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Multiple scattering of matter waves: An analytic model of the refractive index for
atomic and molecular gases
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We present an analytic model of the refractive index for matter waves propagating through atomic or molecular
gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction
with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling
agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter
waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering
by a two-dimensional “hard core” of the potential, is essential for obtaining a correct imaginary part of the
refractive index.
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I. INTRODUCTION

Multiple scattering of matter waves arises in a broad variety
of contexts, ranging from gas transport [1] to the scattering of
subatomic particles by atoms or molecules [2,3] to cosmic ray
showers [4]. Inherent to the concept of multiple matter-wave
scattering is the notion of a refractive index, n, which, by the
optical theorem [5], is proportional to the forward scattering
amplitude, f (0). While Im[f (0)] and thus Im[n] are related
to the total integral scattering cross section and so can be
measured in a standard beam scattering experiment, Re[f (0)]
and thus Re[n] reflect the change of the wave’s phase velocity
and can only be accessed by matter-wave interferometry. The
first such interferometric measurement was carried out in
1995 by Schmiedmayer et al. [6,7], who determined both the
attenuation and the phase velocity change of sodium atom
waves propagating through a number of gases. Subsequently,
the Pritchard group was able to observe glory-type oscillations
in the dependence of the refractive index on the sodium beam
velocity [8–10]. In 2007, Jacquey et al. [11] implemented an
improved, Mach-Zehner type of an atom interferometer and
measured the index of refraction of lithium waves passing
through noble gases. In 2008, Champenois et al. [12] and,
independently, Hornberger and Vaccini [13], provided an
analysis of how the motion of the scatterers affects the
measured refractive index. This work showed that the formulas
used to extract the refractive index from the experimental
data [7,14] and in the related theoretical treatments [15–18]
lacked consistency with the Beer-Lambert law and thus were
incorrect.

According to the scenario of Ref. [12], an atomic or ionic
beam of “projectiles” p of mass mp and the laboratory velocity
vp propagates through a gas of density Nt made out of “target”
particles t of mass mt and laboratory velocity vt . For plane
matter waves, the velocities vp,t are related to the laboratory
wave vectors kp,t by h̄kp,t = mp,tvp,t . The relative motion of
the target and projectile particles is described by the relative
wave vector kr = µvr/h̄, where vr = vp − vt is the relative
velocity, and µ = mpmt/(mp + mt ) the reduced mass. Taking
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this scenario into account, Champenois et al. [12] derived
a new formula for the refractive index of a matter wave
propagating through a dilute gas,

n = 1 + 2πNt

mp + mt

mt

〈f (kr ,0)〉
k2
p

, (1)

where f (kr ,0) ≡ f (0) is the forward scattering amplitude
pertaining to the scattering angle ϑ = 0. The averaging in
Eq. (1) is carried out over the relative wave vectors, kr ,
corresponding to a normalized relative velocity distribution
[12]; see the following.

Previous theoretical treatments of the refractive index of
atomic waves, surveyed in Ref. [12], were based on the
Wentzel-Kramers-Brillouin (WKB) [7] or eikonal [10,19]
approximations, which become analytic only if the repulsive,
short-range interaction, is neglected (cf. also Refs. [7,12]).
In this contribution, we combine the WKB treatment of
scattering for the long-range attraction with the Fraunhofer
approximation for the short-range repulsion and thereby obtain
an analytic model of the refractive index which accounts for
both short- and long-range multiple matter-wave scattering.
The resulting analytic refractive index provides an additional
insight into multiple scattering and facilitates data analysis.

After briefly introducing the model, we apply it to the
refractive index of Li atom waves propagating through Ar, Kr,
and Xe gases and compare the results with the measurements
of Jacquey et al. [11]. In addition, we exemplify the model’s
scope by examining the refraction of a Na+ ionic beam passing
through a dilute N2 gas.

II. MODEL OF MATTER-WAVE REFRACTION

In the model introduced herein, we consider the scattering
amplitude to consist of two parts:

f (kr ,0) = fshort(kr ,0) + flong(kr ,0). (2)

The short-range part, fshort(kr ,0), arises from the scattering
by the “hard core,” repulsive branch of the potential, and can
be evaluated in closed form within the Fraunhofer model of
matter-wave scattering. The Fraunhofer model was introduced
by Drozdov [20] and generalized by Blair [21] in the late 1950s
to treat inelastic nuclear scattering, and adapted by Faubel
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[22] to account for rotationally inelastic thermal collisions
between helium atoms and N2 and CH4 molecules. Recently,
we generalized the Fraunhofer model to treat atom-molecule
collisions in electric [23,24], magnetic [25], and laser fields
[26], and also to gain insight into the stereodynamics of
molecular collisions [27,28].

