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Relativistic convergent close-coupling method applied to electron scattering from mercury

Christopher J. Bostock,* Dmitry V. Fursa, and Igor Bray
ARC Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

(Received 24 June 2010; published 23 August 2010)

We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method
to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from
mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared
with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions
obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the
integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3P0,1,2

states. These cross sections are associated with the formation of negative ion (Hg−) resonances that could not be
resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other
relativistic theories.
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I. INTRODUCTION

The recently formulated relativistic convergent close-
coupling (RCCC) method has been applied to electron scat-
tering from quasi-one-electron atoms [1,2] and also highly
charged hydrogen-like ions [3]. In the latter case it has been
used to resolve discrepancies between theory and experiment
for the polarization of x rays emitted by hydrogen-like ions
during electron impact excitation. Here we report on the
extension of the RCCC method to accommodate electron
scattering from two-electron targets and quasi-two-electron
targets. We apply the theory to electron scattering from
Hg which serves as a testing ground [4] for relativistic
theories due to its high atomic number Z = 80. Furthermore,
electron-mercury scattering plays an important practical role
in the physics of fluorescent and high-intensity discharge
lamps [5–7]. The main source of light from these lamps is
the 254 nm UV radiation emitted when the (6s6p) 3P o

1 state
decays to the (6s2) 1S0 ground state. This optical transition is a
clear indication of a breakdown of the nonrelativistic approxi-
mation due to the strong spin-orbit interaction in Hg resulting
in a significant singlet-triplet mixture for the Hg 6P o

1 states.
In Hg fluorescent lamps this 254 nm radiation is absorbed
by a phosphor coating which, in turn, emits visible light.

Accurate plasma physics modeling of Hg-based lamps
requires detailed information on a large number of electron
impact excitation cross sections involving transitions between
various states. Compilation of e-Hg cross sections obtained
from swarm data by [8] is widely used in plasma modeling
to date even though more recent measurements for a number
of transitions [9,10] are found to be in large disagreement
with the former data. Given the difficulty in obtaining the
comprehensive set of cross sections by experiment alone, a
theoretical description of e-Hg scattering plays an important
role in verifying the accuracy of the currently used cross
sections and also establishing a new accurate set of e-Hg cross
sections.

Previously we have applied the nonrelativistic convergent
close-coupling (CCC) method to calculations of e-Hg scatter-
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ing [11]. We have approximately taken into account the most
important relativistic effects by transformation of the scat-
tering amplitudes to an intermediate coupling scheme which
allowed us to obtain cross sections for a wide range of
transitions. While generally we obtained good agreement
between the CCC results and the available experimental data
there were a number of cases where the CCC results were either
in disagreement with the experiment [e.g., elastic scattering
differential cross section (DCS) at 15 eV] or could not be
reliably applied to a calculation of particular transitions due
to the inaccuracy of the approximate treatment of relativistic
effects [e.g., excitation of(6s6p) 3P o

j fine-structure sublevels
near the excitation threshold]. With development of the RCCC
method we are now in a position to perform e-Hg calculations
without any approximation in the treatment of relativistic
effects both in the target structure and scattering calculations.

There is a long history of previous experimental and theo-
retical studies of electron scattering from Hg. Experimentally,
integrated cross sections in the excitation threshold region of
the triplet (6s6p) 3P o

0,1,2 states have been measured in [12–17].
Integrated excitation cross sections for excitation of the singlet
(6s6p) 1P o

1 state have been measured in [9,10,18]. Integrated
cross sections for excitation of (6s7s) 1S0 and (6s7p) 1P o

1
states have been measured in [9], and angle differential
cross sections for elastic scattering from the (6s2) 1S0 ground
state have been measured in [10,19]. Angle differential cross
sections at 15 eV for excitation of the triplet (6s6p) 3P o

0,1,2

states and singlet (6s6p) 1P o
1 have been measured in [10]. At

60 eV, angle differential cross sections for the (6s6p) 3P o
1

and (6s6p) 1P o
1 states have been measured in [9,18]. The

authors of [9] have also measured angle differential cross
sections for the (6s7s) 1S0 and (6s7p) 1P o

1 states at this energy.
Total cross section measurements have been obtained in [20],
and elastic cross sections have been measured in [9,19,21].
Elastic momentum transfer cross sections have been measured
in [9,22,23]. These play an important role in determining the
electrical characteristics of discharge lamps. There are also
extensive spin-dependent measurements for electron-mercury
scattering [4].

On the theoretical side, in addition to the nonrelativistic
CCC method employed in [11], there have been many other
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attempts to model electron scattering from Hg. Some of
these include the potential scattering models in [24–28]. The
authors of [29] used the generalized Kohn-Sham method.
Close-coupling calculations have also been performed: A
five-state semirelativistic Breit-Pauli R-matrix method has
been used in [30–32] to calculate excitation cross sections
of the 6s6 p 1P1 and 6s6 p 3P0,1,2 states. The authors of [33]
used a five-state relativistic Dirac R-matrix method to study
resonances and also calculated elastic cross sections and
excitation cross sections for the (6s6p) 3P0,1,2 states. The
excitation of the 6s6 p1P1 state has been studied in [34] using
a semirelativistic distorted-wave Born approximation and also
in [35] using a fully relativistic distorted-wave method.

