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The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the
second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency
should be corrected in practice for the effect of finite temperature, of which the leading contributor is the
blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we
have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in 87Rb using
the relativistic all-order method and carried out a detailed evaluation of the accuracy of our final value. Particular
care is taken to accurately account for the contributions from highly excited states. Our predicted value for the
Stark coefficient, kS = −1.240(4) × 10−10 Hz/(V/m)2, is three times more accurate than the previous calculation
[E. J. Angstman, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 74, 023405 (2006)].
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I. INTRODUCTION

The present definition of the second in the International
System of Units (SI) is based on the microwave transition
between the two hyperfine levels (F = 4 and F = 3) of the
133Cs ground state and refers to the clock transition in an
atom at absolute zero. The relative standard uncertainty of
the Cs microwave frequency standard is 4 × 10−16 [1] at
the present time. In 2006, the International Committee for
Weights and Measures (CIPM) recommended [2] that the
ground-state hyperfine microwave transition in 87Rb [3,4] be
used as secondary representation of the second, along with
four optical transition frequencies.

The operation of atomic clocks is generally carried out at
room temperature implying that the clock transition frequency
should be corrected for effects of finite temperature, of which
the leading contributor is the blackbody radiation (BBR)
shift. The BBR shift at room temperature effecting the Cs
microwave frequency standard has been calculated to high
accuracy (0.35% and 1%, respectively) in Refs. [5,6], implying
a 6 × 10−17 fractional uncertainty. These calculations are in
agreement with a 0.2% measurement [7].

The BBR shift contributes to the Rb frequency standard at
the 10−14 level (see Ref. [8] for the review of the present
status of BBR shift uncertainties for all atomic clocks).
The most recent value of the BBR shift in the Rb microwave
frequency standard is accurate to 1% [9]. As a result, the
ultimate relative uncertainty induced by the BBR shift in
the 87Rb frequency standard was significantly larger than that
of the 133Cs frequency standard. We note that we refer to
the uncertainty of the scalar Stark coefficient. Actual experi-
mental uncertainty will also include error due to temperature
stabilization. The calculation of Ref. [9] also disagreed with

the old 1975 theoretical calculation of Ref. [10] by 2.5%. As
a result, more accurate calculation of the Rb BBR shift is
in order.

In this work, we calculated the blackbody radiation shift of
the ground-state hyperfine microwave transition in 87Rb using
the relativistic all-order method and evaluated the accuracy
of our final value. Our predicted value of the scalar Stark
coefficient, kS = −1.240(4) × 10−10 Hz/(V/m)2, is accurate
to 0.3%. Our calculation reduced the uncertainty in the Rb
frequency standard due to the BBR shift to the level of accuracy
similar to that of the Cs case.

Another motivation for the present work was to provide a
systematic approach to the evaluation of theoretical uncer-
tainty using the calculation of the BBR shift in Rb as an
example. Modern applications of theoretical atomic calcula-
tions frequently require some knowledge of the accuracy of
theoretical numbers. With new advances in theoretical methods
and in computational power, it is essential to develop consistent
strategies to evaluate the accuracy of theoretical data. Such
evaluations are difficult but are very beneficial to both
specific applications and benchmark comparisons of theory
and experiment. In this work, we describe the evaluation of
uncertainties of the electric-dipole matrix elements, hyperfine
matrix elements, and remainders of various sums in sufficient
detail to demonstrate specific approaches that were used. The
methods of the uncertainty evaluation outlined in this article
can be used for various other calculations.

