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Search for Borromean states in the He-He-Rb triatomic system
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We search for the existence of weakly bound He-He-Rb molecules. The He-He-Rb molecule is treated as a
three-body system. By using hyperspherical coordinates, the Schrödinger equation for the triatomic system is
solved in the adiabatic approximation. A bound state is found for each of the 3He-3He-85Rb, 3He-4He-85Rb, and
4He-4He-85Rb trimers, respectively. The bound state for the 3He-3He-85Rb molecule is a Borromean state found
in a realistic molecular systems because there are no bound states in both the 3He-3He and 3He-85Rb dimers.
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I. INTRODUCTION

The bound states of a three-body system when its two-body
system does not have any bound state is called the Borromean
(halo) states [1,2], after the Borromean rings, which are
interlaced in a subtle topological way such that if any one
of them is removed, the two other become unlocked. The
adjective Borromean is nowadays broadly accepted in the field
of quantum few-body systems [3,4].

Some Borromean systems have been known for several
years in nuclear physics. For instance, if one neglects the
internal structure of α particle, a fairly realistic approximation,
6He is a bound (α-n-n) system, while neither (α-n) nor (n-n)
is bound. Thus, 6He is Borromean [5].

For three identical particles in real atomic and molecular
systems, Lim et al. and Esry et al. have shown that the second
bound state of the helium trimer appears to have properties
similar to those of an Efimov state [6,7]. Blume et al. have
predicted that the single vibrational bound state of the quartet
tritium trimer is a Borromean state [8], and Kraemer et al.
observed an Efimov resonance in an ultracold gas of cesium
trimer [9], which confirms central theoretical predictions of
Efimov physics and represent a starting point with which to
explore the universal properties of resonantly interacting few-
body systems. So far, 3He2-39K is the only mixed molecular
system for which the Borromean state has been predicted
theoretically [10].

In this article we present the results of searching for weakly
bound states of the He-He-Rb molecule. The He-He-Bb
molecule is treated as a three-body system. By means of the
best empirical interaction between each pair of particles, the
Schrödinger equation for the triatomic system is solved using
hyperspherical coordinates in the adiabatic approximation.
The results show that there is a bound state for each of the
4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-85Rb molecules,
respectively. The bound state for the 3He-3He-85Rb molecule
is the Borromean (halo) states found in the realistic molecular
system because there are no bound states in both the 3He-3He
and 3He-85Rb dimers. And this Borromean state is the ground
state of the 3He-3He-85Rb system.

*Corresponding author: yongli@phy.ccnu.edu.cn

II. METHODS AND RESULTS

Neglecting the internal structure of the atoms, we consider
He-He-Rb molecule as consisting of three atoms, He, He,
and Rb. The Schrödinger equation for three interacting atoms
is expressed by the hyperspherical coordinates and we solve
this Schrödinger equation within the adiabatic approximation
[7,11,12]. Only the most favorable condition for the lowest
states of the He-He-Rb molecules or the case of J = 0 is
considered. Given the detailed description in Ref. [10] of the
calculation procedure, we mention here only some key points
of the method.

In the adiabatic hyperspherical approach, we treat R initially
as a fixed parameter and solve the eigenvalue equation,
[
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The full solution to the Schrödinger equation has the following
form:

ψ(R,φ,θ ) =
∑

ν

Fν(R)�ν(R,φ,θ ). (4)

If the coupling terms between different channels are neglected,
then we obtain the hyperradial equation in the adiabatic
approximation,[
− 1

2µ

d2

dR2
+ Uν(R) + Wνν(R)

]
Fνn(R) = EνnFνn(R), (5)

where

Wνν(R) = − 1

2µ
〈�ν(R)| ∂2

∂R2
|�ν(R)〉. (6)

It can be shown [13,14] that the ground-state energy obtained
by solving Eq. (5) is an upper bound to the true ground-state
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energy. If we solve Eq. (5) without Wνν(R), it also can be
shown [13,14] that the ground-state energy obtained in this
way is a lower bound to the ground-state energy. Thus, after
Eq. (5) is solved with and without Wνν(R), we can obtain the
range of the ground-state energy.

The hyperradial equation Eq. (5) is solved by numerical
integration method and Eq. (1) is solved by using B-spline
expansion.

