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Semiclassical approaches to below-threshold harmonics
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We study the generation of below-threshold harmonics in a model atom by extending the three-step
semiclassical model of harmonic generation to include effects of the atomic potential. We explore the
generalization of semiclassical trajectories of the electron in the presence of the combined laser-atom potential
and calculate the intensity-dependent dipole phase associated with these trajectories. Our results are in good
agreement with fully quantum mechanical calculations, as well as with recent experimental observations. We
show that the so-called long trajectory readily generalizes to below-threshold harmonic generation and is relatively
insensitive to the choice of initial conditions. We also find that the short trajectory can only lead to low-energy
harmonics for electrons that have been released close to the ion core in a process that is closer to multiphoton
than to tunnel ionization.
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I. INTRODUCTION

In a recent experimental and theoretical study, Yost and
collaborators investigated the generation of relatively low-
order harmonics in xenon by an intense, 1.07-µm infrared laser
field [1]. These harmonics, with photon energies below and
close to the ionization threshold in xenon, were found to exhibit
pronounced characteristics of semiclassical contributions to
their generation process. In particular, interference between
contributions with different intensity-dependent phases was
observed in the yield of harmonics as low as the seventh,
and the spectral and spatial profiles of these harmonics
exhibited clear signatures of a contribution with a large,
intensity-dependent phase. This earlier study discussed that
these results can be understood in a generalized semiclassical
model (SCM) of harmonic generation in which the atomic
potential is included [1]. In the present article we discuss
this generalized model in detail and elaborate on how some
elements of low-order harmonic generation can be understood
in terms of semiclassical dynamics.

The generation of harmonics with energies much higher
than the ionization potential is well understood using the stan-
dard SCM [2–4]. In this model harmonics are produced in three
steps: (i) An electron tunnel ionizes due to the laser field, (ii) is
accelerated by the laser field far away from the parent atom, and
(iii) may return to the parent atom when the laser field changes
direction, where it can recombine and thereby release a photon
with energy Eph = Tr + Ip. Here Tr is the kinetic energy
gained from the field and Ip is the ionization potential of the
atom. This model predicts not only the observed high harmonic
cutoff (given by the maximum value of Tr + Ip = 3.2Up + Ip,
where the ponderomotive energy Up is the cycle-averaged
kinetic energy of the electron in the field) but also explains the
intensity-dependent phase behavior of the emitted harmonics
in terms of classical trajectories for tunnel-ionized electrons
[5–7]. For each return energy below the cutoff energy, two
electron trajectories with travel times of less than one optical
cycle are found: the long trajectory which ionizes early
and returns after a long travel time and the short trajectory
which ionizes later and returns quickly. The phase acquired
by the electron wave function along each trajectory, given

by the action integral, is proportional to the cycle-averaged
intensity and is in general very different for the short and long
trajectories [6,8–11]. This gives rise to interference effects as
a function of laser intensity, such as observed in [1,12,13].

In the standard SCM the effect of the atomic potential is
ignored in the second step and the lowest possible value of
Tr is zero, so by definition it cannot describe the generation
of harmonics with energies Eph < Ip. In this article, we study
the generation of below- and around-threshold harmonics in a
generalized SCM which includes the atomic potential in both
the initial ionization process and the subsequent continuum
dynamics. Our approach is similar in spirit to that of [14–16],
in which the classical dynamics of an electron in a combined
laser-atom potential was invoked to explore strong-field single
or double ionization. We find that there are classical trajectories
that lead to electrons returning with below-threshold total
energies and that the long trajectory in particular can be
readily generalized to below-threshold harmonic generation.
We also show that the short trajectory does not give rise to low-
energy returns when initiated by tunnel ionization. Only when
electrons are released close to the core, in a process mimicking
multiphoton ionization, do we find a trajectory analogous to
the short trajectory. This is true even for harmonics as high as
the 27th, driven by a 1-µm laser in hydrogen.

Our article is organized as follows: In Sec. II we show fully
quantum mechanical calculations of the quantum path contri-
butions to harmonics 7–13 of a 1.07-µm laser in hydrogen,
providing a benchmark for comparisons with results of our
generalized SCM. Section III presents our generalized theory
and how the different initial conditions are implemented. In
Sec. IV we show results and compare the semiclassical calcu-
lations to the fully quantum result, and in Sec. V we briefly
summarize our results and conclusions. All calculations are in
atomic units with h̄ = me = e = 1 unless otherwise specified.