II. METHOD

The electrical field E radiated by a blackbody at tempera-
ture T and described by Planck’s law induces a nonresonant

1050-2947/2010/82(2)/022510(6) 022510-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.74.023405
http://dx.doi.org/10.1103/PhysRevA.82.022510


M. S. SAFRONOVA, DANSHA JIANG, AND U. I. SAFRONOVA PHYSICAL REVIEW A 82, 022510 (2010)

perturbation of atomic transitions at room temperature [11].
The average electric field radiated by a blackbody at tempera-
ture T is

〈E2〉 = (831.9 V/m)2

(
T [K]

300

)4

. (1)

The frequency shift of an atomic state due to such an electrical
field can be related to the static electric-dipole polarizability
α(0) by [12]

δν = −1

2
(831.9 V/m)2

(
T

T0

)4

α(0)

[
1 + ε

(
T

T0

)2 ]
, (2)

where ε is a small dynamic correction due to the frequency
distribution and T0 is usually taken to be 300 K. The dynamic
correction ε was evaluated in Ref. [9] and was found to be
small, ε = 0.011, for the Rb microwave frequency standard.
Therefore, we do not recalculate it in this work.

In the case of the optical transitions, the lowest (second)
order polarizabilities of the clock states are different. In
the case of the ground-state hyperfine microwave frequency
standards, the lowest (second) order polarizabilities of the
clock states are identical and the lowest order BBR shift
vanishes. Therefore, the Stark shift of the ground-state 87Rb
hyperfine interval (F = 2 − F = 1) is governed by the static
third-order F -dependent polarizability α

(3)
F (0).

In this work, we evaluate the scalar Stark coefficient kS ,

kS = − 1
2

[
α

(3)
F=2(0) − α

(3)
F=1(0)

]
. (3)

The expression for the α
(3)
F (0) is given by [5]

α
(3)
F (0) = 1

3

√
(2I )(2I + 1)(2I + 2)

{
jv I F

I jv 1

}

× gIµn (−1)F+I+jv (2T + C + R) , (4)

where gI is the nuclear gyromagnetic ratio, µn is the nuclear
magneton, I = 3/2 is the nuclear spin, and jv = 1/2 is the
total angular momentum of the atomic ground state. The F -
independent sums T , C, and R for the ground state of Rb,
|v〉 ≡ |5s〉, are given by [5]

T =
∑

m,n�=5s

AT

〈5s‖D‖m〉〈m‖D‖n〉〈n‖T (1)‖5s〉
(Em − E5s)(En − E5s)

,

C =
∑

m,n�=5s

AC

〈5s‖D‖m〉〈m‖T (1)‖n〉〈n‖D‖5s〉
(Em − E5s)(En − E5s)

, (5)

R = 1

2
〈5s‖T (1)‖5s〉

( ∑
m∈val

−
∑

m∈core

)
|〈5s‖D‖m〉|2
(Em − E5s)2

,

where 〈i‖D‖j 〉 are electric-dipole reduced matrix elements
and 〈i‖T (1)‖j 〉 are the matrix elements of the magnetic
hyperfine operator T (1). The quantities AT and AC are the
angular coefficients given in our case by

AT = (−1)jm+1/2

2
,

AC = (−1)jm−jn

{
1 1/2 1/2
1 jm jn

}
.

The sums are made finite with the use of the finite B-spline
basis set in a spherical cavity. The sum over the complete
finite basis set is equivalent to the sum over the bound states
and integration over the continuum. We use a complete set
of DHF wave functions on a nonlinear grid generated using
B splines constrained to a spherical cavity. A cavity radius of
220a0 is chosen to accommodate all ns and np valence orbitals
up to n = 12. The basis set consists of 70 splines of order 11
for each value of the relativistic angular quantum number κ .

Sums over m and n run over all possible states allowed
by the selection rules and limits of the sums. Therefore, three
distinct sets of matrix elements are needed for the present
calculations: electric-dipole matrix elements between ns and
mpj states, 〈mpj‖D‖ns〉, and diagonal and off-diagonal
matrix elements of the magnetic hyperfine operator for both ns

and np states, 〈ns‖T (1)‖5s〉 and 〈mpj1‖T (1)‖npj2〉. Therefore,
the calculation of the BBR shift reduces to the evaluation of
the electric-dipole and magnetic hyperfine matrix elements.