Recently, the authors of [36] performed a 36-state Dirac
B-spline R-matrix (DBSR) close-coupling calculation for
electron scattering from Hg. They have reported a significant
improvement in agreement with the experiment over previous
calculations especially at low-threshold and near-threshold en-
ergies. Overall, the DBSR calculations are in good agreement
with the nonrelativistic CCC results for incident electron ener-
gies above the threshold region. The important feature of the
DBSR method is its ability to describe accurately the Hg target
structure by allowing the opening of the [Xe]4f 145d10 core.
On other hand, in the CCC method (similar to practically all
other calculations) the Hg atom was modeled as an atom with
two active electrons above a frozen core [Xe]4f 145d10. With
the uncertainty of the approximate treatment of relativistic
effects in the CCC method now removed in the RCCC method,
we can now investigate whether the frozen-core model of Hg is
sufficient to provide an accurate description of scattering near
the thresholds of the (6s6p) 3P0,1,2 triplet states. Similarly,
the new RCCC calculations of e-Hg scattering will also be
able to verify the accuracy of our previous nonrelativistic
calculations for the transitions that are strongly affected by
relativistic effects.

This paper is organized as follows. The next section
contains the formulation of the RCCC method applicable to
two-electron and quasi-two-electron targets, and the following
section presents RCCC results for integrated and angle
differential cross sections for elastic and inelastic electron
collisions with Hg. Also presented are total, elastic, and
momentum transfer cross sections. Atomic units are assumed
throughout.

II. RCCC METHOD FOR TWO-ELECTRON TARGETS

Application of the RCCC method to electron scattering
from Hg follows the same general scheme as described in
[1,2]. Briefly, the target Hamiltonian is diagonalized in a
Dirac L-spinor basis and then the obtained target states are
used as an expansion basis to generate a set of coupled
Lippmann-Schwinger equations for the electron-atom/ion
scattering system. The latter are solved in momentum space
for the T -matrix elements from which the cross sections are
calculated.

For the case of electron scattering from Hg, the target atom
is modeled as a quasi-two-electron atom consisting of two
valence electrons above an inert [Xe]4f 145d10 frozen core.
The next two sections outline the calculation of the target states

and then the theory required to set up and solve the coupled
Lippmann-Schwinger equations for the scattering problem.

A. Target structure

The calculation of target wave functions and energy levels
for two valence electrons above an inert [Xe]4f 145d10 frozen
core involves the three steps listed below.

1. The [Xe]4f 145d10 frozen-core orbitals {ϕc} are calcu-
lated with the GRASP package [37] that employs a relativistic
self-consistent field Dirac-Fock procedure.

2. The Hg+ one-electron Hamiltonian

Hi = c α · pi + βmc2 + Vi, (1)

is then diagonalized with a Dirac L-spinor basis [38]

f L/S
nrκ

(r) =
[

nr !(2γ + nr )

2Nnrκ (Nnrκ − κ)�(2γ + nr )

]1/2

(2λr)γ e−λr

×
[
−(1 − δnr ,0)L2γ

nr−1(2λr) ± Nnrκ − κ

nr + 2γ
L2γ

nr
(2λr)

]
,

(2)

with the method outlined in detail in [2] for quasi-one-electron
targets. Briefly, Vi is the interaction of one of the valence
electrons with a closed core and is a sum of a frozen-core
Dirac-Fock potential V FC and a polarization potential V pol,

Vi = V FC + V pol. (3)

The nonlocal V FC potential is defined as a sum of local (direct)
V FC

d and nonlocal (exchange) terms

Vi = V FC
d + V FC

e , (4)

with

V FC
d φ(r i) =

[
−Z

r
+

∑
ϕc

∫
d3r ′ |ϕc(r ′)|2

|r − r ′|

]
φ(r i), (5)

V FC
e φ(r i) = −

∑
ϕc

∫
d3r ′ ϕc(r ′)∗φ(r ′

i)

|r − r ′| ϕc(r ′). (6)

3. The set of electron orbitals {φα} so obtained are used to
perform standard configuration-interaction calculations [39]
to obtain a set of Hg target states.

In this last step, the method employed to perform the con-
figuration interaction calculation is similar to that described in
detail in [39] with the exception that the jj coupling scheme is
utilized in the relativistic formulation. Therefore the Hg target
states are expressed as


n(r1,r2) =
∑
αβ

C
(n)
αβ 〈r1r2|φα(1)φβ(2) : JTn

mnπn〉, (7)

where the configuration interaction coefficients C
(n)
αβ satisfy

C
(n)
αβ = (−1)jα+jβ−JnC

(n)
βα , (8)

to ensure antisymmetry of the two-electron target states. The
parity of the target states is π = (−1)lα+lβ and

|jαjβ : Jnmn〉 =
∑
mαmβ

C
Jnmn

jαmαjβmβ
|jαmαjβmβ〉, (9)
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where C
Jnmn

