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We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-
coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double
photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion
momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev.
Lett. 103, 103008 (2009)].
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I. INTRODUCTION

Differential, with respect to the photoelectron energies
and angles (or momenta), characterization of the double
photoionization (DPI) process brings a wealth of information
[1]. It allows for detailed analysis of various DPI mechanisms
[2] and elucidation of the role of many-electron correlations
[3]. On the experimental side, differential DPI measurements
were greatly facilitated by the use of the cold target recoil ion
momentum spectroscopy (COLTRIMS) technique [4]. On the
theoretical side, various nonperturbative numerical methods
were adopted to perform DPI calculations on a range of atomic
and molecular targets with great accuracy and computational
efficacy. In addition, extraction of the DPI amplitudes from
measured differential cross sections [5,6] made possible a clear
separation of essential dynamics of the DPI process and a much
neater comparison between various theories and experiment.

Up to now, differential DPI cross sections and amplitudes
have been established unambiguously for the simplest two-
electron targets: the atomic helium and the molecular hydro-
gen. In the case of He, a broad consensus exists among various
theories and experiment [1]. In the case of H2, theoretical
predictions [7,8] are consistent with the most accurate DPI
measurements on the hydrogen molecule fixed in space [9,10].

Beyond these simplest targets, a comparison between
the experiment and ab initio theory is more problematic.
There have been a number of differential DPI measurements
on complex atoms. Bolognesi et al. [11–13] reported fully
resolved DPI cross sections of noble gas atoms. However,
no adequate theoretical treatment was offered to these data.
Only an empirical partial-wave analysis was performed for
Ar 3p6 and the asymptotic or helium-like calculations were
presented in the case of Ne 2s2. Another set of differential
DPI measurements was performed on the alkaline-earth metal

*A.Kheifets@anu.edu.au

atoms Ca 4s2 [14–16] and Sr 5s2 [17,18]. However, theoretical
interpretation of these data [19,20] involved some adjustable
fitting parameters. There have been a number of theoretical
reports of differential DPI cross sections of Be 2s2 [21–24].
However, only the total integrated cross section is known
experimentally for this target [25–27].

Thus far, the lithium atom is the only many-electron
target beyond He and H2 for which both the theory and
experiment can produce reliable differential cross sections.
Theoretical-angular and energy-resolved triply differential
cross sections (TDCS) were reported for Li by Kheifets
et al. [28]. These authors [28] employed nonperturbative
convergent close-coupling (CCC) and time-dependent close-
coupling (TDCC) methods to describe the DPI of Li at the
equal energy sharing. They introduced a set of symmetrized
DPI amplitudes which parametrized conveniently the TDCS
in the singlet and triplet channels. This formalism can be
readily generalized to an arbitrary energy sharing, although the
number of symmetrized DPI amplitudes should be doubled in
this case. On the experimental side, Zhu et al. [29] performed
differential measurements of Li DPI resolved with respect
to the sum photoelectron momentum (or equivalently, the
recoil ion momentum). Even though they were not able to
resolve individual photoelectron momenta, a sum momentum
measurement could provide important information on the
propensity rules governing the two-electron escape as was
demonstrated in the case of He by Knapp et al. [30].

To describe the recoil ion momentum distribution measured
by Zhu et al. [29], a complete set of TDCS should be integrated
across various energy sharings and mutual photoelectron
angles. In the present work, we perform such a procedure using
the recipe suggested by Pont and Shakeshaft [31]. Instead of
direct integration, we parametrize the TDCS with a pair of
symmetric and antisymmetric DPI amplitudes in the singlet
and triplet channels (four amplitudes in total). We perform
calculations of these amplitudes at several selected energy
sharings and then interpolate the amplitudes across the whole
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interval of the excess energy. Then the recoil ion momentum
distribution can be readily evaluated.