Within the Fraunhofer model, the hard core part of the
potential amounts to a two-dimensional, impenetrable obstacle
with sharp boundaries. The elastic scattering amplitude is
given by the amplitude for the Fraunhofer diffraction of matter
waves by such an obstacle [23],

fshort(kr ,ϑ) = ikrR
2
0(kr )

J1[krR0(kr )ϑ]

krR0(kr )ϑ
, (3)

where J1 is the Bessel function [29] and R0 is the radius
of the interaction which, for an atom-atom potential, is given
by the solution of the equation V (R0) = h̄2k2

r /(2µ), with V (r)
the interaction potential. For forward scattering, the amplitude
of Eq. (3) becomes

fshort(kr ,0) = ikrR
2
0(kr )

2
. (4)

Hence, the Fraunhofer amplitude is purely imaginary and,
therefore, contributes only to the imaginary part of the
refractive index.

In order to account for the long-range part of the scat-
tering amplitude, flong(kr ,0), we make use of the WKB
approximation, which is accurate for thermal collisions dom-
inated by partial waves with large angular momenta l. We
consider the general case of the inverse-power long-range
potential,

Vlong(r) = −Cβ

rβ
, (5)

with Cβ > 0 and β > 3. For an atom-atom interaction, β = 6,
while β = 4 for an ion interacting with an atom or molecule.
For the potential of Eq. (5), the WKB phase shift for the lth
partial wave is given by [5]

δ
(β)
l = µCβk

β−2
r

2h̄2lβ−1

�
(

1
2

)
�

(
β−1

2

)
�

(
β

2

) . (6)

The WKB forward scattering amplitude [5],

f
(β)
WKB(kr ,0) = 1

ikr

∫ ∞

0
l
(
e2iδ

(β)
l − 1

)
dl, (7)

then becomes, on substituting from Eq. (6):

f
(β)
long(kr ,0) = k

β−3
β−1
r

(√
π

2

) β+1
β−1

[
µCβ

h̄2

�
(

β−1
2

)
�

(
β

2

)
] 2
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. (8)

III. REFRACTION OF ATOM MATTER WAVES

In the case of an atom beam passing through an atomic gas,
β = 6 and the forward scattering amplitude becomes

fatom(kr ,0) = fshort(kr ,0) + f
(6)
long(kr ,0)

= ikrR
2
0(kr )

2
+

(
ikr

2

)3/5

�

(
3

5

) (
3π

16

µC6

h̄2

)2/5

.

(9)

By substituting from Eq. (9) into Eq. (1) and making use of
the distribution function given by Eq. (A3) of Ref. [12],

P (vr ) = 2vr

π1/2αvp

exp

[
−v2

p + v2
r

α2

]
sinh

[
2vpvr

α2

]
, (10)

with α = √
2kBT /mt , kB Boltzmann’s constant, and T the

temperature, we obtain the following expression for the
reduced index of refraction,

ηatom ≡ n − 1

Nt

= 2π
h̄

mpv2
p

[
i〈vr〉R2

0 + 〈
v3/5

r

〉( i

2

)3/5

×�

(
3

5

)(
3π

16

C6

h̄

)2/5]
, (11)

where the velocity averages are given by

〈vr〉 =
∫ ∞

0
vrP (vr ) dvr, (12)

〈
v3/5

r

〉 =
∫ ∞

0
v3/5

r P (vr ) dvr . (13)

In general, the R0 value depends on the relative velocity
vr , but for narrow velocity distributions, such as those
implemented in the experiments of Jacquey et al. [11], the
dependence is found to be negligible. We could thus simplify
the resulting expression by fixing R0(vr ) to a constant value
pertaining to the mean relative velocity, R0 ≡ R0(〈vr〉).

While Table I compares the experimental values of ηatom

obtained by Jacquey et al. [11] with our model results for Li
matter waves propagating through Ar, Kr, and Xe gases, Fig. 1
singles out the Li + Xe system and compares the experimental
and theoretical dependence of the refractive index on the
Li velocity. As an input for the analytic model, we used
potential energy curves of Ahokas et al. [30]. The analytic
refractive index is seen to be in a compelling agreement with
the experiment. We note that the interference of the matter
waves scattered by the short- and long-range parts of the
interatomic potential causes the refractive index to exhibit
glory-type oscillations. These are not correctly rendered by
our analytic model, as the approximate scattering amplitudes,
which were obtained by different methods, fail to “keep track”
of one another.

Also presented in both Table I and Fig. 1 are the values of
the refractive index for the long-range potential included but
with the short-range interaction excluded [i.e., for f (kr ,0) =
flong(kr ,0)]; cf. Eq. (2). One can see that in such a case the
imaginary part of the refractive index is substantially less than
in the experiment.
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TABLE I. Reduced index of refraction, η ≡ (n − 1)/Nt [m3], for
a Li beam propagating through different noble gases with a mean
velocity vp = 1075 m/s.