jαmαjβmβ
is a Clebsch-Gordan coefficient. The target

states 
n(r1,r2) satisfy

〈
n′ |HT |
n〉 = εnδn′n, (10)

where

HT = H1 + H2 + V12, (11)

with

V12 = 1/|r1 − r2| + V diel(r1,r2), (12)

and the Dirac Hamiltonian for each electron Hi is given by
Eq. (1). The phenomenological one-electron V pol and two-
electron V diel core polarization potentials allows us to take
into account more accurately the effect of closed inert shells
on the active electron [11]. The cutoff radii r

pol
c and rdiel

c of
these potentials are chosen to obtain the best representation
of target-state energies and oscillator strength while the static
dipole polarazability of the inert core αc is taken either from
the experiment or accurate calculations. In the case of Hg we
chose αc = 8.4, r

pol
c = 2.235, and rdiel

c = 2.3.
Using a Dirac L-spinor basis Eq. (2), consisting of 35

functions for each value of κ = l and κ = −l − 1 for l =
0,1,2,3 with an exponential fall-off parameter of 3.5, we
diagonalized the Hg+ Hamiltonian for each value of κ and
obtained a set of Hg+ one-electron orbitals {φα}. These
orbitals are then used to perform standard two-electron
configuration interaction (CI) calculations. Similar to our
previous nonrelativistic calculations we find that the Hg bound
states are well described in a model where the inner electron
is limited to the 6s and 6p orbitals of the Hg+ ion. The energy
levels obtained for the first 15 lowest-lying states are listed in
Table I and found to be in good agreement with the experimen-
tal energies in the NIST database [40]. A further check of the
target wave-function accuracy is provided by optical oscillator
strengths. The experimental value for the (6s6p) 1P o

1 oscillator
strength is 1.16 and it is in good agreement with our result of
1.20, while for the (6s6p) 3P o

1 state the experimental value
of 0.024 is lower than our result of 0.038. The ground-state
static-dipole polarizability of the Hg atom is dominated by
the (6s6p) 1P o

1 state and in our structure model has a value
of αd = 22.6, which is similar to the value obtained in
nonrelativistic CCC calculations [11] and is significantly lower
than the experimental value of αd = 34.4 [41]. This difference
arises from opening of the 5d10 shell, which is not allowed in
the present model and can lead to inaccuracy in the calculated
cross sections (see [11] for more discussion).

In the consequent scattering calculations we have used two
models: the 29 state model (RCC) that includes only bound
states in the close-coupling expansion and a 193 state model
(RCCC) which in addition has a large number of positive
energy states (relative to the Hg+ ground state) which allows
us to model coupling to ionization channels.

B. Coupled relativistic Lippmann-Schwinger equations

Once the target states are obtained the next step is to
use them to generate a set of coupled relativistic Lippmann-

TABLE I. Energy levels of the first 15 Hg states calculated by
diagonalizing the target in the RCCC method. Experiment levels
listed by NIST [40] are also shown.

Configuration Term J Parity Energy (eV) Expt. [40]

6s2 1S0 0.0 1 0.000 0.000
6s6p 3P o

0 0.0 −1 4.706 4.667
6s6p 3P o

1 1.0 −1 4.926 4.887
6s6p 3P o

2 2.0 −1 5.577 5.461
6s6p 1P o

1 1.0 −1 6.549 6.704
6s7s 3S1 1.0 1 7.775 7.730
6s7s 1S0 0.0 1 8.000 7.926
6s7p 3P o

0 0.0 −1 8.648 8.619
6s7p 3P o

1 1.0 −1 8.667 8.637
6s7p 3P o

2 2.0 −1 8.763 8.829
6s7p 1P o

1 1.0 −1 8.872 8.839
6s6d 3D1 1.0 1 8.869 8.845
6s6d 1D2 2.0 1 8.876 8.844
6s6d 3D3 3.0 1 8.883 8.856
6s6d 3D2 2.0 1 8.887 8.852
Ionization limit 10.447 10.438

Schwinger equations for the scattering problem. The total
scattering wave function for the system satisfies

(E(+) − H )|
(+)
i 〉 = 0, (13)

where the superscript (+) denotes the incoming plane-wave
or Coulomb-wave and outgoing spherical-wave boundary
conditions. We denote the initial target state as 
i and the
projectile momentum by ki .

The total Hamiltonian for the scattering system is

H = HT − H0 − V01 − V02, (14)

where the subscript 0 denotes the projectile electron, 1 and 2
denote the electrons in the two-electron target, and HT is given
by Eq. (11).