The rest of the paper is organized as follows. In Secs. II A
and II B, we give a brief summary of the CCC and TDCC
methods. An evaluation of the symmetrized DPI amplitudes
and the recoil ion momentum distribution is described in
Secs. II C and II D. Numerical results are presented in Sec. III.
We conclude in Sec. IV by discussing the similarities and
differences of predictions of the two theoretical models and
the experiment.

II. FORMALISM

A. CCC method

The application of the CCC method to DPI of Li is described
in detail in our earlier publications [28,32]. In brief, the
ionization amplitude is written as the matrix element of the
dipole operator between the multiconfiguration initial state
and the final multichannel state. The latter is expanded over
the set of channel states, each of which is a product of the
Li+ ion target state 〈0,1‖α〉 and a distorted wave 〈2‖kl〉. The
target electrons are labeled 0,1 and the continuum electron
is tagged 2. The core electron 0 is frozen to the 1s ground state.
The label α ≡ NLS comprises the integer N which numbers
the set of target states with the given orbital momentum L and
spin S. The negative energy target states Eα < 0 are attributed
to single photoionization whereas the positive energy states
Eα > 0 contribute to DPI.

The interelectron interaction is accounted for in the CCC
method to infinite order. This is achieved by integrating the
bare dipole matrix element with the scattering T matrix

Dαl(κ) = dαl(κ) +
∑
α′l′

∑∫
κ ′

〈αlκ ‖T ‖ α′l′κ ′〉 dα′l′ (κ ′)
E − κ ′2/2 − Eα′ + iδ

. (1)

Here κ and l denote the linear and angular momenta of
the continuous electron state and E = κ2/2 + Eα is the
total energy of the scattering system which consists of the
photoelectron and the Li+ ion. The bare dipole matrix elements
dαl(κ) are expressed via radial integrals containing the ground
and final state orbitals and the dipole operator either in the
length

∑3
j=1 rj or velocity ω−1 ∑3

j=1 ∇j gauges. The velocity
gauge proved to be more accurate in CCC calculations of DPI
on Li and we will be using it in the present work.

The reduced dipole matrix element Eq. (1) is used to
construct the DPI matrix element which corresponds to
ejection of the photoelectron pair with the linear momenta
k1,k2, and the angular momenta l1,l2

DS l1l2 (k1,k2)

= (−i)l1+l2 ei[σl1 (Z=2)+σl2 (Z=1)]Dαl2 (k2) 〈l1k1,1s ‖ α〉. (2)

Here 〈l1k1,1s ‖ α〉 is the radial projection of the positive
energy target state α of the matching energy Eα = k2

1/2 to
the final ionized state. The latter state is composed of the
photoelectron l1k1 and the bound electron frozen to the 1s state.
The Coulomb scattering phases σl2 (Z = 1) and σl1 (Z = 2)
depend on the asymptotic charge of the singly and doubly
charged ions, respectively.

The spin S in Eq. (2) is related to the positive energy target
state 〈0,1|α〉, α ≡ NLS. It is physically more transparent to

redefine matrix elements (2) with respect to the spin of the
photoelectron pair 1,2

FS l1l2 (k1,k2) =
∑

S ′=0,1

[(−1)S
′
DS ′ l1l2 (k1,k2) + DS ′ l2l1 (k1,k2)γSS ′].

(3)

The recoupling coefficients γSS ′ are given by Eqs. (32) and (33)
of Stelbovics et al. [33] in the case of equal energy sharing and
by Eqs. (34) and (35) in the case of an arbitrary energy sharing.

The matrix elements (2) are then fed to the following
expression for the TDCS which takes the form of the partial
wave expansion:

d3σ

d�1d�2 dE2
= C

∑
S=0,1

∣∣∣∣∣
∑
l1l2

e ·Y l1l2
1 (n1,n2) FS l1l2 (k1,k2)

∣∣∣∣∣
2

.

