections
and that of the Compton scattering), the divergent terms cancel
[22]. In [23] this was shown explicitly for the case of the
high-energy photons. We shall not carry out this program for
the low-energy case. Instead of this we assume that the detector
of the ejected electrons can distinguish the electron with the
largest available energy εm = ω1 − I from that with the energy
ελ < εm, εm − ελ � εm, but cannot distinguish the electrons
with the energies ε in the interval ελ < ε < εm from those with
the energy εm. Thus, all the events of the Compton scattering
with the energies ελ < ε < εm will be counted as those of
the photoeffect. This is equivalent to the introduction of a

cutoff ω2 > ωλ = ω1 − I − ελ in the spectrum of the ejected
photons. We investigate the dependence of our results on the
actual value of ωλ.

For the energies, restricted by Eq. (2), the Compton
scattering cross section is still much smaller than that of the
photoeffect. The energy behavior of the ratio of the two cross
sections for several values of Z are presented in the paper.

Our calculations are carried out for a single-electron ion.
We expect the main features of our analysis to be true for
the K-shell electrons of the atoms. In this case all the cross
sections should be multiplied by a factor 2, corresponding to
the number of electrons in the K shell.

II. GENERAL EQUATIONS

The general equation for the differential cross section is

dσ = 2π

2ω1
δ(ε + ω2 − ω1 − I )|M|2 d3p

(2π )3

d3k2

(2π )3

1

2ω2
.

Here p is the linear momentum of the ejected electron and M

is the amplitude of the process. In expression |M|2 averaging
(summation) over polarizations of the incoming (outgoing)
photons is assumed. Using the delta function for integration
over the electron energies, we can write

dσ = 1

(2π )3

ω2

ω1
mp|M|2 d
e

4π

d
γ

4π
dω2. (4)

Here, 
e(γ ) are the solid angles of the final-state particles.
This equation is widely used in the papers on the Compton
scattering from the bound electrons (see, e.g., [14]).

The amplitude can be presented as the sum of the pole and
seagull contributions, denoted as MP and MSG correspond-
ingly,

M = MP + MSG. (5)

The pole terms are due to inclusion of the interaction,
described by the first term on the right-hand side of Eq. (1) in
the second order of the perturbation theory. They are given by
the standard expressions (see, e.g., [22]),

MP = MPa + MPb; MPa = 〈ψf |V ∗(2)G(pa)V (1)|ψi〉,
with ψi(f ) standing for the electron wave function in the initial
(final) state; G is the Green function of the electron, pa =√

2m(ω1 − I ); V (j ) describe interaction of the photon (j =
1,2) with the electron. We employ the velocity gauge with
V (j ) = −(4πα)1/2i[(ej · ∇)/m]ei(kj ·r ). The contribution Mpb

can be obtained by changing e1 ↔ e2, k1 ↔ −k2, ω1 ↔ −ω2

in the expression for Mpb. For further evaluation we shall
present the contributions Mpa and Mpb in momentum space.

MPa = 4πα

∫
d3f1

(2π )3

d3f2

(2π )3
〈ψ p| f 1 − k2〉 (e2 · f 1)

m

×〈 f 1|G(pa)| f 2〉
(e1 · f 2)

m
〈 f 2 − k1|ψ1s〉;

MPb = 4πα

∫
d3f1

(2π )3

d3f2

(2π )3
〈ψ p| f 1 + k1〉 (e1 · f 1)

m

×〈 f 1|G(pb)| f 2〉
(e2 · f 2)

m
〈 f 2 + k2|ψ1s〉;

pa =
√

2m(ω1 − I ); pb = i
√

2m(ω2 + I ). (6)
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In Eq. (6) ψ1s and ψ p are the Coulomb wave functions of
the 1s electron and of the continuum electron with asymptotic
linear momentum p, G is the Coulomb Green function, and
e1(2) are vectors of polarization of the photons. The electron
functions in Eq. (6) are just the Fourier transforms of those in
coordinate space: ψ p(f ) = ∫

φ p(r)e−i( f ·r )d3r , etc.
The seagull contribution is

MSG = 4πα(e1 · e2)

m

∫
d3f

(2π )3
〈ψ p| f 〉〈 f − k|ψ1s〉, (7)

with k = k1 − k2. One can see immediately that for k = 0
the amplitude MSG vanishes due to orthogonality of the wave
functions. Actually, Eqs. (5)–(7) have been first obtained in
[24].

