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Calculation of electron-impact ionization using the J-matrix method
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The J-matrix approach to electron-atom scattering is applied to ionization processes. We consider the Temkin-
Poet model of e-H ionization. Convergence issues are studied with greater detail than previously possible using
other close-coupling methods. The numerical strengths of the technique are emphasized with the long-term goal

of application to ionization-plus-excitation processes.
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I. INTRODUCTION

The J-matrix (JM) method is a theoretical framework for
solving a quantum scattering problem using only square-
integrable (L?) basis functions [1,2]. When initially applied
to the s-wave electron-atomic-hydrogen scattering problem,
the method exhibited the so-called pseudoresonances [3],
which have always been the main objection against L>-based
methods. However, arguably, the pseudoresonances are not an
issue provided they disappear from the physical observables
as the size of a particular L? basis increases [4,5]. Such
convergence has now been demonstrated for the JM method by
calculating elastic and a number of excitation cross sections for
electron scattering on hydrogen (e-H) [6,7] and helium (e-He)
[8]. Furthermore, the JM results were found to be in agreement
[9] with other ab initio scattering approaches such as the
convergent-close-coupling (CCC) [5] and the intermediate
energy R-matrix (IERM) [10] methods. Since the JM method
continues to be actively explored [11-17], it is interesting to
revisit the JM method paying particular attention to its rate of
convergence, which is the first objective of this study.

The second goal of this study is to apply the JM method
to the ionization phenomena for the first time. The s-wave
electron-hydrogen scattering problem, that is, the Temkin-Poet
problem [18,19], was used as a relevant scattering benchmark
problem [7,20-22] to demonstrate the results.

Arguably, the main and the only concern of an L?-based
scattering method is, or at least should be, the convergence
rate to the exact solution as the number L? basis functions
increases [23]. Since such convergence verifications could be
computationally intensive, a new variable transformation was
designed to optimize the required numerical integrations.

More broadly, our goal is to develop the JM approach
to a generally applicable collision theory that combines the
strengths of the R-matrix approach, specifically, upon solution
the results are available for a broad range of incident energies,
and the CCC method, where convergence is systematically
approached by simply increasing the L2 basis size. Ultimately,
the L? description of the total wave function should make it
possible to develop an iterative close-coupling formulation,
where the JM solution of say e-He™ scattering would form the
wave functions to be used in the close-coupling expansion of
e-He scattering. These wave functions would have the correct
channel information and allow such calculations to directly
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yield ionization-plus-excitation cross sections. Having stated
our long-term objectives, we first need to demonstrate the
utility of the JM approach, and this is why we begin with the
Temkin-Poet model.

The presented JM results are calculated using Java pro-
gramming language which is freely available for MS Win-
dows, Mac OSX, and some versions of Linux/Unix. The
complete Java source code used in this study is freely
available from jmatrix.googlecode.com or a relevant link at
www.dmitrykonovalov.org for academic use.

II. THEORY

A. Potential scattering

This subsection summarizes the JM formalism on the
example of nonrelativistic s-scattering of one electron in
a short-range central symmetric potential field V(r), for
example, one created by the ground state of the hydrogen atom
Vis(r) = (1 + 1/r)exp(—2r) [24], where the atomic units are
used throughout this study. After the partial-wave expansion
and retaining only the s terms (I = 0), the potential scattering
problem is reduced [24,25] to solving the radial Schrodinger
equation,

(H—E)¥(r)=0, ()

Y(r — o0) ~ sintkr +6§), W(0) =0, )
1 d?

H=K+V(r), K:_Ed?’ (3)

where § is the phase shift and E = k?/2 is the total energy of
the system.