(4)

Here C = 8π2ω/(3c) is the photoionization constant and
c � 137 is the speed of light in atomic units. The unit vectors
ni = ki/ki,i = 1,2 are directed along the photoelectron
momenta, e is the polarization vector of light. The bipolar
harmonics are tensors of rank 1 expressed by the following
tensorial product [34]:

Y l1l2
1 (n1,n2) = Yl1 (n1) ⊗ Yl2 (n2). (5)

B. TDCC method

A description of the TDCC approach to DPI of Li was
recently presented [28,35]. Briefly, two calculations are made,
one for the two photoelectrons coupling to a singlet state, and
one for both photoelectrons coupling to a triplet state. After
propagation of the Schrödinger equation, one can obtain the
final momentum-space amplitudes using

P LS
l1l2

(k1,k2,T )

=
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1 (r1)Pk2l2 (r2)P LS

l1l2
(r1,r2,T ), (6)

where the box-normalized radial distorted-waves Pkl are solu-
tions of the one-electron radial Schrödinger equation [35]. The
final time solutions P LS

l1l2
(r1,r2,T ) are obtained by propagating

the Schrödinger equation for the correlated two-electron radial
wave function with the total orbital momentum L and spin S

to sufficiently long times t = T .
TDCS may then be calculated from these amplitudes using

the expression [36]

d3σ

dE2d�1d�2

= 2
1

k1k2

ω

I

∂

∂t

∫ ∞

0
dk1

∫ ∞

0
dk2δ

[
β − tan−1

(
k2

k1

)]

×
∑

S=0,1

wS

∣∣∣∣∣
∑
l1,l2

(−i)l1+l2ei(σl1 +σl2 )ei(δl1 +δl2 )

× P LS
l1l2

(k1,k2,t) e ·Y l1l2
L (n1,n2)

∣∣∣∣∣
2

, (7)

where β is the hyperspherical angle between k1 and k2, I is
the radiation field intensity, σl and δl are the Coulomb and
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distorted-wave phases, respectively, and integration over all
solid angles and ejected energy gives the total integral cross
section. This expression includes the appropriate spin statisti-
cal factors [35] wS , where w0 = 1/4 and w1 = 3/4. The factor
of 2 results from the initial occupation number of the 1s orbital.
All TDCC calculations presented in this paper were made in
the length gauge, and test calculations made in the velocity
gauge were almost identical to the calculations presented here.

C. Symmetrized DPI amplitudes

As was shown in our previous work [28], TDCS expressions
(4) and (7) can be written in the form

d3σ

d�1d�2 dE2
=

∑
S=0,1

∣∣[e · n1 + (−1)S e · n2] Mg

S(k1,k2,θ12)

+ [e · n1− (−1)S e · n2] Mu
S(k1,k2,θ12)

∣∣2
, (8)

in which the trivial kinematic dependence of the escape
directions n1, n2 relative the polarization vector e is separated
from the essential dynamics of the DPI process. These
dynamics are contained in a pair of the symmetric gerade
(g) and antisymmetric ungerade (u) DPI amplitudes

Mg/u

S (k1,k2,θ12) =
√

3C

4π

∞∑
l=0

(−1)l√
l + 1

[P ′
l+1(x) ∓ (−1)SP ′

l (x)]

×F±
S ll+1(k1,k2), (9)

where x = cos θ12 = n1 · n2. These amplitudes satisfy the
following exchange symmetry:

Mg

S(k1,k2,θ12) = Mg

S(k2,k1,θ12),

Mu
S(k1,k2,θ12) = −Mu

S(k2,k1,θ12), (10)

Mu
S(k1 = k2,θ12) = 0.
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FIG. 1. (Color online) Moduli of the symmetrized DPI amplitudes of Li at the photon energy ω = 91 eV and various energy sharings
E1 : E2 = 1 : 9 , 3 : 7, and 5 : 5 eV. Each panel is split in two at the folding symmetry point θ12 = π . The left half of the panel accommodates
the CCC amplitudes whereas the right half displays the TDCC amplitudes. The symmetric and antisymmetric amplitudes are shown with red
solid and blue dashed lines, respectively, in the singlet (left) and triplet (right) columns of plots. The dual Gaussian fit to the CCC amplitudes
is shown with thin dotted lines.
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Thus only a pair of symmetric amplitudes Mg

S=0,1(k1 =
k2,θ12) are needed to describe the angular distribution of
photoelectrons in DPI of Li at equal energy sharing. Two pairs
of amplitudes are needed in an arbitrary energy sharing case.

