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Photoionization microscopy of the hydrogen atom in parallel electric and magnetic fields
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In photoionization microscopy experiments, an atom in an electric field is ionized by a laser with sharply
defined frequency, the electron is drawn toward a position-sensitive detector, and the current is measured as a
function of position. Multiple classical paths lead from the atom to any point in the classically allowed region
on the detector, and waves traveling along these paths produce an interference pattern. If a magnetic field is
added parallel to the electric field, trajectories become chaotic. There is an infinite set of different families of
trajectories, leading to an extremely complicated interference patterns on the detector. We present calculations
predicting the kind of structure that will be seen in experiments.
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I. INTRODUCTION

The two-dimensional flux of electrons escaping from a
photodetachment [1,2] or photoionization process [3–6] in
the presence of an electric field has been measured using a
position-sensitive detector located at a macroscopic distance.
The flux measurements display circular rings of interference
on the detector. The interference pattern results from electron
waves traveling along different classical paths from the ion or
atom to the detector [7–10]. In the case of photodetachment,
the escaping electron is subject only to the constant applied
electric field. Only two paths go from the ion to any point
on the detector, and the resulting electron distribution on the
detector is a regular two-term interference pattern.

Recently, much attention has been paid to photodetachment
microscopy in the presence of parallel electric and magnetic
fields [11–13]. Photodetachment in parallel fields is simple
enough to permit analytic quantum and semiclassical solution.
The motion of the electron undergoes uniformly accelerated
motion along the symmetry axis while orbiting on a circular
track in the perpendicular plane. There is a finite number of
interfering classical trajectories, depending on the energy and
applied field strengths, and on the location of the detector.

Photoionization microscopy is much more complex
[5,14,15]. First, the escaping electron is affected both by
the electric field and the long-range Coulomb field of the
residual ion. The resulting trajectories are more complex than
in the case of photodetachment, and an infinite number of
classical trajectories arrive at any point in the classically
allowed region on the detector. Second, for photoionization
of hydrogen atoms, the situation has a further complication.
At each energy and electric field, there is a critical angle such
that trajectories leaving the ion with an initial angle below
(downhill from) that critical angle arrive rather quickly at the
detector, but those leaving with an initial angle above (uphill
from) that critical angle stay forever in the vicinity of the ion.
Those uphill trajectories, bound forever in classical mechanics,
correspond to quasibound resonances in quantum mechanics.
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Electrons in such resonance states eventually tunnel through an
effective potential-energy barrier, escape toward the detector,
and may produce a strong and distinctive pattern. The number
of oscillations in this pattern matches a quantum number of
the quasibound state. Many of these resonances are long lived,
and might not give any signal in photoionization microscopy
experiments, but some of them have short enough lifetimes that
they may give a large signal. Therefore the signal at the detector
is a combination of “background” interferences involving
an infinite number of “downhill” trajectories together with
distinctive patterns arising from resonances. The background
contribution varies smoothly with energy, but the resonance
contributions change dramatically near the energy of each
resonance. This behavior was predicted in a series of papers
by Kondratovich and Ostrovsky [10], and detailed calculations
were carried out by Zhao and Delos [16,17].

Photoionization microscopy observed for nonhydrogenic
atoms such as xenon is quite different from the theoretical
predictions for hydrogen [5]. It was found that the interference
pattern has smooth evolution with energy, and there is no
evidence of resonances. Presumably, for such large atoms,
electron scattering from the residual ion core reduces the life-
times of the resonances so that they become indistinguishable
from the background. Bordas et al. extend the semiclassical
model described by Kondratovich and Ostrovsky for hydrogen
atom in an electric field, and present numerical simulations in
reasonable agreement with the experimental results [14,16,17].

Inspired by these works, we present here a study of a
more complex case, photoionization microscopy for atoms
in parallel electric and magnetic fields. At low energies and
weak electric and magnetic fields, where the Coulomb force
dominates, properties of the bound states have been found
using various forms of perturbation theory or by accurate
numerical computations [18–21]. The spectrum is described
in terms of three classes of eigenstates, which correspond
to the semiclassical quantization of three classes of regular
bound trajectories. At higher energies, in the chaotic region,
the absorption spectrum was studied using closed orbit theory
by Mao et al. [22] and by Courtney [23].