The JM formalism [ 1,26] requires a set of real L tridiagonal
(or diagonal) basis functions, {|¢,)},2,, such that ¢,(0) =0
and (K — E)’s matrix is tridiagonal,

Juim = (K — E|$p) =0, |n—m|>1, 4)
<¢n|¢m> =0, |I’l _m| > 1. )

To achieve a uniform treatment of both potential and mul-

tichannel scattering, an additional basis of N orthonormal
functions {| x,,)}f:’:_ol is defined as linear combinations of the
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first N JM basis functions,

N—-1
Xn () =" D (r). 6)

m=0

For the potential scattering, such orthonormal basis could
be constructed from the diagonalization of the system’s
Hamiltonian,

Xl HXm) = €ndums (XnlXm) = Sum- @)

Closely following Broad and Reinhardt [2] except for the
use of the orthonormal basis, W(r) is approximated by W (r),

N—-1 oo
VORI =Y g an + Y ¢ fpe B
m=0 p=N
fp =5p + Rcp, 9

where a,, are the inner-space expansion coefficients describing
the electron’s interaction with V(r) and R = tan § is the s term
of the reactance matrix (also known as the K matrix [25]).
The second sum in (8) is the outer-space part describing
a free moving electron in terms of the regular or sinelike
(sp coefficients) and irregular or cosinelike (c, coefficients)
solutions of

o0 oo
Z Jn[,S[, = 07 Z ancp = wan,()’ (10)
p=0 p=0

with a uniquely defined constant w. The unknown a,, and R

are found by simultaneously solving

(xu|H — E[W") =0,
(¢l H — E|W") =0,

n <N, (11
n>=N. (12)

Note that Egs. (10) are central to the JM formalism as they
could be solved analytically for some types of the basis
functions [15]. To take advantage of the analytical solutions
for s, and c,, the representation of V(r) in the chosen basis
is truncated to an N x N matrix by retaining only the inner
functional-space contributions,

{ (DnlV|dm)

0 otherwise,

ifnm < N
Vim &~ VN =

nm —

13)

obtaining

(XnlH = El¢p) = (xn| K = Elpp),
(Pp|H = Elpp) = Jpp's

By this neglecting V,,,, in the outer functional space, Egs. (11)
and (12) are reduced to the following three cases:

n<N,p>=N, (14
p.p' = N. (15)

(en — E)a, = —Dy n—1In-1,nfn, R <N, (16)
N-—1
> Dyn-t@m = fy-1. n=N, (17)
m=0
[e o]
> Jpfp=0. n>N, (18)
p=N

where (18) is automatically satisfied via (10) and

Ivn v+ InNit v = —JInv-1fv-t (19)

was used in (17).
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Note that while the original JM formulation used ¢,,(r)
instead of y,,(r) in (8), the final expression for R remains the
same, completing the JM treatment of the potential scattering,

R=—(WCJC) " (WSJS), (20)

where the s-wave partial S matrix and elastic cross section are
given by

Soo=0+iR)1—iR)", 1)
T
o0 = 731500 = 17, (22)

respectively, and where

(WSJS) = WSNJN,N71 + SN—1, (23)
(WCJC)=WenyIyn—1+cn-1, 24)
N—-1 2
D N—1
W = m, . 25
;‘) pa— (25)

B. Multichannel scattering

The focus of this study is the Temkin-Poet model [18,19] of
electron-atomic-hydrogen nonrelativistic collision with zero
total angular momentum for two electrons,

(H — E)¥(r,r2) =0, (26)
H=H+ K, + V(r,r), 27
1 1 1
H=K—-—, Vr,n)=-—+——— (29
ri r,  max(ri,r)

where W(ry,r2) = (=1)5W(ry,ry) is symmetric for the sin-
glet (total spin S = 0) and antisymmetric for triplet S = 1
scattering.

While the use of the system’s eigenvectors in the JM
expansion of W(r) (8) yields, arguably, a simpler set of
equations for a,, and R, the main advantage of this approach
lies in it being naturally extendable to the multichannel
scattering, as shown in what follows.