D. Recoil ion momentum distribution

In this section, we follow the derivation of Pont and
Shakeshaft [31]. We streamline the notations and write Eq. (8)
as

d3σ

d�1d�2 dE2
=

∑
S=0,1

|fS(k1,k2)|2, (11)

where

fS(k1,k2) = fS(k1,k2,x) k1 · e + fS(k2,k1,x) k2 · e

= g+
S (p,k,y) p · e + g−

S (p,k,y) k · e. (12)

Here we returned to nonsymmetrized amplitudes fS(ki,kj ,x),
which are expressed via symmetrized amplitudes (9) as

fS(k1,k2,x) = Mg

S(k1,k2,x) + Mu
S(k1,k2,x),

(13)
fS(k2,k1,x) = Mg

S(k1,k2,x) − Mu
S(k1,k2,x).

In Eq. (12) we also introduced the sum p = k1 + k2 and dif-
ference k = k1 − k2 momenta and their respective amplitudes

g±
S (p,k,y) = 1

2

[
fS(k1,k2,x)

k1
± fS(k2,k1,x)

k2

]
, (14)

where y = p · k/(pk). Further on, we make the following
Legendre polynomial expansions:

|g±
S (p,k,y)|2 =

∑
l

(2l + 1)I±
lS (p) Pl(y),

Re{g+
S (p,k,y)[g−

S (p,k,y)]∗} =
∑

l

(2l + 1)JlS(p) Pl(y).

Here the plus, minus, and mixed momenta are

I±
lS = 1

2

∫ 1

−1
|g±

S (k1,k2,y)|2Pl(y) dy,

(15)

JlS = 1

2

∫ 1

−1
2Re{g+

S (k1,k2,y)[g−
S (k1,k2,y)]∗}Pl(y) dy.

With these notations, the sum momentum distribution is given
by the following differential cross section:

d2σ

dp d�p

= 1

4π

∑
S=0,1

dσS

dp
[1 + βSP2(cos θp)], (16)
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FIG. 2. (Color online) The TDCS of DPI of Li at ω = 91 eV for the coplanar kinematics and fixed photoelectron angle θ1 = 0◦ as a function
of the variable angle θ2. The energy of the variable angle photoelectron E2 is indicated on each panel.

023403-4



DIFFERENTIAL CROSS SECTIONS OF DOUBLE . . . PHYSICAL REVIEW A 82, 023403 (2010)

 1

 1.2

 1.4

 1.6

 1.8

 2

   

A
sy

m
m

et
ry

 p
ar

am
ee

r 
β

  

CCC
3C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

S
D

C
S

 d
σ/

dp

p/pmax

Expt.
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and the normalized SDCS dσ/dp (middle) are plotted versus the sum
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momentum. The present CCC results (red solid line) are plotted along
with the 3C calculation (blue dashed line) and the experimental data
(dots) from Ref. [31].

where the asymmetry parameter and the single differential,
with respect to the momentum, cross section (SDCS) are given
by the following expressions:

βS = 2
p2I+

0S(p) + k2I−
2S + kpJ1S(p)

p2I+
0S(p) + k2I−

0S + kpJ1S(p)
,

(17)
dσS

dp
= kp2[p2I+

0S(p) + k2I−
0S(p) + kpJ1S(p)].

The spin index in Eqs. (16) and (17) corresponds to the spin
of the amplitudes (12) and (14).

In the asymptotic limits p → 0 or k → 0, the asymmetry
β parameters can be found analytically. Indeed, these limits
correspond to the antiparallel or parallel escapes of the two
equal energy photoelectrons (i.e., x = ∓1 for all the y values).
So the amplitudes fS(k1,k2,x) entering integrals (15) via
Eq. (14) can be taken outside the integration sign. The residual
parts of the integrals are then evaluated analytically. This
procedure leads to the following limits:

p → 0

{
βS=0 → 7/5

βS=1 → 0
,

(18)

k → 0

{
βS=0 → 2

βS=1 → 2
.