The present paper complements this work by studying
orbits that escape from the atom rather than orbits that return

1050-2947/2010/82(2)/022514(6) 022514-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.022514


WANG, YANG, LIU, LIU, ZHAN, AND DELOS PHYSICAL REVIEW A 82, 022514 (2010)

to it. As the electron escapes from the residual ion, all three
forces, electric, magnetic, and Coulomb, have comparable
magnitudes, trajectories are chaotic, and escape is described by
the theory of chaotic transport [24–27]. For energies between
the saddle energy and the zero-field ionization energy, it was
found that trajectories leaving the ion in a downhill direction
escape quickly, while those going out in an uphill direction
stay close to the ion for a long time, or possibly forever.
However, instead of a sharp boundary between these two types
of behavior, there is a fractal boundary. Previous work explored
this fractal by examining the time spectrum of escaping
electrons. In this paper we explore aspects of that same fractal
by examining the spatial pattern of interfering electrons on a
detector. Atomic units are used unless other units are specified.

II. THEORY

The Hamiltonian of a hydrogenic electron in parallel
electric and magnetic fields can be written in cylindrical
coordinates (ρ,z) and in scaled units as

H (ρ,z,pρ,pz) = 1
2

(
p2

ρ + p2
z

) + V (ρ,z) ≡ E, (1)

where the z component of angular momentum is taken to be
zero. The potential-energy term in the Hamiltonian can be
expressed as

V (ρ,z) = − 1√
ρ2 + z2

+ z + 1

8
B2ρ2, (2)

where E = ÊF̂−1/2 and B = B̂F̂−3/4 are the scaled energy
and the scaled magnetic field strength, respectively, while Ê,
F̂ , and B̂ are the physical energy, the physical electric-field
strength, and the physical magnetic-field strength (in atomic
units), respectively.

Following standard practice [12,28], we define parabolic
coordinates (u,v) and their conjugate momenta (pu,pv) by

u = √
r + z, v = √

r − z, (3)

pu = vpρ + upz, pv = upρ − vpz, (4)

where r =
√

ρ2 + z2 = (u2 + v2)/2. The inverse transforma-
tions for Eqs. (3) and (4) are

ρ = uv, z = 1

2
(u2 + v2), (5)

pρ = vpu + upv

u2 + v2
, pz = upu − vpv

u2 + v2
. (6)

We introduce an effective Hamiltonian h = 2r(H − E), which
equals

h(u,v,pu,pv) = 1
2

(
p2

u + p2
v

) + Vuv(u,v) − 2, (7)

where

Vuv(u,v) = −E(u2 + v2) + 1
8B2(u4v2 + u2v4) + 1

2 (u4 − v4).

(8)

For the Hamiltonian in Eq. (7), we can perform
semiclassical trajectory calculations. Our treatment is
strictly limited to the semiclassical approximation and the
contribution of the tunneling integral is neglected [15,16].
In the calculation, however, the Maslov index is introduced

to correct the phase due to the failure of the semiclassical
approximation when the momenta vanish.

In photoionization, suppose the electron in the excited
state is ejected with an angle θ = tan−1(ρ/z) = 2 tan−1(v/u),
which is defined as the angle between the initial velocity of the
photoelectron and the external field, and arrives at the imaging
detector located at z = z0. For any point on the detector,
denoted by M(R,z0), where R is the polar radius of the point
on the detector surface, there exist an infinite number of photo-
electron trajectories passing through it in the classically acces-
sible region. In the semiclassical approximation, except at the
caustic surfaces, the magnitude and phase of the semiclassical
wave function for trajectory i, denoted by ψi(R), depend on
its classical density ρi and classical action functional Si(R,E):

ψi(R) =
√

ρi(R)exp[iχ i(R)]. (9)

Here, the phase χi(R) is given by

χi(R) = Si(R,E)ω − π

2
µi(i), (10)

Si(R,E) =
∫ M

0
pidqi, (11)

where ω = F−1/4 and the Maslov index µi(R) keeps track of
the singularity “history” of the trajectory where the density ρi

diverges.
The procedure of the calculation can be summarized as

follows. For given scaled energy E, magnetic field B, and
detector position z0, we model the electronic wave function,
immediately after the excitation, by an ensemble of classical
trajectories that begin at the nucleus and propagate radially out-
ward in all directions with an isotropic initial electron angular
distribution [3,14]. For a given R at the detector, the motion
of the electron is integrated numerically in regularized coordi-
nates with θ in small steps from 0 and π , and at each step of θ ,
we monitor the positions of trajectories landing at the detector
R(z0). If, as θ changes, R(z0) increases or decreases past the
chosen R, the integration is interrupted, and then we optimize
the starting angle using a Newton procedure so that the trajec-
tory lands on R at the detector as close as possible. Simultane-
ously, the ejected angle θi(R) is recorded and the phase χi(R)
is calculated according to Eq. (10). We stop the integration and
pass over to the next starting direction if the evolution cannot
reach the detector within a set maximum period of time.