An interesting clarification is now required before JM is
generalized to the multichannel case. The purpose of the
JM method is to solve a scattering problem rather than the
electronic structure of the target or the target-electron systems.
Therefore, the target states must be orthogonal to the outer ]M
basis functions, {|¢,)}2y, to avoid interfering with the JM
scattering equations. Keeping this in mind and following the
approach outlined in the potential scattering, an orthonormal
basis is created from the first N JM basis functions (6) via the
following two-step procedure.

The first step ensures that any target state is orthogonal to
the outer JM functions, {|¢,)}52 5. This is always true if the
first N; < N orthonormal functions, {| Xa)}iv’:_ol, are created by
diagonalizing the target Hamiltonian on the subset of only the
first N, JM basis functions,

<on|Ht|Xﬂ> = easaﬂa <Xc¢|Xﬁ> = 301;3’ (29)
N,—1

Xa(P) =Y dumpm(r). (30)
m=0
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Hereafter the Greek indices will be assumed to vary between
zero and N, — 1, for example, 0 < «,8 < N,.

In the second step, the remaining N — N; orthonormal
basis function is constructed from all first N JM functions,
for example,

N-1

N1 () = dy 1 mm(r), 31

m=0

such that (x,|xm) = 8u.m>» 0 < n,m < N. Equations (30) and
(31) could be combined into a single expression (6), where

0 if n < N; and m > N,
d,, otherwise.

If the lowest-energy target eigenvector xo(r) describes the
ground target state exactly or with sufficient accuracy and
considering only the case with the target hydrogen atom being
in its ground state before the collision, the total energy of the
system is given by

E=e+Ey, Eo=kj/2. (33)

Using {| Xn>},1,V=_ol as the one-electron basis, the two-electron
basis could be constructed for the inner JM functional space
via

Qpn(r1,72) = Apm xp(r1) xm(12), (34)

where ) < 8 < N;and0 < m < Nsuchthat < mforS =0
and 8 <m for § =1, and where A is the symmetrization
operator defined from the coordinate space exchange operator
P, via

A X Xm) = bam[1 + (= 1> B0 Xm) (35)
with the normalization constant b,,, :% for n =m and
by = Lz for n % m. The system’s eigenvectors are then

obtained by diagonalizing H using all available two-electron
configurations,

(Ei|HIE;) = Eidij,  (&il&)) = dij, (36)
N,—1 N—1

E(rir) =Y Y Cipm@pm(ri.ra). 37)
B'=0 m=p’

Extending the preceding JM approach from the potential
scattering to the multichannel scattering and following Broad
and Reinhardt [2] whenever possible, W (r,r,) is approximated
by WV (r,r,) for the given total energy E,

Ni—1 oo

UN =3 "ga;+ Y Appxargpr) fF. (38)
J a=0 p=N

137 = (5y8ap + ¢ Rap) [k (39)

where k, = +/2|E — e4|. The open channels are defined by
(E — ey) > 0, while for the closed channels, (E — e,) < 0,
s;',‘ =0,and ci isreplaced by (sﬁ +i c‘,",) evaluated at g, = iky.
The index of the incident channel 8 is defined only for the open
channels in Egs. (38) and (39), 0 < B < Ng, where Ng is the
number of open channels, 1 < Ng < N,.
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Similar to (11) and (12), the a; and R,p coefficients are
found by simultaneously solving the following equations for
the inner and outer functional space, respectively,

(&|H — ElWY) =0, (40)
(Ao (r)pp ()| H — ENW™) =0, p'>N. (41
As before, the target-projectile interaction matrix ele-

ments involving outer JM functions are ignored; that is,
(Gn®p|VIpmd) =0 when p > N or p’ > N, obtaining

(XaXm|H - E|Xﬁ¢p> ~ SaﬂapNJf/_l,NDm,N—h (42)
(Xmxo|H — Elxpep) ~ 0, (43)
where Ji, = (u|K — (E — ep)|¢hm).