The projectile Hamiltonian is given by

H0 = c α · p0 + βmc2 + V0. (15)

To ensure antisymmetry of the total wave function in
accordance with the Pauli exclusion principle, we perform
a multichannel expansion of the total wave function in the
following way:



N(+)
i (r0,r1,r2) = (1 − P01 − P02)ψN(+)

i (r0,r1,r2)

= (1 − P01 − P02)
N∑

n=1

f N
n (r0)
N

n (r1,r2),

(16)

where P0i is the space exchange operator. The RCCC method
utilizes the completeness of the Dirac L-spinor basis used in
the diagonalization of the target

lim
N→∞


N(+)(r0,r1,r2) = 
(+)(r0,r1,r2). (17)

Substituting Eqs. (16) and (14) into Eq. (13) we obtain

[E(+) − c α p0 − βmc2 − U0 − HT − U0]
N(+)(r0,r1,r2)

= V 
N(+)(r0,r1,r2), (18)
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where

V = V0 − U0 + V01 + V02 + (E − H )(P01 + P02). (19)

The introduction of an arbitrary short-range (distorting)
potential U0 is used as a numerical technique to reduce the
required computational resources, the results are independent
of U0. This rearrangement is such that the asymptotic (large
r0) Hamiltonian is

Ha = c α · p0 + βmc2 + U0 + HT . (20)

The asymptotic Hamiltonian is used to generate the Green’s
function for the total wave function, as described in detail
in [2], the Green’s function is then used to generate a
set of coupled relativistic Lippmann-Schwinger equations in
momentum space for each total angular momentum J and
parity � of the system

T �J
f i (kf κf ,kiκi)

= V �J
f i (kf κf ,kiκi) +

∑
n

∑
κ

∑∫
k2dk

× V �J
f n (kf κf ,kκ)T �J

ni (kκ,kiκi)

E − εN
n − εk′ + i0

. (21)

The relativistic V -matrix elements of the operator in Eq. (19)
for a two-electron target are given explicitly in the Appendix.

The numerical calculation of the V -matrix elements and
the solution of the coupled relativistic Lippmann-Schwinger
equations is achieved with a parallelized computer code that
employs a hybrid OpenMP-MPI scheme. Standard SCALAPACK

routines [42] solve the set of linear equations (the coupled
Lippmann-Schwinger equations) given by Eq. (21) for the
T -matrix elements. Calculations were done with 20 partial
waves and then the analytical Born subtraction technique [2]
was used to account for higher partial waves. Observables such
as cross sections can be calculated from the T -matrix elements
using the equations specified in [2].
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III. RESULTS

A. Integrated cross sections for excited states

As discussed in the previous section, we have performed
calculations in two models: RCC and RCCC. We found that
for incident electron energies below 8 eV the inclusion of the
continuum states made negligible difference to the calculated
cross sections and will present only RCC results at these low
energies.

We begin by presenting integrated cross sections for the
(6s6p) 3P o

0,1,2 states of Hg at low energies. Calculation of these
cross sections at energies close to the excitation threshold was
not possible with the nonrelativistic CCC method. Figure 1
shows the RCCC integrated cross section for the excitation
of the (6s6p) 3P o

0 triplet state. In the energy regime near
the excitation threshold of these states the cross sections are
dominated by the formation of negative ion (Hg−) resonant
states [43,44]. There is excellent agreement between the
RCCC results and the DBSR calculations found in [36].
The RCCC results are also generally in good agreement
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with the measurements found in [12]. Note in Table I the
RCCC energies for the triplet states are slightly different
(<0.12 eV) from the experimental values and therefore the
position of the resonances had to be offset in the figures by
the same amount to align with the experimental position of the
resonances.

Figure 2 shows the integrated cross section for excitation
of the (6s6p) 3P o

1 triplet state. The RCCC results are in very
good agreement with both the DBSR calculations in [36] and
the measurements in [13,14].

The integrated cross section for excitation of the (6s6p) 3P o
2

triplet state is shown in Fig. 3. Once again very good agreement
is found between the RCCC results and DBSR results [36]
and also the measurements in [12,15–17], however, in the
region between 6.5 and 7.5 eV the RCCC results are slightly
lower than the DBSR results and experiment. We verified the
convergence of our calculations at this energy region. The
possible explanation for the discrepancy is likely to be related
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to the error in the 1P o
1 − 3P2 energy difference for our target

model which leads to a loss of flux to the 1P o
1 state which

opens at 0.25 eV below the correct energy.
The integrated cross section for electron impact excitation

of the singlet (6s6p) 1P o
1 state is shown in Fig. 4. The difference

between the RCC and RCCC calculations in this figure for
intermediate and higher projectile energies gives an indication
of the importance of coupling to the target continuum. The
RCC calculation includes only the 29 discrete states and
the cross section is higher by approximately 20% at the
cross-section maximum than that obtained by the full RCCC
calculation. In the vicinity of 8.6 eV, very small resonance
structures are present in the (6s6p) 1P o

1 cross section for both
the RCCC and DBSR results.
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In Fig. 5 we present integrated cross sections for the
(6s6p) 3P o

1 state over a large energy range. We can see
the substantial difference between the present RCCC results
and nonrelativistic CCC results. This difference signifies the
importance of an accurate account of relativistic effects for this
transition. The present RCCC results are in good agreement
with the experimental estimate of this cross section in [9,10].
Similar to the nonrelativistic results we find that coupling to
ionization channels plays a relatively minor role as RCCC
and RCC results are close (except in the 20–40 eV energy
range). However, interchannel coupling plays a major role for
this transition. The first-order approximation cross section,
labeled RCCC-Born in Fig. 5, will be strongly dependent on
the value for the optical oscillator strength. Given that the
RCCC structure model for the (6s6p) 3P o

1 -(6s2) 1S0 transition
has an optical oscillator strength value larger by about
50% than the experimental value we find that RCCC-Born
result significantly overestimates the experiment. The good

agreement between the RCCC results and experiment is a
confirmation that high-order scattering effects are dominant
for this transition.