II. QUANTUM PATH DISTRIBUTIONS FOR
LOW-ORDER HARMONICS

The process of harmonic generation results from the
creation of a time-dependent dipole moment that has Fourier
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components at frequencies qω, where q is an odd integer and
ω is the driving laser frequency. In the SCM of high harmonic
generation [7,17] the dipole moment at the qth harmonic dq

is first written as a sum over a small number of contributions,
each characterized by a phase S

j
q :

dq(I ) ∼
∑

j

aj eiS
j
q . (1)

The different contributions are called quantum orbits. In the
simplest approximation the real part of the phase S

j
q can be

calculated from the action along the j th classical trajectory
that returns an electron, freed by tunnel ionization, to the
nucleus with kinetic energy Tr such that Eph = Tr + Ip. In
the standard SCM the effect of the atomic potential on the
electron trajectory is ignored and the classical action scales
with the laser intensity as

Sj
q = −αjUp/ω, (2)

where Up = I/4ω2 is the ponderomotive energy and I is the
laser intensity, both in atomic units. The phase coefficient
αj characterizes the quantum orbit and depends only on the
return time (and not the intensity) when the effects of the
potential are ignored. The different trajectories then have a
dipole phase proportional to αI [5,6]. In the standard SCM, α

varies between 0 and 2π for electron trajectories which return
within one cycle of their ionization.

To make the connection between full quantum mechanical
calculations and this semiclassical picture, we begin by writing
the full intensity-dependent dipole moment dq(I ) as the sum of
contributions characterized by a parameter α that is conjugate
to the intensity [18,19]:

dq(I ) =
∫

d̃q(α)e−iαUp(I )/ωdα. (3)

We then attempt to extract the dominant phase contribu-
tions to dq from a full quantum mechanical calculation
and compare them with the semiclassical phases αj . We
do this by calculating the complex intensity-dependent dq

via numerical integration of the time-dependent Schrödinger
equation (TDSE) in two dimensions [20] for a hydrogen atom
interacting with an intense, linearly polarized 1.07-µm laser
pulse with a quasiconstant peak intensity. Starting from the
ground-state wave function of the hydrogen atom calculated
on our numerical grid, we numerically integrate the TDSE
forward in time for the duration of the laser pulse. We do this
for many different intensities. We calculate the dipole spectrum
for each intensity from the time-dependent acceleration of
the electron, 〈a(t)〉 = −〈ψ(t)|[H,[H,z]]|ψ(t)〉, where ψ(t) is
the time-dependent wave function and H is the Hamiltonian
which includes both the laser and atomic potentials. The
frequency-dependent dipole moment is then calculated from
the Fourier transform of a(t): d̃(ω) = −ã(ω)/ω2.

For each harmonic q, and each intensity I0, we then analyze
the intensity-dependent dipole moment dq(I0) in terms of the
conjugate phase variable α, as described in [18]:

d̃q(α,I0) =
∫

dq(I )eiαUp(I )/ωW (I − I0)dI, (4)

1

2

3

4

5

 

In
te

ns
ity

 (
10

13
 W

/c
m

2 )

H7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0H9

-4 -2 0 2 4 6 8 10

1

2

3

4

5

In
te

ns
ity

 (
10

13
 W

/c
m

2 )

alpha (units of π)

H11

-4 -2 0 2 4 6 8 10
alpha (units of π)

H13

FIG. 1. (Color online) Quantum path distributions for harmonics
7 through 13 of a 1.07-µm laser in hydrogen. The mostly vertical
(colored) strips indicate α values of the dominant contributions to the
dipole phase.

where W (I − I0) is the same window function centered on
I0 used in [18], and d̃q(α,I0) represents the strength of the
contribution to the intensity-dependent dipole moment which
has a phase proportional to αI . For above-threshold harmonics,
the phase coefficients obtained in this way from the full
quantum calculations correspond well to those predicted by
the SCM [18]. In particular, the short and long trajectories
give rise to phase coefficients α1 ≈ 0.1π–0.2π and α2 ≈ 2π ,
respectively.