After some algebra, the final set of JM multichannel
equations becomes

N—-1
(Ei— E)a; =— Y X{In I (44)
a=0
> X4a; = f3F 45)
Jj 7 JN-1°
J
N—-1
X¢ =" CiamDun-1. (46)
m=N,

and after elimination of g;

N,—1
Z Wa’wjz?/fl,N Sﬁ = —fﬁ_l, (47
a=0

X¢' X9
Woo = ——L. 48
Xi: E;—E @9
Solving (47) for the reactance matrix yields
N,—1
Rap =— Y (WCIC),p(WSIS)up. (49)
a’'=0

where 0 < 8 < Ng,
(WSJTS)wp = (Waplh y_15n +Swpsn_1)/Vkg,  (50)
(WCICa = (Warady y16% + SaaCy_1) [Vka- (51
Using only the open-channel portion of R, the scattering matrix

S and cross sections are given by
Np—1
Spp= D (1+iR)pp (1 —iR)zl,. (52)
,3//:0

T (2S+1)
(-
B

|Spp = 8ol (53)
C. Laguerre basis

One L2-complete basis satisfying the JM requirements is
the set of nonorthogonal Laguerre functions [2,26],

Gu(r) = X" 2L (), n=0,1,....,N—1, (54

where x =Ar, [ =0, and L{(x) are the associated La-
guerre polynomials [27], for example, LG(x)=1 and
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L{(x) = —x + «a + 1. The Laguerre polynomials could also
be used to define an orthogonal basis:

R,(r) =x"e™ 2L 2(x), n=0,1,....N—1, (55)
/0 T R, (N Ry(r) = 8, C, (56)
where C, = (n 4+ 21 4+ 2)!/(An!). Since
LY+ (x) = Z Lyt (x), (57)
m=0

the set of {Ro(r),Ri(r),...,Rn,—1(r)} covers identical
functional L? subspace defined by {¢o(r),¢(r), ... N, —1(1)}
and therefore were used as the starting basis for diagonalization
of the target Hamiltonian (29) obtaining the target eigenvectors
{Ixa) 2’”:51. When required, the liner expansion coefficients
(30) were calculated numerically via

Dnm = / dr Xn(r)am(r)» (58)
0
where ¢, (r) is the function biorthogonal to ¢, (r) [2,26],
— _ n! @u(r)
¢,(r) = T I (59)
/ dr ¢n(r)$m (r) = Sum- (60)
0

The remaining N — N, basis functions are conveniently
given by

Xn(r) = Ry(r)/y/Coy Ni <n < N. (61)

The final expressions for the reactance matrix require
JY._1> Sy, and ¢y, which are known exactly for this basis:

n(n+ Dga

J = , 62

=l 2sin6 (62)
e*i(n+l)9

cg-i-is,?:—m, (63)

where only /=0 is shown, cosf = (n*> — i)/(n2 + %),

. 1
sinf =n/(* + 1), 1 =qo/r and gy = /2(E —e,) be-

comes complex for the closed channels.

D. Ionization

Bray and Stelbovics [28] demonstrated that correct total
ionization cross section (TICS) could be calculated using only
the L? description of atomic hydrogen. The TICS could be
extracted from the channel cross sections by simply summing
up the positive-energy target-state cross sections; that is,

Oion A Z 08,0, (64)

PBieg>0

where an atom is assumed to be in its ground state y before
the collision with the electron. Note that Eq. (64) could be
corrected by considering projection to the functional space of
the exact bound target states [28], which speeds up the rate
of convergence as a function of N,. However, the correction
is not applied to demonstrate that the JM method potentially
could applied to other scattering problems where the exact
target states may not be known.
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Similar to the TICS, the single-differential ionization cross
sections (SDCS) could be approximately extracted from the
L? coupled-channel (CC) calculations without requiring the
exact continuum target states [29]. The CC SDCS docc/de is
calculated at the channel energy values via

E daioil(g) dGCC(@ﬁ)
de—""" ~ _— 65
/0 & de Z wg de ( )
Bieg>0
docc(ep)/de = opo/wp, ep >0, (66)

where the energy integration weights are given by

0<eg <egy1 <---<eg,_1 <eg, <E,

1
wp, = 7 (ep. + €p+1),
1
wg = §(€ﬂ+1 —eg_1), Be<PB<BE (67)

1
wp, = E — 5(%—1 +ep,),

Be

Z Wg = E s

B=p:
and where xg_and g, are the open “continuum” target states
with the lowest and largest positive energies, respectively.