Given a knot sequence on the x axis [15]

{x1 � x2 � · · · � xN � · · · � xN+k}, (7)

B-spline functions of order k are defined as

Bi,1 =
{

1, xi � x < xi+1

0, otherwise

Bi,k(x) = x − xi

xi+k−1 − xi

Bi,k+1(x) + xi+k − x

xi+k − xi+1
Bi+1,k−1(x).

(8)

It is immediately seen that Bi,k(x) (i = 1, 2, . . .) are piecewise
polynomials of order k – 1 localized within [x1,xN+k], while
Bi,k(x) is nonvanishing only within [xi,xi+k]. The behavior
of B-spline functions can be readily adjusted with the knot
sequence, viz., the choice of knot point xi , order k, and number
of B splines N, which offers a means to optimize the B splines
as a basis set to expand the wave functions of one or several
states concerned.

In our case for Eq. (1), there are two variables (φ,θ ), for a
fixed R, and the channel function �(R,φ,θ ) in Eq. (1) can be
constructed with the B splines as a basis set,

�(R,φ,θ ) =
M,N∑
i,j=1

CijBi,k(φ)Bj,k(θ ) (9)

Substituting �(R,φ,θ ) into Eq. (1), we obtain

H̄ C̄ = ES̄C̄, (10)

where H̄ is the Hamiltonian matrix and S̄ is the overlap
matrix of B splines. E and C̄ are eigenvalues and eigenvectors,
respectively. Solving this generalized eigenvalue equation,
we obtain the channel function �(R,φ,θ ) and the adiabatic
potential Uν(R) at a fixed R.

We treat the He-He-Rb molecule as a three-body system.
The three-body interaction is expected to be small and in the
case of the He-He-He system it has been shown to affect
less than 1% of the ground-state energy [16,17]. Therefore,
we do not consider any possible three-body interaction in our
calculations and the interactions of the system are the two-body
interactions between each atom.

For the He-He dimer, the potential from Aziz and Slaman
[18] is used, and the potential proposed by Kleinekathofer [19]
is used for the He-Rb system. These potentials are considered
to be among the best available and they are obtained from
quantum chemistry calculations and then fitted and adjusted so
that the low-energy atom-atom scattering data are reproduced.
In Fig. 1, we show the pairwise interaction potentials for the
He-He and He-Rb dimers.

To determine the dissociation limit of the lowest channel
potential for He-He-Rb molecule, we search for the bound

FIG. 1. Interatomic potentials for He-He and He-Rb systems.

states for the 4He-85Rb and 3He-85Rb molecules. The related
two-body radial Schrödinger equation is solved numerically
with the He-Rb potential from Fig. 1. The results for the
bound states are shown in Table I together with the results for
the helium dimers. We can see that there is a bound state for
4He-85Rb dimer with binding energy −10.3 mK, and no bound
state for the 3He-85Rb diatom. It is well known that there is
a bound state for the 4He-4He dimer with the binding energy
−1.31 mK, but there are no bound states for both the 4He-3He
and 3He-3He diatoms. Therefore, if there are bound states for
the 3He-3He-85Rb molecule, they would be the Borromean
states in realistic molecular systems. And the dissociation limit
of the lowest channel potential is −10.3 mK for both 4He-3He-
85Rb and 4He-4He-85Rb molecules, and the dissociation limit
of the lowest channel potential is 0 K for the 3He-3He-85Rb
molecule.

As mentioned, to search for the bound states for the
He-He-Rb system, we solve the Schrödinger equation for
the triatomic system using hyperspherical coordinates in the
adiabatic approximation. The hyperspherical method with
adiabatic approximation is one of the most powerful theo-
retical techniques for searching for stable bound states. In
this approach, the adiabatic hyperspherical potential is first
calculated. If the potential curve is repulsive, there is no
possibility for the existence of any bound states. If the potential
curve is both attractive and deep enough, stable bound states
are expected. This technique has been successfully applied
to many three-body systems. The previous results show that
the stability and the binding energies of these systems depend
sensitively on the interaction potentials and the masses of the

TABLE I. The calculated binding energies of the ground states
for the He-Rb dimers together with the results for helium dimers.
The interatomic potential between Rb and He is taken from Ref. [19].
Missing entries indicate that no bound is found.