Integrated cross sections for excitation of the (6s7s) 1S0

and (6s7p) 1P o
1 states are presented in Fig. 6. We find good

agreement with our previous nonrelativistic CCC calculations.
For these much smaller cross sections the coupling to the
ionization continuum proved to be significantly more impor-
tant as a comparison between the RCCC and RCC results
clearly shows. A similar conclusion was drawn on the basis of
nonrelativistic CCC calculations [11]. We can conclude that
for these states relativistic effects play a minor role.

B. Angle differential cross sections for elastic
and inelastic scattering

Angle differential cross sections for elastic scattering from
the (6s2) 1S0 ground state of Hg are presented in Fig. 7. While
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FIG. 7. (Color online) RCCC angle differential cross sections for elastic scattering from the (6s2) 1S0 ground state. Also shown are
nonrelativistic CCC results [11], DBSR results [36], and experimental results found in [10,19].
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FIG. 8. (Color online) RCCC angle differential cross sections at 15 and 60 eV for the (6s6p) 3P o
1 states and (6s6p) 1P o

1 state. Also shown
are nonrelativistic CCC results [11], DBSR results [36], and the experiment found in [9,10,18].

our previous nonrelativistic CCC calculations had difficulty
in describing elastic cross section at 15 eV (the minima
were too deep) the RCCC differential cross section do not
have such a problem and are in very good agreement with
the experiment [10] and also DBSR calculations [36]. As
the incident electron energy increases to 25 and 35 eV we
observe nearly perfect agreement between the theoretical and
experimental results [19]. At 9 eV we observe good agreement
between all theoretical results and experiment at forward
scattering. However, the region around the cross-section
minimum (100◦–120◦) proved to be particularly sensitive to
the details of theoretical models with none of the available
theories being in agreement with experiment.

In Fig. 8 we present angle differential cross sections at 15
and 60 eV for the(6s6p) 3P o

1 and (6s6p) 1P o
1 states. Excellent

agreement is obtained with the measurements found in [10]
for the (6s6p) 1P o

1 and (6s6p) 3P o
1 states at 15 eV. It is well

known that the cross section for the (6s6p) 1P o
1 state is strongly

dependent on the accuracy of the optical oscillator strength
for this transition [11] with channel coupling effects playing
a rather minor role. For the (6s6p) 3P o

1 state the situation
apparently is quite different. The optical oscillator strength
values in RCCC and DBSR calculations differ by a factor
of two (0.038 and 0.018, respectively), however, a similar
difference in differential cross sections can be observed only
at forward scattering angles. Due to a small value of optical
oscillator strength for this intercombinational transition an
adequate account of the interchannel coupling becomes more
important. Additionally, the difference between nonrelativistic
and present relativistic RCCC results for this transition is
an indication of the importance of an accurate treatment of
relativistic effects in the calculation of target wave functions
and the scattering process. As the incident electron energy
increases to 60 eV we observe perfect agreement between all
theoretical models (RCCC, CCC, DBSR) and the experiment
for the (6s6p) 1P o

1 state. For the (6s6p) 3P o
1 state theoretical
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FIG. 9. (Color online) RCCC angle differential cross sections
at 15 eV for the (6s6p) 3P o

0 and (6s6p) 3P o
2 states. Also shown are

nonrelativistic CCC results [11], DBSR results [36], and experimental
results found in [10].

results are in good agreement except for small scattering angles
while the experimental results in [9] seem to be systematically
higher. This situation is interesting as it contradicts the usual
assumption that at this relatively large energy the singlet
component of the target wave function would be dominant and
therefore the (6s6p) 1P o

1 and (6s6p) 3P o
1 state cross sections are

related simply by a multiplicative constant. It is worthwhile to
note that this constant is not just a ratio of optical oscillator
strength [1.16 and 0.024 are the experimental values for
the (6s6p) 1P o

1 and (6s6p) 3P o
1 states, respectively] as the

difference in excitation thresholds should be also taken into
account which produces a cross section ratio coefficient of
18.7 (strictly valid for forward scattering only). However,
rescaled in this way the (6s6p) 1P o

1 cross section in [9] would
be lower than their measured (6s6p) 3P o

1 state cross section
except for forward scattering angles. We note also that as the
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FIG. 10. (Color online) RCCC angle differential cross sections
at 60 eV for the (6s7s) 1S0 and (6s7p) 1P o

1 states. Also shown are
nonrelativistic CCC results [11] and the experiment found in [9].