The preceding SDCS integration weights can also be related

to the close-coupling definition of the ionization amplitude
[30] obtaining, in terms of Eq. (65),

W = (e, | x5) 2 (68)

where . is the radial continuum Coulomb wave function
satisfying

(H —&)lYe) =0, (Ye|¥hw) = 8(e — &). (69)

In Table I we show just how similar the two sets of weights
are for a specified basis.

E. Radial grid

Even though the available computational resources con-
tinue to improve in cost, memory, and speed, the numerical op-
timization remains an important aspect of scattering problems
[20,31]. In particular, the vector r = (ry,r3, .. . ,ry) of equally
spaced r grid points is quite wasteful when working with the
exponentially vanishing JM Laguerre functions, where M is
total number of the grid points, r; = (j — 1)h,, and h, is the
radial step size, j = 1,2,...,M. One possible optimization
solution divides the considered radial space into regions in
which 4, is increased based on how far the regions are from
zero, for example, by doubling the step size [20]. This solution
introduces extra adjustable parameters (e.g., number, position,
and size of the regions), which are always undesirable from
parsimonious considerations.

Another solution is the logarithmic grid (denoted LR, after
“logarithm of r”),

y=In@), r(y)=exp(y), (70)

which was successfully used in the multiconfiguration
Hartree-Fock (MCHF) calculations [32,33], where the equally
spaced r grid is replaced with an equally spaced y grid,
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TABLE I. SDCS energy integration weights for the Laguerre JM
basis with A = 1 and N, = 40 (see text).

ep Wwp Wwp

0.003 0.003 99 0.003 99
0.007 35 0.004 74 0.004 73
0.012 48 0.005 56 0.005 54
0.018 47 0.006 47 0.006 45
0.025 42 0.007 51 0.007 48
0.033 48 0.008 71 0.008 67
0.042 83 0.0101 0.010 06
0.053 68 0.011 74 0.011 69
0.066 32 0.0137 0.013 64
0.081 09 0.016 06 0.01598
0.098 44 0.018 94 0.018 83
0.118 96 0.022 48 0.022 33
0.143 41 0.026 91 0.026 71
0.172 78 0.032 52 0.032 26
0.208 45 0.039 75 0.039 39
0.252 28 0.049 23 0.048 71
0.306 92 0.061 92 0.061 16
0.376 12 0.0793 0.078 17
0.465 52 0.103 77 0.102 01
0.583 67 0.139 37 0.136 51
0.744 26 0.193 24 0.188 34
0.970 15 0.278 8 0.269 88
y=0O1,Y2,...,¥my)- The LR grid dramatically improves

efficiency of the numerical integration compared to the r
grid by typically reducing the number of required grid points
from M = 701 to Mg = 201. However some inconvenience
remains: The r space must still be split into two regions by
a small value r; > 0 obtaining the (0,7;) and (7;,00) regions,
where only the latter is LR transformed [33].

In this study the LR grid was arguably improved by
eliminating the inconvenience of the two regions in the LR
transformation. This is achieved by “shifting” the LR grid
by some constant ¢, where the resulting transformation was
denoted LCR, after “logarithm of a constant plus r,”

x=In(c+r), r(x)=-expx)—c. 71

The corresponding LCR wave functions and radial integration
rules are found by starting from the kinetic energy radial
integral,
1 [ I+
KU:—E A dr Pl(r) ﬁ_r—z PJ(}’), (72)
and defining the LCR transformation function f(x) which

converts the radial wave functions P;(r) to the corresponding
LCR functions F;(x) via

Pi(r(x)) = f(x)Fi(x), (73)

where r is now a function of x. If the considered functions
P;(r) are orthonormal, their normalization is given by