After weighting the contribution of the initial direction θ

according to the density sin θ , the resulting wave function
ψ(R) at point M(R,z0) is subsequently obtained by summing
the amplitudes over all possible trajectories, leading from the
electron source to this point according to

ψsc(R) =
∑

i

ψi(R)

=
∑

i

(
dθi(R)

dR
sin θi(R)

)1/2

exp[iχi(R)], (12)

where θi represents any ejection angle leading to the detection
of the electron at radius R on the detector. The calcu-
lated radial probability distribution ρsc(R) is then obtained
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FIG. 1. Typical trajectories (ρ,z) for hydrogen in parallel electric
and magnetic fields at B = 4, E = 0. The solid dots stand for the
origin of the coordinates (ρ,z). The electric and magnetic fields are
along the vertical z axis. The ejected angles and labels are shown in
each panel.

according to

ρsc(R) = |ψsc(M(R,z0))|2
=

∑
i

ρi + 2
∑
i<j

√
ρiρj cos(χi − χj ). (13)

The first term is the classical probability distribution, and the
second represents interference among classical paths arriving
at each point on the detector [12,28].

Following Mitchell and Delos [29], we label the qualitative
behavior of ionization trajectories using a finite string of
the symbols {−,o}. Each time a trajectory intersects the
negative z axis, we record it as symbol o if the trajectory
has encircled the nucleus since its last intersection. If it has
not encircled the nucleus, we record it as symbol −. We
record the symbols from left to right, beginning with the
first intersection away from the nucleus and ending when
the trajectory reaches the detector. There is a slight difference
from the classification defined by Mitchell and Delos. In their
classification, they end the record when the trajectory encircles
the nucleus for the last time. Counting the total number of
intersections with the negative axis after the encircling of
the nucleus for the last time is important, as trajectories at
different intersections with the axis after the encircling of
the nucleus for the last time make different contributions
to the interference pattern. Figure 1 shows some typical
trajectories in our calculation. For example, for the orbit
starting at angle θ = 0.71, the label o(−)2 means that the orbit
encircles the nucleus once before it intersects the negative
z axis for the first time, and then it intersects the negative
z axis twice more without encircling the nucleus. In the
notation by Mitchell and Delos, this orbit would be labeled as o.

III. RESULT AND DISCUSSION

We calculate the spatial distribution of electrons arising in
photoionization microscopy of a hydrogen atom in parallel
electric and magnetic fields, at B = 4, E = 0, which is shown
in Fig. 2. It can be seen that the radial distribution has

FIG. 2. The calculated photoionization microscopies of a hydrogen atom in parallel electric and magnetic fields and in a pure electric field.
Upper panels: the radial distribution of the flux of electrons striking the detector located at z = −4 on the detector at scaled energy E = 0 of
a hydrogen atom in parallel electric and magnetic fields in a scaled magnetic field of B = 4 (a) and in a static electric field (b). Lower panels:
the dependence of the radius of impact on the detector on the initial angle θ at which the trajectory is launched. (c) and (d) correspond to
(a) and (b), respectively. The dashed lines connect each of escape segments to their corresponding patterns.
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two-pattern structures, for example, for R close to but
slightly less than 0.6605, two trajectories having (−) structure
contribute the inner oscillations, and for R slightly less than
0.8973, two trajectories with (−)2 structure give the dominant
contribution to the outer oscillations as depicted in Fig. 2(a).
This feature is similar to the case of a pure electric field, which
is displayed in Fig. 2(b) for comparison.

In the latter case, the inner intense pattern arises predom-
inantly from the interference between the trajectories 0+ and
1−, corresponding to direct ionization, and the outer pattern to
the indirect trajectories corresponding to indirect ionization,
mainly 1+ and 2+, following the notation of Kondratovich and
Ostrovsky [4,30]. The two-pattern structure implies two pri-
mary groups of trajectories, and these arise from the Coulomb
interaction of the electron with the ion. This interaction causes
the electron trajectories to experience a significant deflection
from the parabolic tracks they would follow in an electric field
if the Coulomb field were not present [6].

When the parallel magnetic field is added to the constant
electric field and the Coulomb field, the maximum radius of
each pattern is slightly smaller than that of the hydrogen
atom in a pure electric field, as the magnetic field restricts
the motion of the electron in the plane perpendicular to the
z axis [28,31]. The number of fine scale maxima of the inner
pattern decreases because the semiclassical phase differences
between two (−) trajectories decrease when the magnetic
field is employed. The magnetic field causes electrons to
oscillate perpendicular to the field more rapidly compared
to the case of a pure electric field. The trajectories are not
at all comparable to parabolas, and the direct trajectories
corresponding to the case of a pure electric field are strongly
affected by the magnetic field. Some of them play their roles

as in the case of a pure electric field but they have to cross
the negative z axis once. Some of them pass the negative z