In this work, we use atomic units, in which, e, me, 4πε0,
and the reduced Planck constant h̄ have the numerical value
1. Polarizability in a.u. has the dimension of volume, and its
numerical values presented here are thus expressed in units of
a3

0 , where a0 ≈ 0.052 918 nm is the Bohr radius. The atomic
units for α can be converted to SI units via α/h [Hz/(V/m)2] =
2.488 32 × 10−8α [a.u.], where the conversion coefficient
is 4πε0a

3
0/h and the Planck constant h is factored

out.
We start our calculation by evaluating all three terms in the

Dirac-Hartree-Fock (DHF) approximation. The resulting DHF
values for the T , C, and R terms in atomic units are

2T DHF = 2.376 × 10−3, CDHF = 6.111 × 10−6,

RDHF = 3.199 × 10−3.

Then, we replace all dominant matrix elements by the “best
set” values that have been evaluated for their accuracy and
replace the corresponding energies by their experimental
values [13,14]. We refer to the terms where such replacements
have been made as “main” terms and refer to the remaining
terms calculated in the DHF approximation as remainders.

We note that it is essential not to mix DHF and high-
precision data within a single contribution. For example,
experimental energies should not be combined with DHF
matrix elements in any of the terms. In the present calculations,
all data in the main terms are high-precision theory or
experiment values and all data in the remainders and in the
core terms are taken to be DHF values. Mixing values of
significantly different accuracy leads to fictitious changes in
the final results, in particularly in term T . We carried out
numerical tests that support this statement, and we attribute
this issue to the violation of the finite basis set completeness.

We note that while we use the experimental values of the
energies in the main terms, the accuracy of our all-order
theoretical energy values is very high. We made extensive
comparison of removal energies calculated using the SD
all-order method and experimental values [13,14] for the
(5–11)s, (5–10)pj , (4–10)dj , and (4–7)fj states. Additional
first- and second-order Breit contributions, Lamb shift, and
third-order Coulomb correlation corrections not accounted
for by the SD approximation were also included into the
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calculation. Our values agree with experiment to better than
10 cm−1 for all levels with the exception of the 5s, 6s, 7s, 4d3/2,
and 4d5/2 levels, where the differences are 27, 25, 12, 32, and
29 cm−1, respectively. We note that the ground-state energy is
−336 91 cm−1, making the agreement better than 0.1%.

III. “BEST SET” MATRIX ELEMENTS AND THEIR
UNCERTAINTIES

The “best set” consists of our all-order high-precision
results and several experimental values. The following 128
matrix elements have been replaced by the all-order or
experimental values:

〈mpj‖D‖ns〉,m = 5 − 12, n = 5 − 12;

〈ns‖T (1)‖5s〉, n = 5 − 12;

〈mpj1‖T (1)‖npj2〉,m = 5 − 7, n = 5 − 7.

The all-order calculation of Rb matrix elements has been
described in detail in Ref. [15].

We illustrate the selection of the best set values of the
electric-dipole matrix elements and the determination of their
uncertainties in Table I, where we list a few examples. The
complete table is given in Ref. [16]. The absolute values in
atomic units (ea0) are given in all cases. We list the lowest
order DHF results, the all-order single-double (SD) values,
and their relative differences in percent in columns 2–4 of
Table I. The relative differences of DHF and SD all-order
numbers give a good estimate of the size of the correlation
correction. In general, the smaller the correlation correction,
the more precise our theoretical values are. The final values
used in our best set are listed in column 5. The next column
identifies the source of these values for each of the matrix
elements. The 5s–5pj matrix elements are experimental values

from Ref. [17]. All other E1 matrix elements are from
all-order calculations in SD, SDpT, or SDsc approximations.
The SDsc values include additional corrections added to SD
ab initio results by means of the scaling procedure described
in Ref. [18] and references therein. The SDpT label refers
to ab initio all-order calculations that include single, double,
and partial triple excitations. The selection of the particular
value as final is determined by the study of the dominant
correlation correction terms (because the scaling procedure
is only applicable for certain classes of terms) and accuracy
requirements. In the present calculation, very high accuracy is
not needed for matrix elements with high values of principal
quantum numbers. In such cases, SD values are sufficiently
accurate for E1 matrix elements.