3He 4He 85Rb

3He
4He −1.31 mK −10.3 mK
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FIG. 2. The lowest hyperspherical potential curves for each of
the triatomic systems, 4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-
85Rb trimers. The curves of both the 4He-3He-85Rb and 4He-4He-
85Rb trimers converge to the bound state of the 4He-85Rb dimer
with binding energy of −10.3 mK. The curve of 3He-3He-85Rb
trimer converges to zero, the three-body breakup threshold, at
large R.

particles. Quantum symmetry is also known to play an essential
role [20] in determining the stability of systems and the binding
energies.

After Eq. (1) is solved by using B-spline expansion, we
obtain the lowest adiabatic hyperspherical potentials for the
4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-85Rb molecules.
The calculated hyperspherical potentials are presented in
Fig. 2. In the large-R limit, each potential curve converges
the related dissociation limit. The dissociation limits for both
the 4He-4He-85Rb and 4He-3He-85Rb trimers are the bound
state of the 4He-85Rb dimer with the binding energy of
−10.3 mK. For the 3He-3He-85Rb molecule, both the 3He-3He
and 3He-85Rb dimers have no bound states, so the potential
curve approaches zero, the three-body breakup threshold, at
large R.

Once the adiabatic hyperspherical potentials are obtained,
we can search for the bound states supported by each curve
by shoveling the hyperradial equation. The results show that
each curve can support only one bound state. The binding
energies are listed in Table II. We can see from Table II
that the upper bounds of the binding energies are −152,
−65.9, and −38.6 mK for the 4He-4He-85Rb, 4He-3He-85Rb,
and 3He-3He-85Rb trimers, respectively, and the lower bounds
of the binding energies are −155, −69.0, and −40.8 mK for
the 4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-85Rb trimers,

FIG. 3. The wave functions for the bound states of the 4He-4He-
85Rb, 4He-3He-85Rb, and 3He-3He-85Rb trimers. The Borromean state
of the 3He-3He-85Rb trimer has an larger spatial extent.

respectively. The bound state for the 3He-3He-85Rb trimer is
a predicted Borromean state in the ground of the trimer since
there are no bound states in both the 3He-3He and 3He-85Rb
dimers. The wave functions with Wνν(R) for the bound states of
the 4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-85Rb trimers
are shows in Fig. 3, which shows that the Borromean state of
the 3He-3He-85Rb trimer has an larger spatial extent.

For the purpose of comparison, Table II also includes the
results from Li et al. for the He-He-39K trimer [10]. The
results in Table II show that the binding energies of the tri-
atomic molecules depend sensitively on the mass of each
of the particles in the system, and the binding energies for
He-He-85Rb are deeper than those for He-He-39K system
since the mass of 85Rb is heavier than that of 39K. Note
that the relative gap between the lower and upper bounds
for He-He-85Rb is about 20 times smaller than for the similar
He-He-39K molecules. This can be understood in the following
way. The He-He-85Rb and He-He-39K molecules are similar
and they have the similar diagonal coupling term Wνν(R). The
adiabatic hyperspherical potentials for He-He-39K system are
shallower than those for He-He-85Rb system. Therefore, the
diagonal coupling term has a larger influence on the He-He-39K
system in Eq. (5). This leads to the bigger relative gap between
the lower and upper bounds for the He-He-39K trimer.

III. SUMMARY

We have searched for the existence of the weakly bound
He-He-85Rb molecule. The He-He-85Rb molecule is treated as

TABLE II. The calculated binding energies of the ground states for 4He-4He-85Rb, 4He-3He-85Rb, and 3He-3He-85Rb trimers together with
the results for 4He-4He-39K, 4He-3He-39K, and 3He-3He-39K trimers.

3He-3He 3He-4He 4He-4He

Low bound Up bound Low bound Up bound Low bound Up bound

39K −9.01 mK −0.728 mK −42.2 mK −11.0 mK −115 mK −66.6 mK
85Rb −40.8 mK −38.6 mK −69.0 mK −65.9 mK −155 mK −152 mK
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a three-body system. By using hyperspherical coordinates, the
Schrödinger equation for the triatomic system is solved in the
adiabatic approximation. A bound state is found for each of
the 3He-3He-85Rb, 3He-4He-85Rb, and 4He-4He- 85Rb trimers,
respectively. The bound state for the 3He-3He-85Rb molecule
is the Borromean state found in the realistic molecular system
because there are no bound states in both the 3He-3He and
3He-85Rb dimers. Since they have binding energies of the
order of less than 1 K, these weakly bound molecules can
exist only in a cold environment. Using laser cooling and

other cooling methods for atoms and molecules [21–23],
it may be possible to make direct observations of these
molecules.