In this article we extend this analysis to harmonics below
and close to threshold [1]. We begin by showing the result of
the quantum path analysis for harmonics 7–13 of a 1.07-µm
laser in hydrogen in Fig. 1. At this laser wavelength harmonic
13 is just above threshold. Each harmonic exhibits multiple
quantum path contributions; the two dominant ones have phase
coefficients α0 ≈ 0 and α2 ≈ 2.5π–3π . This α2 is slightly
larger than that predicted by the standard SCM for above-
threshold harmonics. However, previous studies have found
that quantum paths somewhat longer than the long trajectories
(returning after more than one laser cycle) also dominate for
higher harmonics [19]. We also note that the value of α0 is
actually slightly negative for all of these harmonics, which is
very different from the predictions of the standard SCM, where
α is always positive. Harmonics 3 and 5 exhibit only this α0

contribution.
In the rest of this article we argue that the large α2

contributions in Fig. 1 can be interpreted as generalized
long trajectories which are relatively insensitive to the atomic
potential except at low intensities. We also argue that there are
no short trajectories initiated by tunnel ionization which lead
to below-threshold return energies. We show that the α0 ≈ 0
contribution can be reproduced if electrons are released at the
ion core with a small kinetic energy.
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III. GENERALIZED SEMICLASSICAL MODEL

In the simplest SCM for the phase coefficients αj , an
electron tunnel ionizes at time t0 and is released into the laser
field at the position of the ion core [x(t0) = 0] with zero kinetic
energy [p(t0) = 0]. After the initial tunneling, the electron
is considered to be solely under the influence of the laser,
with potential energy U (x,t) = E(t)x, where E(t) is the time-
dependent laser electric field. Only electrons which return to
the core at time tr [x(tr ) = 0] will emit harmonics via recom-
bination [2–4]. The phase accumulated by the electron wave
function along a returning trajectory is given by the integral of
the Lagrangian between the times of release and return [4]:

S(t0,tr ) =
∫ tr

t0

(T − U ) dt =
∫ tr

t0

− [p(t)]2

2
dt. (5)

The last equality follows from Newton’s equation and the
initial and final conditions of the trajectory. The kinetic energy
can be expressed in units of the ponderomotive energy, and
we again define the phase coefficient α by S = −α Up/ω,
which is consistent with the form of the intensity-dependent
phase we used in Eq. (3). With this convention α has units of
radians and is always greater than or equal to zero. The short
trajectory has a lower α than the long trajectory because it
interacts with the laser for smaller periods of time.

In the generalized model we include the atomic potential
explicitly. We use a soft-core potential,

Ua(x) = − 1√
x2 + (

1
U0

)2
, (6)

with a depth U0 = 0.707 a.u. (19.2 eV) and a ground-state
energy of −13.6 eV in order to approximate a hydrogen atom.
The combined potential now becomes, in atomic units,

U (x,t) = E(t)x + Ua(x), (7)

where E(t) = E0 sin (ωt). Using the force derived from this
potential, we integrate Newton’s equation to obtain the
trajectory for an electron released at a time t0 during the laser
cycle. The initial conditions x(t0) and p(t0) are described in
detail in what follows. We consider only trajectories that are
released between 0 and 0.5 laser cycles and return within the
first two cycles of their release time.

As we determine the dynamics for each specific release,
we calculate the phase associated with the motion. The phase
accumulated in the combined potential now has a term which
depends explicitly on the proximity of the electron to the ion
core, Ua(x):

S(t0,tr )=
∫ tr

t0

(
[p(t)]2

2
− E(t)x(t) − Ua(x)

)
dt. (8)

To simplify this, we use ṗ = −E(t) − ∂Ua/∂x and integrate
the resulting ṗx by parts (remembering that px|trt0 = 0 in our
generalized conditions). This yields the following expression
for the action

S(t0,tr ) =
∫ tr

t0

(
− [p(t)]2

2
+ x(t)

∂

∂x
Ua(x) − Ua(x)

)
dt

=
∫ tr

t0

(
− [p(t)]2

2
+ �V

)
dt, (9)

where �V is given by

�V = x(t)
∂

∂x
Ua(x) − Ua(x) = 2x2 + 1/U 2

0[
x(t)2 + (

1
U0

)2
]3/2 . (10)