The experimentally measured SDCS is given by the spin
sum dσ/dp = ∑

S dσS/dp. Another momentum distribution
which can be determined experimentally is the double differ-
ential cross section (DDCS)

dσ

dpxdpz

=
∫ pmax

−pmax

dpy

dσ

dpxdpydpz

=
∫ pmax

−pmax

dpy

1

p2

dσ

dpd�p

,

(19)

where pmax = √
p2 − p2

x − p2
z =

√
p2 − p2

‖ . It reflects the

momentum distribution projected onto the detection plane
which contains the polarization axis of light e‖ ẑ.

III. RESULTS

The experimental data reported by Zhu et al. [29] were
taken at the two fixed, photon energies of ω = 85 and 91 eV,
which corresponded to the excess energies of 4 and 10 eV
above the DPI threshold. To match these data, we performed
our calculations at the same set of photon energies.
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FIG. 4. (Color online) The recoil ion
momentum distribution of the DPI of Li
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A. Symmetrized DPI amplitudes

The moduli of the symmetrized DPI amplitudes (9) at the
photon energy of ω = 91 eV and various energy sharings
are displayed in Fig. 1. The three rows of plots display
the amplitudes for the slow photoelectron energies fixed at
E1 = 1, 3, and 5 eV (from top to bottom). The left column
contains the singlet amplitudes whereas the right column
displays the triplet amplitudes. The amplitudes are plotted
as functions of the mutual photoelectron angle θ12. As such,
they are symmetric relative to θ12 = π . We use this symmetry
and plot two sets of amplitudes on the same graph: the
CCC amplitudes are displayed for θ12 � π and the TDCC
amplitudes are drawn for θ12 � π . This way the difference
between the two sets of amplitudes is clearly seen. There are
two amplitudes, symmetric and antisymmetric, in the singlet
and triplet channels. The only exception is the equal energy
sharing case E1 = E2 = 5 eV shown on the bottom row of
plots which contain only symmetric amplitudes.

It is customary to fit the moduli of the symmetrized
amplitudes with a Gaussian ansatz. The amplitudes displayed
in Fig. 1 are clearly non-Gaussian. To fit these amplitudes, we
applied a dual Gaussian ansatz which includes a mixture of
two Gaussians with a relative phase shift

G(t) = A1 exp
( − t2/2�2

1

) + eiφA2 exp
( − t2/2�2

2

)
. (20)

Here t = π − θ12 and � are related to the full width at half
maximum �θ12 = �

√
8 ln 2. The physical rationale of the

dual Gaussian ansatz is the following. In the CCC formalism,
DPI is considered as a two-stage process in which the primary
photoelectron knocks out the secondary photoelectron via
inelastic collision with the singly ionized target. Kheifets
and Bray [3] related the Gaussian width parameter with the
momentum profile of the corresponding target orbital bound
to the singly charged ion. For heteroshell targets such as Li,
there are two orbitals 1s and 2s involved in this process.
Therefore it is logical to introduce two Gaussian width
parameters corresponding to each of these orbitals. More
detailed analysis of the DPI process in heteroshell atomic
targets will be performed elsewhere [37].

We used the five parameters A1,2, �1,2, and φ to fit the CCC
amplitudes in Fig. 1. The quality of the fit is so good that the
dual Gaussian ansatz can only be distinguished from the CCC
amplitude for very small interelectron angles where the raw
amplitude may exhibit some unphysical “tails.”

Agreement between the CCC and TDCC calculations is
generally good. Except for some mismatch of the height of
the amplitudes, the TDCC amplitudes tend to be slightly more
extended toward small mutual angles as compared to their
CCC counterparts.