ACKNOWLEDGMENTS

This work was supported by the Scientific Research
Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry, and by the National Natural Science
Foundation of China under Grant No. 10974064.

[1] J. M. Richard and S. Fleck, Phys. Rev. Lett. 73, 1464 (1994).
[2] D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Rev. Lett.

73, 2817 (1994).
[3] J. M. Richard, Few-Body Syst. 38, 79 (2006).
[4] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang,

I. S. Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).
[5] J. Goy, J.-M. Richard, and S. Fleck, Phys. Rev. A 52, 3511

(1995).
[6] T. K. Lim, S. K. Duffy, and W. C. Damer, Phys. Rev. Lett. 38,

341 (1977).
[7] B. D. Esry, C. D. Lin, and C. H. Greene, Phys. Rev. A 54, 394

(1996).
[8] D. Blume, B. D. Esry, C. H. Greene, N. N. Klausen, and

G. J. Hanna, Phys. Rev. Lett. 89, 163402 (2002).
[9] T. Kraemer et al., Nature (London) 440, 315 (2006).

[10] Y. Li, Q. Gou, and T. Shi, Phys. Rev. A 74, 032502 (2006).
[11] J. H. Macek, J. Phys. B 1, 831 (1968).
[12] C. D. Lin, Phys. Rep. 257, 1 (1995).

[13] I. Aronson, C. J. Kleinman, and L. Spruch, Phys. Rev. A 4, 841
(1971).

[14] A. F. Starace and G. L. Webster, Phys. Rev. A 19, 1629
(1979).

[15] C. de Boor, A Practical Guide to Splines (Springer, New York,
1978).

[16] C. A. Parish and C. E. Dykstra, J. Chem. Phys. 101, 7618 (1994).
[17] I. Roeggen and J. Almlof, J. Chem. Phys. 102, 7095 (1995).
[18] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).
[19] U. Kleinekathofer, K. T. Tang, J. P. Toennies, and C. L. Yiu,

Chem. Phys. Lett. 249, 257 (1996).
[20] C. G. Bao, X. Z. Yang, and C. D. Lin, Phys. Rev. A 55, 4168

(1997).
[21] B. Friedrich et al., J. Chem. Soc., Faraday Trans. 94, 1783

(1998).
[22] J. D. Weinstein et al., Nature (London) 395, 148 (1998).
[23] J. M. Doyle, B. Friedrich, J. Kim, and D. Patterson, Phys. Rev.

A 52, R2515 (1995).

022515-4

http://dx.doi.org/10.1103/PhysRevLett.73.1464
http://dx.doi.org/10.1103/PhysRevLett.73.2817
http://dx.doi.org/10.1103/PhysRevLett.73.2817
http://dx.doi.org/10.1007/s00601-005-0148-5
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1103/PhysRevA.52.3511
http://dx.doi.org/10.1103/PhysRevA.52.3511
http://dx.doi.org/10.1103/PhysRevLett.38.341
http://dx.doi.org/10.1103/PhysRevLett.38.341
http://dx.doi.org/10.1103/PhysRevA.54.394
http://dx.doi.org/10.1103/PhysRevA.54.394
http://dx.doi.org/10.1103/PhysRevLett.89.163402
http://dx.doi.org/10.1038/nature04626
http://dx.doi.org/10.1103/PhysRevA.74.032502
http://dx.doi.org/10.1088/0022-3700/1/5/309
http://dx.doi.org/10.1016/0370-1573(94)00094-J
http://dx.doi.org/10.1103/PhysRevA.4.841
http://dx.doi.org/10.1103/PhysRevA.4.841
http://dx.doi.org/10.1103/PhysRevA.19.1629
http://dx.doi.org/10.1103/PhysRevA.19.1629
http://dx.doi.org/10.1063/1.468255
http://dx.doi.org/10.1063/1.469103
http://dx.doi.org/10.1063/1.460139
http://dx.doi.org/10.1016/0009-2614(95)01388-1
http://dx.doi.org/10.1103/PhysRevA.55.4168
http://dx.doi.org/10.1103/PhysRevA.55.4168
http://dx.doi.org/10.1039/a708859k
http://dx.doi.org/10.1039/a708859k
http://dx.doi.org/10.1038/25949
http://dx.doi.org/10.1103/PhysRevA.52.R2515
http://dx.doi.org/10.1103/PhysRevA.52.R2515