RCCC value for the (6s6p) 3P o
1 state optical oscillator strength

(0.038) is larger than the experimental value (0.024) and the
DBSR value (0.018) is smaller than the experimental value
one would expect that RCCC differential cross section for
the (6s6p) 3P o

1 state would overestimate the experiment while
the DBSR results would underestimate it. In fact, this behavior
is observed only at small scattering angles. This suggests that
channel-coupling effects are still important at intermediate
and large scattering angles at 60 eV and that they are captured
adequately by the presented theoretical methods. On the other
hand, the measurements of the (6s6p) 3P o

1 state differential
cross section [9] seem to be too high and a fresh look at the
normalization procedure used appears to be warranted.

In Fig. 9 we present differential cross sections for the
(6s6p) 3P o

0 and (6s6p) 3P o
2 states at 15 eV. We can see that

nonrelativistic and relativistic CCC results are in reasonably
good agreement, which supports the conclusion made in [11]
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FIG. 11. (Color online) RCCC total cross section for scattering
from the (6s2) 1S0 ground state of Hg. Also shown are nonrelativistic
CCC results [11], DBSR results [36], and the experiment found in
[20].

that this transition is governed mostly by the exchange scatter-
ing. Our results are in good agreement with the measurements
found in [10]. The results of DBSR calculations are somewhat
larger than our results and the experiment which as discussed
in [36] is most likely related to the lack of coupling to
ionization channels in the DBSR model.

RCCC angle differential cross sections for the (6s7s) 1S0

and (6s7p) 1P o
1 states at 60 eV are shown in Fig. 10. The

differential cross section for the (6s7s) 1S0 state measured
in [9] displays three minima which both the RCCC and
CCC calculations predict in very good agreement with the
experiment [9]. Interestingly, both the RCCC and CCC
differential cross sections predict a very sharp first minimum.
In contrast to the elastic scattering cross section (e.g., 15 eV)
this appears to be a genuine feature which might be difficult to
obtain experimentally due to the finite angular resolution. The
RCCC and CCC results are also in excellent agreement for
the differential cross section of the (6s7p) 1P o

1 state and also
in excellent agreement with the experiment [9] except for the
angles near 150◦ at the second minimum in the cross section
where the RCCC results are lower than the experimental values
in the region of the minimum.

C. Total, elastic, and momentum transfer cross sections

In Fig. 11 we present the total cross section for electron
scattering from the (6s2) 1S0 ground state of Hg, that is, the
summed contribution from elastic, excitation, and ionization
channels. We find that at energies above 2 eV the RCCC,
CCC, and DBSR calculations are in excellent agreement with
each other. We have also presented in this figure (below
4 eV) results of the calculations in [28] who used the
polarized orbitals method with addition of a dynamic distortion
potential [labeled RDD (relativistic dynamic distortion)]. At
low energies all theoretical results have qualitatively similar
behavior (maximum at about 0.4–0.5 eV) but show large
variations in the cross section shape and absolute values.
The difficulties in a theoretical description of low-energy
e-Hg scattering have been recently highlighted in [36] and
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FIG. 12. (Color online) RCCC elastic cross section for scattering
from the (6s2) 1S0 ground state of Hg. Also shown are nonrelativistic
CCC results [11], DBSR results [36], and the experimental results
found in [9,19,21].

the present theoretical results should be considered with
a degree of caution. The experiment in [20] shows good
qualitative agreement with the RCCC results in terms of
the shape of the cross section and the location of minima
and maxima, however, the experimental cross section is
consistently larger across all energies.

In Fig. 12 we present the elastic cross section. We find good
agreement between the RCCC and CCC results and very good
agreement with the experimental estimates of elastic cross
sections in [9,19,21]. Comparing to other calculations we note
that the cross section minimum at 20 eV in RCCC calculations
is much shallower than in DBSR and RDD models and in better
agreement with the experiment.

The RCCC elastic momentum transfer cross section for
electron scattering on the ground state of Hg is presented
in Fig. 13. At low energies, similar to the elastic integrated
cross section, there is a wide variation in the results of the
theoretical methods. The results of the RDD method are in
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FIG. 13. (Color online) RCCC elastic momentum transfer section
for scattering from the (6s2) 1S0 ground state of Hg. Also shown are
the results of nonrelativistic CCC [11], DBSR [36] and RDD [28]
calculations, and the experimental results found in [9,23].
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excellent agreement with the experiment in [23] for the
momentum transfer cross section, but interestingly, not for the
integrated cross section. This suggests a possible inconsistency
between the measurements in [20,23]. At energies above 1 eV
RCCC, CCC, DBSR, and RDD results are in good agreement.
Comparing with the experimental estimates in [9] we find
that apart from the two lowest experimental points (at 15
and 25 eV) the experiment is systematically lower than the
theoretical results.

IV. CONCLUSION

We have presented the steps required to formulate the
RCCC method for quasi-two-electron targets and applied the
theory to electron scattering from Hg, which is modeled as an
atom with two active valence electrons above an inert ion core.
In comparison with our previous study of e-Hg scattering using
the nonrelativistic CCC method [11] confirmed the accuracy of
the presented results for most of the considered transitions. In a
number of cases where there was a discrepancy between CCC
and the experimental results [e.g., elastic DCS at 15 eV and
integrated cross section (ICS) for (6s6sp)3P o

1 state] we find
that the fully relativistic approach is in much better agreement
with the experiment. For scattering at energies close to the
(6s6p) 3P o

0,1,2 state thresholds, where nonrelativistic methods
like CCC cannot be applied, we find very good agreement with
the DBSR calculations and experiment.