Experiment Model
of Ref. [11] Model fshort(kr ,0) ≡ 0

Ar
1029Re(η) 1.20 ± 0.11 0.97 0.97
1029Im(η) 2.11 ± 0.06 1.65 1.33
Re(η)/Im(η) 0.56 ± 0.05 0.58 0.73

Kr
1029Re(η) 1.57 ± 0.10 1.25 1.25
1029Im(η) 1.99 ± 0.07 2.04 1.71
Re(η)/Im(η) 0.78 ± 0.04 0.61 0.73

Xe
1029Re(η) 1.82 ± 0.07 1.52 1.52
1029Im(η) 2.40 ± 0.06 2.42 2.08
Re(η)/Im(η) 0.70 ± 0.03 0.62 0.72

In the limit of a cold atomic gas (i.e., for T → 0),
the velocity distribution (10) becomes a δ function, which
simplifies Eq. (11), since then 〈vr〉 → vp and 〈v3/5

r 〉 → v
3/5
p .

In this case, Re[ηatom] is proportional to v
−7/5
p , while Im[ηatom]

is proportional to both v−1
p and v

−7/5
p . However, since the v−1

p

term arises from the diffraction of matter waves from the hard
core of the potential, it dominates Im[ηatom] at large collision
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FIG. 1. (Color online) Top panel shows the real and imaginary
parts of the reduced refractive index η ≡ (n − 1)/Nt [m3] multiplied
by 1025v7/5

p for Li beam propagating through Xe gas, in dependence
of the beam velocity vp . Bottom panel shows the corresponding
ratio Re(η)/Im(η). Model results (solid curves) are compared with
experimental data of Ref. [11]. Dashed curves show the results of the
model with the short-range potential excluded.

energies at the expense of the v
−7/5
p term, which arises from

the long-range attraction.

IV. REFRACTION OF ION MATTER WAVES

For an ion beam passing through an atomic or molecular
gas, β = 4 and the scattering amplitude becomes

fion(kr ,0) = fshort(kr ,0) + f
(4)
long(kr ,0)

= ikrR
2
0(kr )

2
+

(
ikr

2

)1/3

�

(
1

3

) (
π

4

µC4

h̄2

)2/3

,

(14)

leading to a reduced refractive index for an ionic beam:

ηion ≡ n − 1

Nt

= 2π
h̄

mpv2
p

[
i〈vr〉R2

0 + 〈
v1/3

r

〉( i

2

)1/3

×�

(
1

3

)(
π

4

C4

h̄

)2/3]
, (15)

with 〈
v1/3

r

〉 =
∫ ∞

0
v1/3

r P (vr ) dvr . (16)

We note that in the case of an anisotropic interaction of,
say, an ion or atom with a linear molecule given by a potential
V (r,θ ), the R0 value is given by the spherical part of the hard
core of the potential [23]. In order to extract R0, we first solve
the equation V (R(θ ),θ ) = h̄2k2

r /(2µ) to obtain the hard core
shape R(θ ), which we then expand in a Legendre series,

R(θ ) = R0P0(cos θ ) + R1P1(cos θ ) + R2P2(cos θ ) + · · · ,
(17)

from which we deduce the R0 value.
The values of the refractive index for an ion beam passing

through a molecular gas, as exemplified by the Na+-N2

system, are listed in Table II at an ion projectile velocity
vp = 5000 m/s. The requisite value of R0 was extracted from
the potential energy surface of Ref. [31]. We see that the
refractive index is less affected by switching off the repulsive
part of the potential for the ion-molecule system than for the
atom-atom system (cf., Sec. III). This is due to the greater
strength of the −C4r

−4 interaction compared with that of the
−C6r

−6 potential and the more dominant role it thus plays in
determining n.

TABLE II. Reduced index of refraction, η ≡ (n − 1)/Nt [m3],
for a Na+ beam propagating through N2 gas with a mean velocity
vp = 5000 m/s.

Model
Model fshort(kr ,0) ≡ 0

1029Re(η) 0.25 0.25
1029Im(η) 0.16 0.14
Re(η)/Im(η) 1.60 1.73
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We note that in the limit of zero temperature, vr → vp, the
real part of the refractive index (15) becomes proportional to
v

−5/3
p . The imaginary part of the refractive index is determined

by two terms, one of which is proportional to v−1
p and the other

to v
−5/3
p .

V. CONCLUSIONS

We presented an analytic model of the refraction of atom or
ion matter waves passing through atomic or molecular gases.
The values of the refractive index furnished by the model were
found to be in good agreement with experiments of Jacquey
et al. [11]. Our analysis has shown that in order to appraise
the imaginary part of the refractive index correctly, we need to

account for the diffraction by the repulsive hard core part of
the interaction potential. This can be achieved by invoking the
Fraunhofer model.

Within the Fraunhofer model of matter-wave scattering, the
elastic scattering amplitude depends solely on the spherical
radius, R0, of the scatterer. As a result, an external field (e.g.,
magnetic) does not affect the elastic cross section furnished by
the model. The corollary is that the field would not affect the
index of refraction obtained from the analytic model presented
herein either.
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