B. Fully resolved TDCS

In Fig. 2 we present the TDCS calculated at the photon
energy ω = 91 eV for the coplanar kinematics and various
energy sharings between the two photoelectrons. The angle
of one of the photoelectrons is fixed at θ1 = 0◦ along the
polarization axis of light. In these kinematics, general TDCS

FIG. 5. (Color online) The DDCS d2σ/dpx dpz of the DPI of
Li at the photon energy of ω = 91 eV. The three panels (from top
to bottom) display the CCC calculation, the TDCC calculation, and
the experiment [38]. The dashed circle on each panel indicates the
maximum available recoil momentum pmax = 1.21 a.u.

expression (8) is simplified to

d3σ (θ1 = 0)

d�1d�2 dE2
=

∑
S=0,1

∣∣[1 + (−1)S cos θ2] Mg

S(θ2)

+ [1 − (−1)S cos θ2] Mu
S(θ2)

∣∣2
. (21)

Both the kinematics factors and the amplitudes entering
Eq. (21) are symmetric with respect to the angle θ2 = 180◦
which allows us to accommodate two sets of data, the CCC
and TDCC, on the same plot as in Fig. 1.

The TDCS at three energy sharings between the slow and
fast photoelectrons 1 : 9, 3 : 7, and 5 : 5 eV are shown in
Fig. 2 (from top to bottom). These three sets of TDCS are
generated using the symmetrized DPI amplitudes displayed in
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the matching panels of Fig. 1. These amplitudes correspond to
the energy sharing in which E1 � E2. To generate the TDCS
at the complementary energy sharing E1 > E2 we used the
exchange symmetry relation (10).

First, we analyze the singlet TDCS. At the very uneven
energy sharing of 1:9 eV, the angular distributions of both the
slow and fast photoelectrons have a strong peak at 180◦ which
corresponds to the back-to-back emission for the presently
fixed photoelectron angle of zero degrees. This peak originates
from the asymmetric amplitude Mu

S=0 as the kinematic factor
accompanying the symmetric amplitude Mg

S=0 is zero at the
back-to-back emission. That is why the height of this peak
is identical both for the fast and slow photoelectrons. As
the energy sharing becomes more even (from the top left
to the bottom left panels of Fig. 2), the back-to-back peak
gradually declines until it disappears completely at the equal
energy sharing where the asymmetric amplitude is zero. The
magnitude of the TDCS in the singlet channel is largest at a
very asymmetric energy sharing (the top left panel) when the
back-to-back escape is favored both by the kinematic and the
dynamic amplitude factors. Conversely, at the equal energy
sharing (the bottom left panel) the magnitude of the singlet
TDCS is the smallest as the kinematic and the dynamic factors
have to negotiate a compromise at an angle close to 120◦.

In the triplet channel (the right column of Fig. 2), the
evolution of the TDCS with the energy sharing is not so
dramatic. As follows from Eq. (21), the symmetric amplitude
is the main contributor to the TDCS. This amplitude shows
little variation in magnitude as is seen from the right column of
Fig. 1. However, this amplitude changes its shape considerably,
displaying a noticeable minimum in the back-to-back direction
at very asymmetric energy sharing. This minimum corresponds
to the strong dip in the triplet TDCS at 180◦ (the top right
panel). As the triplet symmetric amplitude flattens (middle
and bottom right panels of Fig. 1), the corresponding TDCS
display the strong maximum in the back-to-back emission.
At all energy sharings, the contribution of the antisymmetric
amplitude is small in the triplet channel. That is why the TDCS

of the slow and fast photoelectrons are rather similar. The
singlet and triplet TDCS are on par at a very uneven energy
sharing, but the triplet channel gradually takes over toward the
equal energy sharing. This is despite the fact that the singlet
amplitude is much larger on the bottom panel of Fig. 1 than
its triplet counterpart. This seeming contradiction is due to the
different interplay between the dynamic and kinematic factors
in the singlet and triplet channels.