Having demonstrated the accuracy of the RCCC method for
e-Hg scattering we are now in a position to provide reliable
scattering information of interest to various applications for
quasi-two-electron targets. In the future we are also planning
to apply the RCCC method to calculation of electron-photon
correlations parameters and various spin asymmetries.
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APPENDIX: RELATIVISTIC DIRECT AND EXCHANGE
MATRIX ELEMENTS

The direct and exchange matrix elements for electron
scattering from a two-electron target in the RCCC method
differ from their nonrelativistic counterparts due to the fact
that the LS coupling scheme is employed in the nonrelativistic
case [39], whereas spin and orbital angular momenta are not
decoupled in the relativistic case. Therefore we present here the
explicit forms of the direct and exchange matrix elements used
in the solution of the set of relativistic Lippmann-Schwinger
equations, Eq. (21).

In a manner similar to the nonrelativistic case for two-
electron targets [39,45] we may separate the V operator in
Eq. (19) as

V = (V0 − U0 + 2V01) + 2(E − HT − H0 − V01 − V02)P01.

(A1)

The first term is the direct matrix element and the second term
is the exchange matrix element.

We use the CI representation of the two-electron target wave
functions to express the matrix elements

〈j ′
0k

′
0(0),
n′ : J ′MJ ′ |V |j0k0(0),
n : JMJ 〉

=
∑

α,β,γ,δ

C
(n′)
αβ C

(n)
γ δ 〈j ′

0k
′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |

×V |j0k0(0),φγ (1)φδ(2)(JT ) : JMJ 〉. (A2)

A. Direct matrix elements

The direct matrix element is associated with the first term
in Eq. (A1), which has the multipole expansion

V D = V0 − U0 + 2V01

=
∑

ν

vν(r0,r1)Cν(0) · Cν(1). (A3)

where

vν(r0,r1) = −δν
0

[
Z

r0
+ U0(r0)

]
+ 2

rν
<

rν+1
>

, (A4)

and Cν is a renormalized spherical harmonic.
Using standard tensor algebra relations [46] the direct

matrix element for each configuration pair reduces to

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |
∑

ν

vν Cν(0) · Cν(1)|j0k0(0),φγ (1)φδ(2)(JT ) : JMJ 〉

= 1

π

√
(εk′ + c2)(εk + c2)

εk′εk

〈φβ |φδ〉δJJ ′δMJ MJ ′

{
j ′

0 J ′
T J ′

JT j0 ν

}
〈j ′

0||Cν(0)||j0〉

× Ĵ ′
T ĴT δjβjδ

(−1)jα+jβ+JT +ν+J ′
T +j0+J ′

{
jβ jα J ′

T

ν JT jγ

}
〈Jα||Cν(1)||Jγ 〉

×
∫

dr0

∫
dr1

{∑
ν

vν(r0,r1)
[
f U

κ ′
0
(r0)f U

κ0
(r0) + f L

−κ ′
0
(r0)f L

−κ0
(r0)

][
φU

κα
(r1)φU

κγ
(r1) + φL

−κα
(r1)φL

−κγ
(r1)

]}
, (A5)
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where U and L denote the upper and lower components of the
Dirac spinors and where

〈φβ |φδ〉 =
∫

dr2
[
φU

κβ
(r2)φU

κδ
(r2) + φL

−κβ
(r2)φL

−κδ
(r2)

]
, (A6)

with

Ĵ = √
2J + 1. (A7)

B. Exchange matrix elements

The exchange matrix element is associated with the second
term in Eq. (A1)

VE = 2(E − HT − H0 − V01 − V02)P01. (A8)

We separate the calculation of the exchange matrix element
into a number of steps.

1. V01 P01 matrix elements

The first exchange matrix element for each configuration
pair is

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V01P01|j0k0(0),

φγ (1)φδ(2)(JT ) : JMJ 〉, (A9)

where

V01 =
∑

ν

rν
<

rν+1
>

Cν(0) · Cν(1), (A10)

We apply the space exchange operator P01 to the right-hand
side and then recouple the angular momenta on the right-hand
side using

|j0,jγ jδ(JT ) : J 〉 =
∑

j

ĵ ĴT (−1)j0+JT +Jγ +j

×
{

j0 jδ j

jγ J JT

}
|jγ ,j0jδ(j ) : J 〉, (A11)

to obtain

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V01|j0k0(1),φγ (0)φδ(2)(JT ) : JMJ 〉

= 1

π

√
(εk′ + c2)(εk + c2)