/ood}" Pi(r)Pj(r) = (Sij- (74)
0

After substituting (73) into (72), for the radial equations in
the new variable x to resemble one-dimensional motion (as for
the r or LR’s y coordinates), the term containing d F'(x)/dx
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must be eliminated arriving at

fx)=+c+rx), (75)

1 [ d?
K;; = —z/o dx Fi(x) (@

(c+r)
r2

_ [% D) D Fix).  (16)

Other one-electron matrix elements of any operator Q(r), for
example, Q(r) = V(r)or Q(r) =1,

Qi = /O dr P,(r)P;j(r)Q(r), (77)
become
Qij = / dx(c +r)y Fi(x)F;(x)Q(r). (78)
0

The LCR transformation is also consistent with the Hartree
algorithm [34] of evaluating the so-called two-electron Slater
integrals,

o0 o0
R(ab,a'b') = / dry / dry P,(r1) Py(r2)
0 0
ok
X ﬁpa’(rl)Ph/(rZ)v (79)

using differential equations, where r. = min(r,r;) and ro. =
max(ry,r2). In the r space, the Hartree algorithm redefines
R*(ab,a’db’) as

R¥(ab,a'b’) = / ” Pa(r)Pa/(r)lY}fh/(r) dr, (80)
0 r
o =zho+ [ (5) " reneds. @)

r k
Z5(r) = / (;) P.(s)Py(s) ds (82)
0

and numerically solves a pair of differential equations for Y*
and Z*,

dzk = P,(r)P kz" 83
. ap(1) = Pu(r) b(r)—; (), (83)

d 1
d_rY“k”(r) = ;[(k + DY) — Qk+DZEm)]. 84

with the boundary conditions Z’;b(O) = 0and Y(fb(r) — Zsb(r)
asr — 00.

After the LR transformation the Hartree algorithm takes the
form [33] of

d L
E[r KZh )] = PP Py (), (85)

d
E[r’“‘*”n’;(w] =~k + r®DZE (y),  (86)

where P,(y) = P,(r)//T.
In the case of the LCR transformation, the same equations
become

%[f"zﬁfk(x)] = (c +r)’r* Fy(x) Fy(x), (87)

di[r*(kJrl)Y:b(x)] = —(2k + D(c + r)rf(k+2)zsb(x)’ (88)
X
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where the existing computer code for Y* [35] needs to be only
slightly modified without affecting the accuracy or stability of
the numerical procedure.

And finally, the Numerov algorithm (e.g., [20]) could still
be used via

2
{dd? _ i F2AE - V(e + r)z} Foo=0  (89)

and was used to calculate the Coulomb continuum wave
functions in this work.

III. RESULTS

All presented JM results were calculated on a consumer-
grade laptop (2.2-GHz CPU, 3.5-GB RAM) with the SDCS
calculations for N, = 90 taking about four hours to complete at
the three considered energies in Figs. 2 and 3, and it took about
an extra hour to calculate all possible channel cross sections
for the 501 energy points in Fig. 1.

The following typical parameter values were used: In
all calculations N = N; + 1 and In(c) = —5 for the LCR
transformation; rp.x = 250, My cr = 901 for N; = 30; rpax =
500, Mycr = 1601 for N, =90, where the radial grid was
between zero and rm,x and Mpcgr is the number of equally

2-5 T T T T T T
— Singlet
”ﬂ? Js °
® 2.0} Ne=30 -
o N, =90
=
— 1.5 F 1
o
o
D10} J
o 1.

o}
0
@.0.5F E
o}
N
&)
0.0 L L
0 25 50 75 100 125 150
Nﬁ 3-5 T T T T T T
S
B 3.0 F 4
s 2.5 F i
i

2.0 F 1
o
215} .
o 1.

0

2 1.0F Triplet A
" Js L]

2 0.5F N,=30 1
8 L L L INt:90I L
o 0.0

0 25 50 75 100 125 150
Incident Energy E; (eV)

FIG. 1. (Color online) The singlet and triplet TICS (naé) in the
Temkin-Poet model of e-H(1s) scattering. The JS results are by Jones
and Stelbovics [20]. The spin weights have been included in the cross
sections. The JM calculations are denoted by N,, where N = N, + 1
(see text).
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spaced radial points in the LCR grid. The Laguerre basis
exponential fall-off parameter A was set to unity.