The Coulomb Green function can be represented in various
forms. We use the one, obtained in [20]. Employing the
equations, obtained in [17], we present the pole amplitudes
MPa(b) in terms of one-dimensional integrals. These equations
can be obtained from those of [21] by changing k2 to −k2

and ω2 to −ω2. Employing the dipole approximation (i.e.,
putting in the arguments of the wave functions k1 = k2 = 0),
neglecting thus the contributions of the order ω2

1/η
2, one

obtains [14]

MPa(b) = 32π2reNNpη−3((e1 · e2)Fa(b)

+ (e1 · n)(e2 · n)�a(b)), (8)

where Fa,b and �a,b are certain functions of x1 and x2. Here,
re = α/m is the electron radius, n = p/p, N =

√
η3/π , and

Np = √
2πξ/[1 − exp (−2πξ )] are the normalization factors

of the 1s and continuum electrons, and ξ = η/p is the
Sommerfeld parameter of the ejected electron. Introducing,
also,

x1 = ω1

I
; x2 = ω2

I
; ζ = η/pa = (x1 − 1)−1/2,

we can write

Fa = −i

∫ 1

0

dyyf (y)

λ(y)
A−1+iξB−1−iξ ;

(9)

�a = 2
(1 − iξ )(2 − iξ )

ξ 2

∫ 1

0
dyyf (y)A−3+iξB−iξ .

Here,

λ(y) = [x1(1 − y) − 1]1/2; f (y) =
(

iζ − 1

iζ + 1

ζλ + 1

ζλ − 1

)iζ

,

while A = λ2 − ξ−2; B = (λ + ξ−1)2. Equations for Fb and
�b can be obtained by changing the lower index a to b and x1

to −x2.
The seagull term can be calculated explicitly (see

Appendix):

MSG = 32π2α2ZNNp(e1 · e2)

(
1 − iξ

A0
+ 1 + iξ

B0

)

×A
−1+iξ

0 B
−iξ

0 , (10)

with A0 = −η2 − ( p − k)2, B0 = −k2 + (p + iη)2. In con-
trast to the situation with the pole terms we cannot put
k = 0, since at k = 0 the amplitude MSG = 0. This is due
to orthogonality of the wave functions in the integral on the

right-hand side of Eq. (7). Neglecting the terms of the relative
order ω2

1/η
2 we find

MSG = 64π2α2ZNNpη−6(e1 · e2)( p · k)
1 − iξ

(xp + 1)3

× exp [−2ξ arctan (1/ξ )]. (11)

Here, we introduced

xp = ε

I
= x1 − x2 − 1, (12)

which is the energy of the outgoing electron “in units” of the
binding energy.

III. ENERGY DISTRIBUTIONS

Using Eqs. (8) and (11) and carrying out the angular
integrations, we find equations for the energy distributions.
One can see from Eqs. (8) and (11) that the pole terms do not
interfere with the seagull ones. Thus, the energy distribution
can be represented by Eq. (3).

A. Contribution of the pole terms

Employing Eqs. (8) and (11) we obtain

1

σT h

dσP

dx2
= 32

x2

x1
X(x1,x2)

1

1 − exp (−2πξ )
, (13)

with

X = |F |2 + 2
3 Re(F ∗�) + 1

3 |�|2; F = Fa + Fb;

� = �a + �b, (14)

while

σT h = 8π

3
r2
e

is the nonrelativistic limit of the Compton scattering cross
section on a free electron, known also as the Thomson cross
section.

The Low theorem [25], [22] predicts the energy distribution
of soft photons with ω2 � I ,ω1,

dσP(ω1,ω2)

dω2
=σph(ω1)w(ω1,ω2); w(ω1,ω2) = α

2

3π

p2

m2

1

ω2
.

(15)

Here, σph is the photoeffect cross section, w describes
ejection of the soft photon, p is the linear momentum of the
photoelectron, p2 = 2m(ω1 − I ). This can be obtained also
by straightforward evaluation of Eq. (13) in the limit x2 → 0.
In [21] Eq. (15) was obtained explicitly for the case of the
two-photon absorption (with w the probability of the induced
absorption). The infrared behavior of the Compton amplitude
was first mentioned in [14]. An analysis of the soft photon
ejection in the Compton scattering on bound electrons in the
relativistic case was given in [26].

Examples of the energy distributions for several values of
x1 are given in Fig. 1. In order to find the region of validity of
the low-energy behavior dσP/dx2 ∼ 1/ω2 we show also the
function x2/σT hdσP/dx2 (dashed line in Fig. 1). Deviation of
this function from a constant value corresponds to deviation
of the energy distribution from the behavior, described by
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(a)

(c)

(b)

FIG. 1. The photon energy distributions, provided by Eq. (13),
for x1 = 2,4,10 are shown by the solid lines in (a)–(c), corre-
spondingly. The dashed lines show the function (x2/σT h)dσP/dx2.
Their deviations from horizontal lines correspond to deviations
of the energy distributions from the behavior, described by
Eq. (15).