The variation in amplitudes of Fig. 1 between the CCC
and TDCC methods translates itself into the different TDCS
of Fig. 2. This difference is, however, not qualitative, but
rather quantitative, found in the relative peak heights of the
corresponding TDCS. In the singlet channel, the difference
between the CCC and TDCC is most profound for the smallest
TDCS corresponding to the equal energy sharing (the bottom
left panel). In the triplet channel, the CCC calculation produces
systematically larger TDCS. This was already acknowledged
in our previous paper [28], in which we analyzed the case of
the equal energy sharing.

C. Recoil ion momentum distribution

The computational procedure outlined in Sec. II D requires
knowledge of the DPI amplitudes at all possible energy
sharings. In practice, the CCC amplitudes are calculated on
a rather sparse energy grid to reduce the computation time to
the minimum. To reconcile these contradictory requirements,
we came up with the following computational strategy. We
fitted raw DPI amplitudes with the dual Gaussian ansatz (20)
at a few selected reference energy points and then extrapolated
the parameters A1,2, �1,2, and φ by the polynomial fit across
the whole energy range. To determine how well this procedure
actually works and how sparse the reference energy grid can
be, we performed a set of test calculations of the recoil ion
momentum distribution corresponding to the DPI of the ground
state He at ω = 99 and 20 eV excess energy. These data are
shown in Fig. 3 where we display the asymmetry β parameter
(top) and the SDCS dσ/dp (bottom) plotted versus the the sum
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FIG. 6. (Color online) Same plots as
in Fig. 4 for the photon energy ω = 85 eV.
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momentum p/pmax measured as a fraction of the maximum
available momentum. The SDCS is normalized to unity in
its maximum. The present CCC results (red solid line) are
plotted along with the 3C calculation (blue dashed line) and the
experimental data (dots) from Ref. [31]. Agreement between
the two calculations and the experimental data (only available
for the SDCS) is excellent, which validates our computation
procedure.

The helium test case presented in Fig. 3 contains only
one singlet channel. On the other hand, the corresponding Li
data exhibited in Fig. 4 display two sets of the asymmetry β

parameters (top panels) and the SDCS dσ/dp (bottom panel)
corresponding to the singlet (S) and triplet (T) channels. The
spin summed (S+T) SDCS is also shown on the bottom panels
and compared with experimental data of Zhu et al. [29].
The CCC and TDCC results are displayed in the left and
right columns, respectively. The TDCC amplitudes could be
calculated on a very fine energy mesh and used directly in
the recoil momentum calculation. No additional interpolation
was needed in this case.

As is seen from Fig. 4, the asymmetry β parameters
clearly adhere to the asymptotic limits (18). However, at
intermediate values of the sum momentum, the CCC and
TDCC methods predict quite different sets of asymmetry
parameters. In the TDCC calculation, βS=1 data display a
sharp turn at large p/pmax ∼ 1, whereas the CCC calculation
returns a negative value of this parameter at p/pmax ∼ 0.
The difference between the two sets of calculations is not so
dramatic for the SDCS dσ/dp, especially when the summation
over the spins is performed. Both calculations predict the
spin summed SDCS which is quite close to the experiment
[29]. One notable exception is the large values of the sum
momentum p/pmax ∼ 1 where both calculations predict the
SDCS well below the experimental values. This region of the
sum momentum corresponds to the parallel escape of the two
photoelectrons with equal energy sharing. As is seen from
the bottom right panel of Fig. 2, this escape is suppressed
in both calculations, though somewhat stronger in the CCC
model. This suppression can be ultimately traced back to the
symmetrized DPI amplitudes exhibited on the bottom panels
of Fig. 1.

The difference between the CCC and TDCC calculations
is seen more clearly in the DDCS plots presented in Fig. 5.
Both theories predict the photoelectron angular distribution
in the px , pz plane extended along the polarization axis of
light (horizontal in the figure). However, the CCC calculation
predicts a single maximum in both ±pz directions whereas the
TDCC calculation shows a more complicated split maximum
pattern. The origin of this pattern is most likely due to the
sharp turn by βS=1 in the interval of the sum momenta where
dσ/dp is still large. The presently available experimental
data [38] (bottom panel of Fig. 5) have insufficient statistics
to discriminate between the two calculations. However, the
general shape of the DDCS is similar in the theory and
experiment.