Evaluation of theoretical uncertainties is a very diffi-
cult problem since it essentially involves evaluation of a
quantity that is not known beforehand. Several strategies
can be used in evaluating the uncertainties of the all-order
results, including the study of the breakdown of the various
all-order contributions, identification of the most important
terms, and semiempirical determination of important missing
contributions. Our uncertainty estimates are listed in percent
in the column labeled “Unc.”. The method for determining
uncertainty is noted in the next column labeled “Unc. source”.
Where the scaling was performed, it is expected to estimate
the dominant missing correlation correction (see Ref. [18] and
references therein for explanation). Therefore, it is reasonable
to take the difference of the ab initio and scaled results as
the uncertainty. This is indicated by the SDsc-SD note in the
“Unc. source” column. We note that this procedure is expected
to somewhat overestimate the uncertainty.

In some cases, where such high accuracy was not required
but the same correlation terms were dominant, we carried out
ab initio SDpT calculations (i.e., partially included triples)

TABLE I. Selection of the best set values for the 5pj –ns, 6pj –ns, and 7pj –ns electric-dipole reduced matrix elements. See text for details.
Absolute values of the lowest order DHF and SD all-order values in a.u. and their relative difference in % are given in columns 2–4.

Transition DHF SD �(SD-DHF) Final Source Unc. (%) Unc. source Best set

5p1/2–5s 4.8189 4.2199 14.2% 4.2310 Expt. 0.07% Expt. 4.231(3)
5p1/2–6s 4.2564 4.1187 3.3% 4.1458 SDsc 0.66% SDsc-SD 4.146(27)
5p1/2–7s 0.9809 0.9543 2.8% 0.9527 SDsc 0.17% SDsc-SD 0.953(2)
5p1/2–8s 0.5139 0.5037 2.0% 0.5022 SDsc 0.30% SDsc-SD 0.502(2)
5p1/2–9s 0.3380 0.3326 1.6% 0.3314 SDsc 0.36% SDsc-SD 0.331(1)
5p3/2–5s 6.8017 5.9551 14.2% 5.9780 Expt. 0.08% Expt. 5.978(5)
5p3/2–6s 6.1865 6.0135 2.9% 6.0472 SDsc 0.56% SDsc-SD 6.047(34)
5p3/2–7s 1.3925 1.3521 3.0% 1.3497 SDsc 0.18% SDsc-SD 1.350(2)
5p3/2–8s 0.7265 0.7098 2.4% 0.7077 SDsc 0.29% SDsc-SD 0.708(2)
5p3/2–9s 0.4771 0.4677 2.0% 0.4662 SDsc 0.34% SDsc-SD 0.466(2)
6p1/2–5s 0.3825 0.3335 14.7% 0.3248 SDsc 2.69% SDsc-SD 0.325(9)
6p1/2–6s 10.2856 9.6839 6.2% 9.7450 SDpT 0.63% SD-SDpT 9.745(61)
6p1/2–7s 9.3594 9.1896 1.8% 9.2092 SDpT 0.21% SD-SDpT 9.209(20)
6p1/2–8s 1.9219 1.8532 3.7% 1.8616 SDpT 0.45% SD-SDpT 1.862(8)
6p1/2–9s 0.9702 0.9364 3.6% 0.9364 SD 0.50% 0.5% 0.936(5)
6p3/2–5s 0.6055 0.5409 11.9% 0.5276 SDsc 2.51% SDsc-SD 0.528(13)
6p3/2–6s 14.4575 13.5918 6.4% 13.6804 SDpT 0.65% SD-SDpT 13.680(89)
6p3/2–7s 13.5514 13.3529 1.5% 13.3755 SDpT 0.17% SD-SDpT 13.376(23)
6p3/2–8s 2.7047 2.6001 4.0% 2.6129 SDpT 0.49% SD-SDpT 2.613(13)
6p3/2–9s 1.3583 1.3056 4.0% 1.3056 SD 0.50% 0.5% 1.306(7)
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TABLE II. Absolute values of the electric-dipole reduced matrix elements used in the calculation of the BBR shift and their uncertainties
in atomic units (ea0).