Eq. (15). One can see that Eq. (15) is true with good accuracy
in a large part of the energy interval.

In the case ω1 � I (x1 � 1) we can distinguish the
two regions of the spectrum. These are x1 − x2 ∼ 1 � x1,
corresponding to slow outgoing electrons with the energies
ε ∼ I , and x1 − x2 ∼ x1 � 1, with the fast electrons carrying
the energies ε ∼ ω1 � I . Each of the amplitudes Fa,b and
�a,b treated separately peaks at ε ∼ I . However, a large
compensation takes place in the sums Fa + Fb and �a + �b.
To demonstrate this, note that in the case x1,2 � 1 the
Coulomb Green functions can be replaced by free propagators
G0, since pa,b � η in Eq. (6). Presenting 〈 f |G0(pj )| f 1〉 =
2mδ( f − f 1)/(p2

j − f 2), (j = a,b) and noting that the in-
tegrals on the right-hand sides of Eq. (6) are saturated by
f ∼ η, one can see that the leading contributions to the
amplitudes Fa + Fb and �a + �b cancel. Finally, for all
ω1 the energy distribution drops while the electron energy
diminishes.

Note that one can obtain the energy distributions also by
integration of the double differential distributions obtained
in [19]. These distributions were calculated with the Coulomb
propagator obtained in [27]. The matrix elements were
represented in terms of the Appel functions and computed by
series summation. As expected, our results are close to those,
based on the calculations of [19]; see Fig. 2. One can see that
the deviations of the results obtained by using the two forms
of the Coulomb propagator are of the same order as those of
the data obtained by using its various representations in the

FIG. 2. The photon energy distribution at x1 = 4, compared to
that based on the results of [19]. Our results are shown by the solid
line; the results of [19] are shown by dark dots.

related problem of the two-photon ionization of the hydrogen
atom [28].

B. Seagull contribution

For the seagull contributions one can write
1

σT h

dσSG

dx2
= 64

3
(αZ)2x2

1V (xp);
(16)

V (xp) = 1

(xp + 1)5

exp [−4ξ arctan (1/ξ )]

1 − exp (−2πξ )
,

with xp = ε/I = x1 − x2 − 1, ξ = 1/x
1/2
p . One can see that

the explicit dependence on the nuclear charge Z and on the
energy of incoming photon x1 is factorized. The universal
function V (xp) is presented in Fig. 3. One can see that it is
concentrated at x2 close to x1, corresponding to small xp ∼ 1.
It reaches the maximum value at xp = 0.16.

C. Differential cross sections

Following Eq. (3) they can be obtained as the sum of the
energy distributions determined by Eqs. (13) and (16). Unlike
the situation at ω1 ∼ I , when the energy distributions depends
only on x2 and x1, in the general case it depends also on
Z. However, there are some common features of the energy
distributions.

All the spectrum curves have peaks at small x2 determined
by the pole terms and at small x1 − x2 determined by the
seagull terms. These peaks manifest themselves even at x1 ∼ 1.
The peak at small x2 is due to the infrared divergence,
expressed by Eq. (15), while the seagull terms have a sharp
peak at small xp.

FIG. 3. The function V (xp) defined by Eq. (16).
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(a)

(c)

(b)

FIG. 4. Photon energy distributions for Z = 20 in these cases:
(a) the total cross section is dominated by the pole terms (x1 = 2);
(b) the pole and seagull terms provide equal contributions to the cross
section (x1 = 5); (c) the cross section is dominated by the seagull
term (x1 = 8).

At x1 � 1 the seagull peak at small xp is more pronounced.
On the other hand, the region xp ∼ x2 ∼ x1 � 1 is dominated
by pole terms. One can see this, describing the continuum
and intermediate electrons in Eq. (6) by free functions. The
contribution of the pole terms can be estimated as Mp ∼
reψ1s(p). On the other hand, the seagull term described by
Eq. (7) can be estimated as MSG ∼ reψ1s(p)ω1/p, being
ω/p ∼ (ω/m)1/2 times smaller than MP. Thus, the contribu-
tion of the seagull term to the energy distribution dσ/dω2 at
ε � I provides a small correction of the order ω/m to that of
the pole terms, and cannot be included in the nonrelativistic
limit.

In Fig. 4 we provide examples of the photon energy
distributions for Z = 20 at three characteristic values of x1.
We shall return to this example in the next section.