The presence of the atomic potential changes the phase
both directly, through the �V contribution, and indirectly via
its influence on the trajectories, which will be reflected in the
−p2/2 contribution. It is clear from Eq. (9) that the phase
in the generalized model is no longer simply proportional
to the laser intensity, for a given return energy. However, it
is still useful to think about the harmonic phase as piecewise
proportional to the laser intensity, especially for estimating the
spatiotemporal coherence properties of the harmonic radiation
[8,9]. We calculate such a generalized phase coefficient in two
different ways. Conceptually, the simplest approach is to do a
Taylor expansion of the phase in powers of the ponderomotive
energy and thereby define the phase coefficient for a given
harmonic q at a given intensity I as

αq(I ) = − ∂

∂Up

[ωS|tret ], (11)

where the subscript on the phase means that we evaluate
the derivative at a fixed return time [21]. This expression
is numerically cumbersome to evaluate because it requires
keeping track of and interpolating between at least two
different sets of trajectories for many different intensities. In
most of the calculations shown in this article, we have therefore
calculated the intensity-dependent phase coefficients by using
Eq. (4). We first calculate the intensity-dependent phase from
the first four returning trajectories leading to some harmonic
energy qω. Then we construct an intensity-dependent “dipole
moment” by adding the complex phase terms according to
Eq. (1), using equal and constant values aj = 1. Finally we
calculate the semiclassical path distribution of the constructed
dipole moment using the same analysis [Eq. (4)] as we did for
the fully quantum mechanical dipole moment. We note that
in the quantum path analysis of the quantum dipole moment
we also use a constant amplitude |dq(I )| = 1 for the dipole
moment as a function of intensity and retain only the phase
information. This is sufficient information for performing the
quantum path analysis; we refer to [18] for details.

A. Initial conditions

When the atomic potential is present, an electron at x(t0) =
0 with p(t0) = 0 will be bound and unable to escape from
the influence of the atom. We have considered two types of
initial conditions for the electron in the generalized model
(Fig. 2) [22].

The initial conditions closest to that of the standard SCM
are given by releasing the electron via tunneling through the
potential barrier formed by the combined laser and atomic
potential, with x(t0) �= 0 and p(t0) = 0. We estimate x(t0)
using a simplified Coulomb potential Ua(x) = −1/x and
finding where the combined potential equals the ionization
potential outside of the barrier, which yields

x(t0) =
Ip +

√
I 2
p − 4|E(t0)|

2|E(t0)| . (12)
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FIG. 2. (Color online) Visual representation of the initial con-
ditions with atomic potential included. The red and black arrows
represent the uphill and downhill OTB trajectories, respectively.

In the Results section, we refer to these trajectories as tunneling
trajectories. To prevent extremely unlikely (large) tunneling
distances, we have filtered out all results with initial positions
greater than 25 a.u.

Another approach that can lead to below-threshold harmon-
ics is to allow the electron a classical over-the-barrier (OTB)
escape. Here we assume that the electron has been excited
to some energy Ei while at x = 0, similar to multiphoton
ionization. In other words, we create the initial conditions

x(t0) = 0; p(t0) = ±
√

2(Ei + U0). (13)

This gives rise to two possible classes of trajectories for the
electron. The first occurs when the electron initially moves
downhill with respect to the potential. The electron spends its
energy going over the potential bump caused by the distortion
in the atomic potential by the laser. It is then mostly free from
the atomic potential and has an extra“kick” behind it which
influences whether it returns and, if it does, with how much
energy.

The second class of trajectories occurs when the electron
initially moves uphill with respect to the potential wall caused
by the addition of the atomic and laser potentials. These
trajectories return almost immediately to x = 0 and then
continue to follow a trajectory similar to that of the first class.

There are two reasonable energy limits for the OTB initial
conditions. Our upper limit is Ei = 0, which gives the electron
enough energy to escape the atom in the absence of the laser
potential. Our lower limit is Ei = Emin = −2

√|E(t0)|, or the
maximum height of the barrier at the time of release. Since
the electron has a finite velocity and the height of the barrier
is constantly changing, the electron will have either an excess
or deficiency of energy when encountering the barrier. On a
deficiency, the electron returns quickly. We allow the electron
to be released with any energy between these two limits and
thus consider a range of different trajectories within this type
of initial condition.