Transition n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

5s–np1/2 4.231(3) 0.325(9) 0.115(3) 0.060(2) 0.037(1) 0.026(1) 0.020(1)
6s–np1/2 4.146(27) 9.75(6) 0.993(7) 0.388(5) 0.222(3) 0.148(2) 0.109(2)
7s–np1/2 0.953(2) 9.21(2) 16.93(9) 1.856(9) 0.751(8) 0.430(6) 0.289(4)
8s–np1/2 0.502(2) 1.862(8) 16.00(2) 25.9(1) 2.95(2) 1.20(1) 0.69(1)
9s–np1/2 0.331(1) 0.936(5) 3.00(2) 24.5(1) 36.7(2) 4.25(2) 1.73(2)
10s–np1/2 0.243(1) 0.607(3) 1.474(7) 4.40(2) 34.8(2) 49.4(2) 5.78(3)
11s–np1/2 0.189(1) 0.442(2) 0.942(5) 2.12(1) 6.05(3) 46.8(2) 63.9(3)
5s–np3/2 5.978(5) 0.528(13) 0.202(4) 0.111(3) 0.073(2) 0.053(2) 0.040(2)
6s–np3/2 6.047(34) 13.68(9) 1.53(1) 0.621(7) 0.363(5) 0.246(4) 0.182(3)
7s–np3/2 1.350(2) 13.38(2) 23.7(1) 2.82(2) 1.18(1) 0.68(1) 0.465(7)
8s–np3/2 0.708(2) 2.61(1) 23.19(2) 36.3(2) 4.45(2) 1.85(2) 1.08(2)
9s–np3/2 0.466(2) 1.306(7) 4.19(2) 35.5(2) 51.2(3) 6.39(3) 2.66(3)
10s–np3/2 0.341(1) 0.845(4) 2.04(1) 6.13(3) 50.3(3) 68.9(3) 8.65(4)
11s–np3/2 0.266(1) 0.614(3) 1.302(7) 2.92(2) 8.40(4) 67.7(3) 89.2(4)

instead and took these values as final. The uncertainties were
estimated at the differences of the SD and SDpT numbers in
those cases. We note that numerous tests were conducted in
the past that demonstrated that the aforementioned procedures
of the uncertainty estimates are valid (see Ref. [18] for review
of the all-order method and its applications). In the cases of
transitions with high values of the principal quantum numbers
(for example, np–10s transitions) where only rough estimates
of uncertainties were needed, we used the uncertainty estimate
from the previous transition. For example, we used 0.5% as
the uncertainty estimate for the 6pj –9s transitions since the
uncertainty for the 6pj –8s ones was 0.5%. Since relative
correlation correction generally decreases with n, such a
procedure can overestimate the uncertainty, but should not
underestimate it. The final results and their uncertainties are
summarized in the last columns of Table I.

The best set values for the electric-dipole matrix elements
and their uncertainties are summarized in Table II.

Selection of the “best set” values for diagonal and off-
diagonal matrix elements of the magnetic hyperfine operator
T (1) in 10−8 a.u. is illustrated in Table III. The complete table
is given in Ref. [16]. To convert the diagonal matrix element
in atomic units to hyperfine constants in MHz, one multiplies
the values in Table III by

6.5797 × 109gI√
jv(jv + 1)(2jv + 1)

,

where the nuclear gyromagnetic ratio gI = 1.834 16 for 87Rb
and jv is total angular momentum of the electronic state.
Triple corrections are large for hyperfine matrix elements and
have to be included. Scaling procedure cannot be applied here
since the terms that it corrects are generally not dominant un-
like the cases of the aforementioned ns–n′p matrix elements.
The remaining columns in Table III are the same as in the E1
matrix element tables.