The agreement of the N, = 90 results for the TICS with
those of Jones and Stelbovics [20] is excellent (Fig. 1),
indicating practical convergence with respect to the Laguerre
basis size. We also plotted the results of a much smaller N, =
30 calculation, which yields quite accurate results over most
of the energy range. The discrepancies at the higher energies
is due to the sparsity of high energy states in the smaller
calculation. This could be improved by taking say A = 2.

T T

1.2 F Ey=27.2eV
N x Js
o] N,=30 «x

t
1.0 N, =90 .
—
lO
=0

Cross Section
o

-2

(10

Cross Section

Cross Section (10_2 naoz)

0.0 0.2 0.4 0.6 0.8 1.0
Energy Fraction (eB/E)

FIG. 2. (Color online) Same as in Fig. 1 but for the singlet SDCSs
(ma?/Hartree) vs energy fraction eg/E for the impact energies (Ey)
shown. The N, = 90 points have been connected with straight lines
to help guide the eye.
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FIG. 3. (Color online) Same as in Fig. 2 but for the triplet SDCS.

Having performed very many calculations (not presented), it
is clear that the larger bases yield accurate results over broader
energy ranges with less dependence on variation of A.

Having demonstrated that the JM method yields correct
TICSs, we next turn to examining the single-differential
cross sections (SDCSs). The SDCSs give an estimate of the
cross section for an electron ejected at a specified energy. In

PHYSICAL REVIEW A 82, 022708 (2010)

experiment, and theories that treat the two electrons on an
equal footing, the SDCS is symmetric about E /2. Then the
TICS is obtained by integrating from O to E/2. However, in
Figs. 2 and 3 it is clear that the JM estimates of the SDCS
are not symmetric about E/2 (energy fraction equals 0.5).
Instead, they behave in the same way as the CCC-calculated
SDCS [36] and for the same reason. In close-coupling methods
such as the JM, the TICS is obtained from all open states. This
is the origin of Eq. (65). As suggested by Stelbovics [37], the
Laguerre-basis expansion is behaving like a Fourier expansion
of a step function, with the step being at E/2. If the size
of the step is finite, as it is in the singlet case presented in
Fig. 2, then the JM results oscillate about the true result, with
convergence at £ /2 to one quarter (underlying amplitude to a
half as in Gibbs phenomenon) of the true result. If the step has
zero height, then the underlying results are smooth and readily
convergent (Fig. 3).

It is important to appreciate that the basis sizes presented in
Fig. 2 are the largest yet undertaken utilizing a close-coupling
method. This is arguably the most direct support so far for
Stelbovics’s interpretation [37] of the coupled-L?-channels
SDCS. The larger bases generally show smaller oscillation
amplitude compared to the bases with a smaller N;, as might be
expected. Performing such large calculations within the CCC
method, for example, is not practical due to computational
constraints.

IV. CONCLUSIONS

We have implemented a highly numerically efficient and
stable implementation of the J-matrix approach to electron-
atom scattering. We have found that very large Laguerre bases
may be implemented and the convergence is to the correct
results. The underlying ionization scattering amplitudes be-
have in the same way as in the CCC method. However,
unlike the CCC method the results are available on a broad
range of incident energies after a single diagonalization of the
two-electron Hamiltonian, just like in the R-matrix method. A
further strength of the method is that the total wave function
may be reconstructed in an L? form, while retaining channel
information. We hope to use this fact in the future to apply the
method to ionization-plus-excitation processes, for example,
in e-He collisions [31].
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