IV. RESULTS

Figure 3(a) shows the travel time as a function of return
energy for an intensity of 1014 W/cm2, for trajectories which
return within (approximately) one cycle of their release. We
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FIG. 3. (Color online) (a) Travel time versus return energy and
(b) phase versus return energy, both for an intensity of 1014 W/cm2.
Results from the tunneling trajectories are shown with (green)
diamonds. Results from the OTB trajectories are shown with (red)
squares for uphill trajectories and (blue) circles for downhill trajecto-
ries. With the thin solid line we show the result of the standard SCM.
(c) Phase coefficient versus return energy calculated within the
tunneling model, using Eq. (11), for intensities of 1014 W/cm2 (green
diamonds) and 0.3 × 1014 W/cm2 (orange circles).

show results both from the tunneling model and from the OTB
model. For the latter we have chosen Ei = 0 in Eq. (13). For
reference, we also show the result of the standard SCM.

The figure demonstrates several interesting properties of the
short and long trajectories for both sets of initial conditions.
The long trajectory (upper branch of each curve) is clearly
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recognizable and gives rise to below-threshold returns for
both tunneling and OTB trajectories, with travel times in
good agreement with the standard SCM. The short trajectory,
however, depends strongly on the choice of initial conditions.
In particular, in the tunneling model and the OTB downhill
model the short trajectory does not lead to low-energy returns,
even at relatively high intensity. Low-energy returns are only
achieved by the OTB uphill trajectories, either upon their first
return (travel times around 0.2 cycles) or upon their second
return (travel times around 0.3–0.4 cycles). All three sets of
initial conditions converge toward the standard SCM results
at higher intensities or when using shallower potentials (not
shown in the figure). In what follows we discuss in more detail
the dynamics of specific trajectories in the different models in
order to clarify the results shown in Fig. 3.

In Fig. 3(b) we show the accumulated phase along each of
the trajectories shown in (a), calculated according to Eq. (9).
The phases of the tunneling and OTB downhill trajectories are
in general very similar for the longer trajectories, except in
the cutoff region. In all three models, the large phase of the
long trajectories and the small phase of the short trajectories
can be recognized, in agreement with the standard SCM. Their
total phase is overall reduced compared to the standard SCM
because of the �V term in Eq. (9), which has the opposite sign
of the −p2/2 contribution. The second group of trajectories
with low energy returns, with phases around 60 a.u. (upper
branch) and slightly below 40 a.u. (lower branch), are second
returns of trajectories very similar to the long trajectory, where
the second return occurs after a very brief excursion into the
continuum.

Figure 3(c) shows the phase coefficient α calculated within
the tunneling model using Eq. (11) for two different peak
intensities. Here we are only showing trajectories which
return within the first cycle. The long trajectory behaves very
similarly to the long trajectory in the standard SCM, whereas
the short trajectory as mentioned earlier only exists for high
return energies and generally gives smaller values of α than in
the standard SCM. We note that the second-return trajectories
shown in (b) in general give rise to phase coefficients which
are very close to those of the long trajectory but are slightly
larger than 2π .

The electron dynamics leading to long-trajectory below-
threshold return energies in the tunneling model are illustrated
in Fig. 4. In panel (a) we show the trajectory and in panel (b) we
show the evolution of the kinetic and potential energy (from the
electron-ion interaction) with time. In the standard SCM the
electron along this trajectory would barely miss recombination
because it would be returning with insufficient energy at a
time when the laser field is against its motion. In our case,
the atomic potential overcomes the field and pulls the electron
(slowly, due to the opposing field) into the atom. This is easily
seen in the returns in Fig. 4(b), indicated by maxima in the
kinetic energy and minima in potential energy. We note that we
have not included the potential energy from the electron-laser
interaction, which is zero upon recombination. In the OTB
model (not shown in Fig. 4), downhill trajectories are released
into the continuum (at x0 = 0) already traveling away from the
core and behave very similarly to the tunneling trajectories,
in that they can lead to long-trajectory, below-threshold
returns.
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FIG. 4. (Color online) Long trajectory dynamics in the tunneling-
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line represents the force from the laser field. (b) Energy versus
time of the identical trajectory. The intensity is 1014 W/cm2 and
the return energy is −0.25 a.u., which corresponds to −0.58 Up , or
approximately the seventh harmonic.