An analogous set of data is shown Figs. 6 and 7 for the
photon energy of ω = 85 which corresponds to the excess
energy of 4 eV. As is seen from Fig. 6, the two calculations
predict qualitatively similar sets of asymmetry β parameters
and the SDCS. In comparison with the experiment [29], the

FIG. 7. (Color online) Same as Fig. 5 for the photon energy of
ω = 85 eV. The experimental data (bottom panel) are from Ref. [29].
The dashed circle on each panel indicates the maximum available
recoil momentum pmax = 0.77 a.u.

CCC calculation for the SDCS tend to be somewhat closer at
intermediate values of p/pmax. When the DDCS are compared
in the two calculations and the experiment in Fig. 7, they all
look quite similar. The calculated DDCS are somewhat more
elongated in the polarization direction.

IV. CONCLUSION

In the present paper, we performed CCC and TDCC cal-
culations of the fully resolved triply differential cross section
(TDCS) of DPI of Li. Both numerical methods have been tested
before in obtaining the total integrated cross sections (TICS)
of the same process for which they produced very similar
results across a wide range of photon energies [32,35]. Also,
we verified our numerical schemes in a pilot calculation of the
TDCS for the equal energy sharing between the photoelectrons
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E1 = E2 = 5 eV [28]. In the present work, we extended our
calculations to obtain TDCS at arbitrary energy sharing. This
enabled us to reproduce the recoil ion momentum distribution
and to make a comparison with the recently published [29]
and still unpublished [38] experimental data.

The key ingredient of our computations is a set of sym-
metrized DPI amplitudes. These amplitudes were calculated
on a sufficiently fine energy mesh in the TDCC method. As
an alternative, in the CCC computation, the raw amplitudes
were calculated on a rather sparse energy grid. This reference
set of amplitudes was fitted with a generalized dual Gaussian
ansatz. The fitting coefficients were then interpolated across
the whole range of the excess energy. This procedure provided
a complete description of the DPI process.

When we compared our calculated recoil ion momentum
distributions, reasonable agreement with the experiment was
found. At the photon energy ω = 91 eV, both theories predict
the SDCS which is quite close to the experimental data.
However, the experimental SDCS extends much further toward
p/pmax ∼ 1. This area of the sum momentum corresponds
to the close-to-parallel emission of the equal energy pho-
toelectrons. This emission pattern is suppressed in theory
especially. At the photon energy ω = 85 eV, both the CCC
and TDCC calculations predict SDCS which are quite close
to the experiment. The doubly differential, with respect to
the px and pz components of the sum momentum, cross
section (DDCS) reflects the recoil ion momentum distribution
in the detection plane which contains the polarization axis of
light. Both the theories and experiment have the same pattern
of the DDCS which is extended along the polarization axis
direction.

The largest difference between the two models is reflected
in the angular asymmetry β parameters recorded separately

in the singlet and triplet channels. This difference can be
traced back to the symmetrized DPI amplitudes which have
a systematically larger angular span in the TDCC as compared
to CCC. This difference is visible in the DDCS pattern
which is quite different for the two models at ω = 91 eV.
Unfortunately, the experimental data have insufficient statistics
to discriminate between the calculations.

We hope that our report will stimulate further energy and
angular differential studies of the DPI of Li. The physics of
this process is rich due to the interplay between the singlet and
triplet channels, which is most revealing at arbitrary energy
sharing between the photoelectrons. In the recoil ion channel,
the spin-resolved momentum distribution display a very
involved and nontrivial pattern. It would be also interesting
to test theoretical predictions by differential detection of both
photoelectrons, as is currently planned. This would provide
discrimination between the two theoretical approaches, the
CCC and TDCC, employed in the present study.
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