εk′εk

〈φβ |φδ〉δJJ ′δMJ MJ ′ δjβjδ
ĵ ĴT ĵ Ĵ ′

T (−1)j0+JT +2jγ +2j+J ′
T +J ′+jα+jβ+ν

×
{

j0 jδ j

jγ J JT

} {
j ′

0 J ′
T J ′

j jγ ν

}{
jβ jα J ′

T

ν j j0

}
〈j ′

0||Cν(0)||Jγ 〉〈Jα||Cν(1)||j0〉

×
∫

dr0

∫
dr1

⎧⎨
⎩

∑
νj

rν
<

rν+1
>

[
f U

κ ′
0
(r0)φU

κγ
(r0) + f L

−κ ′
0
(r0)φL

−κγ
(r0)

][
φU

κα
(r1)f U

κ0
(r1) + φL

−κα
(r1)f L

−κ0
(r1)

]⎫⎬⎭ . (A12)

2. V02 P01 matrix elements

The second exchange matrix element for each configuration
pair is

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V02P01|j0k0(0),

φγ (1)φδ(2)(JT ) : JMJ 〉, (A13)

where

V02 =
∑

ν

rν
<

rν+1
>

Cν(0) · Cν(2). (A14)

We apply P01 to the right-hand side, but this time it is
convenient to recouple the angular momenta on the left-hand
side to obtain

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V02|j0k0(1),φγ (0)φδ(2)(JT ) : JMJ 〉

= 1

π

√
(εk′ + c2)(εk + c2)

εk′εk

〈φα|j0k0〉ĴT Ĵ ′
T (−1)j

′
0+J ′

T +jα+jβ+jγ

{
j ′

0 jβ JT

jα J ′ J ′
T

} {
j ′

0 jβ JT

jδ jγ ν

}
〈j ′

0||Cν(0)||jγ 〉〈jβ ||Cν(2)||jδ〉

×
∫

dr0

∫
dr2

{∑
ν

rν
<

rν+1
>

[
f U

κ ′
0
(r0)φU

κγ
(r0) + f L

−κ ′
0
(r0)φL

−κγ
(r0)

][
φU

κβ
(r2)φU

κδ
(r2) + φL

−κβ
(r2)φL

−κδ
(r2)

]}
. (A15)

022713-11



BOSTOCK, FURSA, AND BRAY PHYSICAL REVIEW A 82, 022713 (2010)

3. V12 P01 matrix elements

The third exchange matrix element for each configuration
pair is

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V12P01|j0k0(0),

φγ (1)φδ(2)(JT ) : JMJ 〉, (A16)

where

V12 =
∑

ν

rν
<

rν+1
>

Cν(1) · Cν(2). (A17)

We apply P01 to the right-hand side and recouple the angular
momenta on the right-hand side to obtain

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |V12|j0k0(1),φγ (0)φδ(2)(JT ) : JMJ 〉

= 1

π

√
(εk′ + c2)(εk + c2)

εk′εk

〈j ′
0k

′|φγ 〉Ĵ ′
T ĴT (−1)2j0+JT +jγ +jβ

{
j0 jδ J ′

T

jγ J JT

}{
jα jβ J ′

T

jδ j0 ν

}
〈jα||Cν(1)||j0〉〈jβ ||Cν(2)||jδ〉

×
∫

dr1

∫
dr2

{∑
ν

rν
<

rν+1
>

[
φU

κα
(r1)f U

κ0
(r1) + φL

−κα
(r1)f L

−κ0
(r1)

] [
φU

κβ
(r2)φU

κδ
(r2) + φL

−κβ
(r2)φL

−κδ
(r2)

]}
. (A18)

4. (E − H0 − H1 − H2)P01 matrix elements

The last exchange matrix element for each configuration
interaction pair is

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |(E − H0 − H1 − H2)

×P01|j0k0(0),φγ (1)φδ(2)(JT ) : JMJ 〉. (A19)

We apply P01 to the right-hand side to obtain

〈j ′
0k

′
0(0),φα(1)φβ(2)(J ′

T ) : J ′MJ ′ |(E − H0 − H1 − H2)|j0k0(1),φγ (0)φδ(2)(JT ) : JMJ 〉

= 1

π

√
(εk′ + c2)(εk + c2)

εk′εk

{
Ĵ ′

T ĴT (−1)j0+JT +jγ +J ′
T

{
j0 jδ J ′

T

jγ J JT

}

× [〈φα|j0k〉〈φβ |φδ〉〈j ′
0k

′|φγ 〉[E(1 − θ ) − εk′ − εk] − 〈φα|j0k〉〈φβ |φδ〉〈j ′
0k

′|(V0 − U0)|φγ 〉

− 〈j ′
0k

′|φγ 〉〈φβ |φδ〉〈φα|(V1 − U1)|j0k〉 − 〈j ′
0k

′|φγ 〉〈φα|j0k〉〈φβ |(H2)|φδ〉
] − Eθ〈j ′

0k
′|IN

0 |j0k〉〈φβ |φδ〉〈φα|φγ 〉
}
. (A20)

The parameter θ has been introduced in a manner sim-
ilar to the nonrelativistic case to ensure the numeri-
cal stability and uniqueness of the T matrix, as out-

lined in [39]. The projection operator IN
n = ∑

n |φn〉〈φn|
is made from the configuration interaction single particle
states.
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