The absence of low-energy returns for the short trajectory
initiated by tunneling in the generalized SCM is illustrated
in Fig. 5. The solid line shows a standard SCM low-energy
short trajectory, which is released when the laser field is weak
and spends only a very short time away from the core before
returning with low energy. In our generalized SCM (dashed
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FIG. 5. (Color online) Dynamics of the short trajectory initiated
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black line) SCM. The red dashed line represents the force from the
laser field. (Inset) Position vs time for an uphill OTB trajectory, at an
intensity of 1014 W/cm2 and a return energy of −0.2 a.u., or close to
the energy of harmonic 7.
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line) the electron must tunnel very far when the laser field
is weak and therefore must travel a long way to return back
to the ion core, during which it is accelerated by the laser
field (and by the attractive atomic potential) and returns with
high energy. Thus, one difference between the short and long
trajectories when including the atomic potential is whether
the electron is being accelerated by the laser as it recombines
(short trajectory) or slowed (long trajectory).

The electrons initially moving uphill in the OTB model
can follow qualitatively different trajectories. In particular,
such initial conditions allow for very short trajectories with
below-threshold return energies in which the electron simply
scatters off the potential and immediately returns. After this
first return, some of the electrons can be reaccelerated on the
other side and follow trajectories similar to the short and long
trajectories, both of which exhibit low return energies. Both of
the these uphill-initiated short trajectories can give rise to phase
coefficients α ≈ 0 as we will show below. There are even a few
downhill OTB trajectories which can lead to below-threshold
return energies when we allow the initial energy of release to
be low (between 0 and Emin). These electrons can be pulled
back to the core by the atomic potential if they are released in
a very weak field.

To compare to the quantum path calculations shown
in Fig. 1, we have numerically solved the equations of
motion for each model and release time at many different
intensities. For the first four trajectories that return with a
total energy corresponding to a particular harmonic energy
qω, we calculate their phase Sq according to Eq. (9). We then
construct an intensity-dependent dipole moment by summing
all the different contributions as in Eq. (1) and calculate
its “semiclassical path” distribution according to Eq. (4)
[23]. Since we know the intensity-dependent phase of the
individual trajectories, we also have the possibility to look
at the distribution for the individual trajectories, which is then
a measure of the intensity-dependent phase coefficients for
that set of trajectories.

In Fig. 6 we show the total semiclassical path distribution
of harmonics 7–13 generated in our tunneling model. By
comparing to the quantum path calculations in Fig. 1, we
see that the tunneling results match the longer quantum path
contributions well, both in terms of the predicted values
for α (around 2π ) and in the (slight) increase of the phase
coefficient as the intensity decreases. The figure also makes
it clear (again) that there are no tunneling-initiated short
trajectories for these low-order harmonics; that is, there are
no trajectories that give rise to the small α contributions in
Fig. 6. This is true for harmonics even substantially above
threshold: the lowest harmonic that would exhibit a small-α
contribution in a plot similar to Fig. 6 is harmonic 29. The four
individual trajectories that are included in these harmonics
have surprisingly similar phase coefficients (not shown in
the figure). Some are slightly below 2π—among them the
long trajectory, in agreement with Fig. 3(b)—and some are
slightly above 2π , which makes the total semiclassical path
distribution look like one strong contribution at 2π . Comparing
to the quantum path distributions in Fig. 1 then suggests
that the low-order harmonics have stronger contributions
from the second return trajectories than from the long
trajectory.
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FIG. 6. (Color online) Semiclassical path distributions calculated
from the generalized SCM, initiated by tunneling.

In Figs. 7 and 8 we show the semiclassical path distributions
of the OTB downhill and uphill trajectories, respectively.
For both figures we have chosen the initial energy to be
Ei = 0, but the results for Ei = Emin look very similar. The
downhill results are in very good agreement with the tunneling
results as discussed in connection with Fig. 3. The uphill
results also reproduce the α ≈ 0 contribution in the quantum
path distributions, even to the point of being slightly more
negative than positive for harmonics 7 and 9 at the lowest
intensities. Interestingly, the OTB uphill model is also the only
model to exhibit a longer-trajectory phase coefficient which
is larger than 2π , in agreement with both the experimental
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FIG. 7. (Color online) Semiclassical path distributions calculated
from the generalized SCM, using the OTB model with downhill
trajectories only.
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FIG. 8. (Color online) Semiclassical path distributions calculated
from the generalized SCM, using the OTB model with uphill
trajectories only.

measurement in [1] and the quantum mechanical calculations
in Fig. 1. In the OTB uphill model, these values of α are due to
both the long trajectory [with a travel time around 1 cycle in
Fig. 3(a)] and trajectories with even longer travel times. Since
we have restricted our classical calculations to trajectories
which return to the core once or twice, our semiclassical path
distributions do not exhibit any phase coefficients larger than
approximately 4π .