IV. TOTAL CROSS SECTIONS

A. Energies ω1 ∼ I

At these energies only the pole terms contribute to the
total cross section. The latter can be obtained by numerical
integration of Eq. (13).

One can see that the cross section σ(ω1) is expected to
have a local maximum at relatively small values of the ration
x1 = ω1/I close to unity. Indeed, one can see from Fig. 1 that a
large part of the cross section can be estimated as coming from
the region of the ejected soft photons, where the spectrum is
described by Eq. (15). One can see that the upper limit of the
values of x2 where Eq. (15) is valid is certain x2 = c(x1 − 1)

with c an unknown coefficient. Thus, a large part of the cross
section can be represented as

σ ′
P(x1)

σT h

= U (x1) ln

(
c(x1 − 1)

ωλ/I

)
;

(17)

U (x1) = 4α

3π

I (x1 − 1)

m

σph(x1)

σT h

,

with the resolution threshold ελ determined in Sec. I. Using the
well-known expression for the photoionization cross section
(see, e.g., [29]), we find

U (x1) = 27

3

x1 − 1

x4
1

exp [−4ζ arctan(1/ζ )]

1 − exp (−2πζ )
. (18)

Here ζ = (x1 − 1)−1/2 is the Sommerfeld parameter of pho-
toelectron. Now we can look for the values of ω1 where the
ratio σ ′

P(x1)/σT h(17) reaches its maximum value. Assuming
that the resolution threshold is proportional to the energy of
photoelectron, that is,

ωλ = λ(ω1 − I ), λ � 1, (19)

we find that the contribution (17) obtains its largest value at
x1 = ω1/I = 1.56 [see Fig. 5(a)]. If ωλ does not depend on ω1

(or depends on it in a more complicated way), the maximum
of (17) is shifted from this value.

The results of numerical calculations, shown in Fig. 5(a)
confirm these estimations. In Fig. 5(b) we present the results

(a)

(c)

(b)

FIG. 5. The total cross section at x1 ∼ 1. Figure 5(a) shows
the function U (x1) defined by Eq. (18). Figure 5(b) illustrates the

dependence of the contribution
σ ′

P(x1)
σT h

defined by Eq. (17) on the

actual value of λ, introduced by Eq. (19). Solid line, λ = 2 × 10−3;
dashed line, λ = 10−3. Figure 5(c) shows the total cross section for
Z = 1 and Z = 20.
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for the value ωλ given by Eq. (19) with two different values
of λ.

If ωλ does not depend on ω1 we can write

σP(x1)

σT h

= W (x1) + U (x1) ln Z2;
(20)

W (x1) =
∫ x1−1

ωλ/I1

dx2
dσP(x1,x2)

σT hdx2
,

with I1 = mα2/2 = 13.6 eV the binding energy for Z = 1.
The distribution dσP(x1,x2)/σT hdx2is determined by Eq. (13).
We assume ωλ = 1 eV [7], and present for illustration the
function W (x1) [σP(x1)/σT h = W (x1) for Z = 1] and the
function σP(x1)/σT h for Z = 20 [Fig. 5(c)].

B. The case ω1 � I

Here, we must add the contribution of the seagull term to
that of the pole term. Using Eq. (16), we find

σSG

σT h

= 64

3
(αZ)2x2

1

∫ x1−1

0
dxpV (xp). (21)

One can see that the integral on the right-hand side of Eq. (21)
is saturated at xp ∼ 1 and at x1 � 1 does not depend on the
actual value of the upper limit. Thus, it can be replaced by∫ ∞

0 dxpV (xp) = 6.6 × 10−3). This leads to the cross section,

σSG

σT h

= 0.14(αZ)2x2
1 = 0.56

ω2
1

η2
. (22)

One can see that while the contribution of the pole terms
drops with x1 at x1 � 1, the contribution of the seagull terms,
being negligibly small at x1 ∼ 1, increases at larger x1 until
Eq. (2) is true. At certain value x̃1 the two contributions
become equal. The curve x̃1, thus, separates the regions of
the dominance of the pole and seagull terms. The curve x̃1

is shown in Figs. 6(a) and 6(b). The corresponding curve for

(a)

(d)(c)

(b)

FIG. 6. The border between the regions of dominant pole or
seagull terms. For the values of x1 above the curve x̃1(Z) in (a)
and (b) or for the values ω1 above the curve ω̃1(Z) in (c) and (d), the
seagull terms dominate. For the values below these curves, the cross
sections are determined by the pole terms. Solid line, λ = 2 · 10−3;
dashed line, λ = 10−3.