axis twice. They have the structure (−)2 and correspond to
the main indirect trajectories in the case of a pure electric
field (for example, 1+ and 2+) [4,30]. Some trajectories with
smaller ejected angles encircle the core at least once before
they land on the detector, such as −o−, but unlike the case
of pure electric field, they play very important roles, which
will be discussed later. All of these trajectories correspond to
different patterns and the interference of these patterns makes
the microscopy of a hydrogen atom in parallel electric and
magnetic fields very complex, as shown in Fig. 2(a). We
can also see that in Fig. 2(c), in our case, the function of
radius R(θ ) on the detector becomes more complicated and
exhibits fractal structure as well as a certain self-similarity,
which is similar to the epistrophic self-similarity introduced
by Mitchell and Delos when treating the escape-time dynamics
in the ionization [26,27]. Additionally, after the magnetic field
is introduced, more critical angles θi will generate orbits which
contribute to the impact electron current at R = 0. Thus, the
recorded electron counts at R = 0 increase dramatically [1].

Some typical interference patterns with prominent contri-
butions for the final radial distribution on the detector in our
case are shown in Fig. 3. They are obtained by calculating the
amplitude by restricting the domain of ejection angles to an
appropriate region as shown in Fig. 2(c). Like the direct and
indirect trajectories in a pure electric field, trajectories (−) and
trajectories (−)2 lead to two completely different structures,
with much smaller fringe spacing in the (−)2 component. The
(−) electron signal dominates the signal in the inner region of
the image, while the trajectories (−)2 give only a weak signal
but their high spatial frequency makes a strong modulation for

FIG. 3. The radial distributions of the flux of electrons striking the detector located at z = −4 on the detector at scaled energy E = 0,
B = 4 for a hydrogen atom in parallel electric and magnetic fields, corresponding to trajectories with different structures: (a) (−), (b) (−)2, (c)
o(−)2, and (d) −o− as shown in Fig. 2(c).
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FIG. 4. Radial distribution of the electron current at various ener-
gies from saddle-point energy Esp = −2 to energy E = 0 in parallel
electric and magnetic fields with F̂ = 19 V cm−1. The density of the
electron current is plotted in coordinates (E,R) as shown in the inset.

the radial distribution. They are displayed in Figs. 3(a) and
3(b). The pattern in Fig. 3(c) results from the interference of
four trajectories with o(−)2 structure. Unlike the above two
patterns in Figs. 3(a) and 3(b), this pattern has a well-liked
structure with a minimum in the center of the pattern and it
has a fringe spacing similar to the pattern corresponding to the
trajectories (−)2. This kind of pattern makes no contribution
to the inner region, but strongly modulates the whole region
0.332 < R < 0.9067. This family of orbits originates from the
ejected angles whose values are between those for the direct

and indirect orbits in the case of an atom in a pure electric field.
In Fig. 3(d) is the pattern corresponding to the interference
of trajectories with the structure −o−. This pattern is more
complicated. It has a four-term interference structure in
the region 0.0346 < R < 0.7140, and a two-term inter-
ference structure in the region 0.7140 < R < 0.8089. The
four-term interference structure shows large oscillations
with low spatial frequency together with weaker but fast
oscillations.

The radial distribution of the electron current depends on the
excitation energy because the contributing trajectories change
with energy [4,14]. In Fig. 4 is shown a series of radial
distributions of the electron current at B = 4 within a range of
excitation energies varying from E = Esp = −2 to E = 0. The
patterns corresponding to the trajectories (−) and (−)2 have
similar smooth evolutions with the scaled energy, as expected
for the assumption of an isotropic initial distribution of the
ejected angles. The contribution of the trajectories (−) begins
to take effect at Ec ≈ 0.77Esp, which is similar to the direct
trajectories in the case of a pure electric field [4]. This kind of
trajectory always begins with large ejection angles (i.e., in the
down-field direction) and has a crossing with the z axis only
once. The motion of electrons with a smaller ejection angle is
extremely complex; there is fractal structure within structure
at all levels of resolution, and new families of trajectories
appear as the energy changes. Figure 4 gives some idea of the
complexity of the system.

IV. CONCLUSION

We have performed a theoretical calculation of the spatial
distribution of electrons arising from photoionization mi-
croscopy of hydrogen atoms in external parallel electric and
magnetic fields, and we have analyzed the interference patterns
corresponding to trajectories with different structures. The
calculation is based on the approximation that electrons are
ejected isotropically in all directions, implying that only the so-
called background contribution introduced by Kondratovich
and Ostrovsky is considered. Besides the two main interference
patterns observed in the the case of a pure electric field, new
patterns emerge in the case of the hydrogen atom in parallel
electric and magnetic fields. These patterns are connected with
the very complex structure of trajectories that appear when
parallel fields are combined with a Coulomb field.
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