For harmonics with energies above the ionization threshold,
starting with harmonic 15, the tunneling and OTB downhill
predictions for α are in good agreement with the long-
trajectory component of the standard SCM: They exhibit the
characteristic αcutoff ≈ π in the cutoff region, and this α slowly
increases with intensity toward 2π . The OTB uphill prediction
for the behavior of the short trajectory as a function of return
energy is also in good agreement with the standard SCM [see
Figs. 3(a) and 3(b)]. Our results are thus still in agreement with
experimental measurements such as those in Refs. [9,24,25],
in which the phase of the short-trajectory contribution to the
harmonic emission (and thereby the emission time) has been
found to increase with harmonic order, giving rise to a positive
attochirp. In our generalized model the release mechanism for
these short trajectories is different from that in tunneling, but
the dynamics after release are very similar and still lead to
larger accumulated phases for electrons that return later with
higher energies.

V. SUMMARY

We have presented one approach to generalizing the
semiclassical three-step model of harmonic generation, in
which we have included the effects of the atomic potential
in both the continuum dynamics of the electron and the initial
ionization process. For the continuum dynamics, we included
the atomic potential simply by solving the classical equations
of motion for an electron moving in the combined laser-atomic

potentials. For the ionization process we included the atomic
potential via the choice of initial conditions, which we chose
to mimic either (i) tunnel ionization, by releasing the electron
outside the laser-induced potential barrier with zero velocity,
or (ii) multiphoton ionization, by releasing the electron at the
ion core with nonzero kinetic energy, moving either uphill or
downhill with respect to the laser potential.

We calculated the intensity-dependent phase accumulated
along the generalized semiclassical trajectories and found
results in good agreement with a range of experimental
measurements, as well as with fully quantum mechanical
calculations in hydrogen. In particular, we found that there
are semiclassical trajectories leading to return energies that are
below the ionization threshold of our model atom, in agreement
with the experimental observation of semiclassical dynamics
in below-threshold harmonics in xenon [1], cesium [26], and
the molecular gases N2 and O2 [27]. We showed that the long
trajectory readily generalizes and is relatively insensitive to
the choice of initial conditions. We also showed that there
are no low-energy short trajectories initiated by tunneling in
the generalized model, simply because tunneling releases the
electron far from the core and it is subsequently accelerated
all the way back by both the laser and the atomic potential.
In contrast, the low-energy electrons returning along the long
trajectory move against the laser field when they are close
to the core, and can end up with below-threshold energies
because they get “pulled in” by the attractive atomic potential.
We note that a recent experimental study by Power et al. found
that below-threshold harmonics in cesium exhibited semiclas-
sical characteristics dominated by the long trajectory [26].
Finally, we showed that the short-trajectory characteristics well
known from the standard SCM can be reproduced only if the
electron is released into the continuum in a process which is
closer to multiphoton than to tunnel ionization. Interestingly,
in parallel with the writing of this article, experimental and
theoretical studies by Soifer et al. show very similar results to
what we are reporting here in terms of the contributions of both
tunnel-ionized long trajectories and multiphoton-ionized short
trajectories to the production of low-order harmonics [27].

The standard SCM has been very successful in its descrip-
tion of high-order harmonic generation. Our work presented
here, along with a number of other studies [14–16,26,27],
indicates that a generalized SCM may also be applied to the
understanding of rescattering processes with energies much
closer to the ionization potential. An expanded SCM represents
a rich system for further study, since the choice of atomic
potential, the choice of initial conditions, and the intensity all
affect the trajectories and their phase behavior. In particular,
we have found that the short trajectories, which spend most of
their time close to the ion core, are sensitive to these choices
and that there can be different classes of short trajectories,
especially at low intensity.
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