FIG. 7. The energy dependence of the Compton scattering cross
section for several values of Z. Solid line, Z = 10; dashed line,
Z = 20; dotted line, Z = 50.

the absolute value of the photon energy ω̃1(Z) is shown in
Figs. 6(c) and 6(d). The energy dependence of the Compton
scattering cross section for several values of the nuclear charge
is shown in Fig. 7.

V. SUMMARY

We calculated the energy distributions and the total cross
section for the Compton scattering on the K-shell electrons in
the low-energy region, determined by Eq. (2), that is, for the
case when the wavelength of the photons is much smaller than
the size of the K shell. All the electrons were described by
the nonrelativistic Coulomb functions. The results are true for
the single-electron ions with the nuclear charge Z. We expect
also that they reproduce the main features of the process on
the many-electron ions and atoms.

We calculated the contribution of the pole terms by using
a close representation for the Coulomb Green function. In the
lowest order of expansion in powers of η2/ω2 the pole and
seagull terms do not interfere.

At the photon energies of the order of the K-shell binding
energies ω1 ∼ I = m(αZ)2/2 the seagull terms provide a
small correction of the order (αZ)2 to the pole terms and cannot
be taken into account in the framework of the nonrelativistic
approach. In this case, the photon spectrum drops with an
increase of the ejected photon energies. As one can see in
Fig. 1, the low-energy Eq. (15) describes most part of the
spectrum at ω1 ∼ I . At ω1 � I , the high-energy part of
the photon spectrum ω1 − ω2 ∼ I , corresponding to slow
ejected electrons with energies ε ∼ I , is dominated by the
seagull terms (Fig. 3). All the other parts of the spectrum
are determined by the pole terms. Examples of the energy
distribution are presented in Fig. 4.

The total cross sections obtain maxima at energies
ω1 ∼(1.5–2)I , reaching the value of 0.5–1 barn (Fig. 5).
Here the cross sections are determined by the pole terms.
The contribution of the pole terms drops at larger energies.
However, at ω1 � I the contribution of the seagull terms,
which increases with ω1, becomes important. At certain value
ω̃1 � I , the pole and seagull terms provide equal contribution,
and at larger values of ω1 the seagull terms dominate. The
values ω̃1(Z) are presented in Fig. 6.

The present analysis can be useful in connection with
the laser-assisted and laser-induced processes, which are
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much discussed nowadays [30]. For example, in Ref. [31],
the authors considered the laser-field-assisted high-energy
Compton scattering on the bound electron with the energies of
the ejected electrons ε � I . They took into account only the
seagull terms. However, it follows from the present analysis
that for ω1 � η this part of the spectrum is described by the
pole terms. This provides additional restrictions for the energy
region where the approach developed in [31] is valid.

APPENDIX

A convenient technique of evaluation of the matrix el-
ements, containing the Coulomb functions, was worked
out in [20]. The Coulomb function of 1s state can be
written as

ϕ1s(r) = N

(
− ∂

∂η

)
Vη; N =

(
η3

π

)1/2

; Vη = e−ηr

r
,

(A1)

while in momentum space,

ψ1s( f − k) = N

(
− ∂

∂η

)
〈 f |Vη|k〉. (A2)

The wave function of the continuum electron with asymptotic
linear momentum p can be written as

ψ p( f ) = Np

(
− ∂

∂ν

)
Ĵx〈 p(1 − x)|Vν−ipx | f 〉, ν = 0,

(A3)

with the normalization factor Np defined in the text and

Ĵx =
∫

dx

x

( −x

1 − x

)iξ

; ξ = η

p
. (A4)

Here, the contour of integration is a closed loop encircling
the cut between the branching points x = 0 and x = 1 in the
counterclockwise direction.

Now the integral in Eq. (7) is

S =
∫

d3f

(2π )3
〈ψ p| f 〉〈 f − k|ψ1s〉

= NNp

(
− ∂

∂η

) (
− ∂

∂ν

)
Ĵx〈 p(1 − x)|Vν−ipxVη|k〉. (A5)

One can see that(
− ∂

∂ν

)
Vν+aVη = Vν+a+η, (A6)

and, thus,

S = NNp

(
− ∂

∂η

)
Ĵx〈 p(1 − x)|Vη−ipx |k〉. (A7)

The only singularity of the integrand in the integral over x

in (A7) is the single pole of the matrix element 〈 p(1 − x)|
Vη−ipx |k〉. Its residue provides

S = NNp

(
− ∂

∂η

)
4π

A0

(
A0

B0

)iξ

, (A8)

with A0 and B0 defined in the text just below Eq. (10). This
leads to Eq. (10) for the seagull term.
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