TABLE III. Selection of the “best set” values for diagonal and off-diagonal matrix elements of the magnetic hyperfine operator T (1) in
10−8 a.u. Absolute values of the lowest order DHF, all-order SD, and all-order SDpT values are given in columns 2–4.

DHF SD SDpT Expt. Final Source Unc. (%) Unc. source Best set

5s–5s 22.0830 36.1633 34.6801 34.6810 34.6810 Expt. 0.00% Expt. 34.681
5s–6s 11.4126 17.4008 16.8497 16.8602 16.8602 Expt. 0.06% Expt-SDpT 16.860(10)
5s–7s 7.3042 10.9262 10.6061 10.6086 10.6086 Expt. 0.02% Expt-SDpT 10.609(2)
5s–8s 5.1907 7.6957 7.4786 7.4855 7.4786 SDpT 0.09% Expt-SDpT 7.479(7)
5s–9s 3.9328 5.8004 5.6404 5.6563 5.6404 SDpT 0.28% Expt-SDpT 5.640(16)
5p1/2–5p1/2 2.4023 4.3197 4.1460 4.1223 4.1223 Expt. 0.2% Expt. 4.122(8)
5p1/2–6p1/2 1.4218 2.4431 2.3582 2.3582 SDpT 0.6% from 5p1/2 2.358(14)
5p1/2–7p1/2 0.9681 1.6390 1.5853 1.5853 SDpT 0.6% from 5p1/2 1.585(10)
5p1/2–5p3/2 0.3835 0.3396 0.3274 0.3274 SDpT 1% from 5p3/2 0.327(3)
5p1/2–6p3/2 0.2273 0.1946 0.1886 0.1886 SDpT 1% from 5p3/2 0.189(2)
5p1/2–7p3/2 0.1550 0.1312 0.1272 0.1272 SDpT 1% from 5p3/2 0.127(1)
5p3/2–5p3/2 1.3496 2.7786 2.6682 2.7229 2.7229 Expt. 0.065% Expt. 2.723(2)
5p3/2–6p3/2 0.8000 1.5755 1.5212 1.5483 av. SD, SDpT 1% from 5p3/2 1.548(15)
5p3/2–7p3/2 0.5453 1.0583 1.0241 1.0412 av. SD, SDpT 1% from 5p3/2 1.041(10)
5p3/2–6p1/2 0.2269 0.1905 0.1845 0.1845 SDpT 1% from 5p3/2 0.185(2)
5p3/2–7p1/2 0.1545 0.1275 0.1236 0.1236 SDpT 1% from 5p3/2 0.124(1)
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TABLE IV. Absolute values of the diagonal and off-diagonal
matrix elements of the magnetic hyperfine operator T (1) in 10−8 a.u.
See text for conversion of diagonal matrix elements in atomic units
to hyperfine constants in MHz.

Matrix element Value Matrix element Value

5s–5s 34.681 5p1/2–5p1/2 4.122(8)
5s–6s 16.86(1) 5p1/2–5p3/2 0.327(3)
5s–7s 10.609(2) 5p1/2–6p1/2 2.36(1)
5s–8s 7.479(7) 5p1/2–6p3/2 0.189(2)
5s–9s 5.64(2) 5p1/2–7p1/2 1.59(1)
5s–10s 4.45(1) 5p1/2–7p3/2 0.127(1)
5s–11s 3.63(1)
5p3/2–5p3/2 2.723(2) 6p1/2–6p1/2 1.3453(3)
5p3/2–6p1/2 0.185(2) 6p1/2–6p3/2 0.108(1)
5p3/2–6p3/2 1.55(2) 6p1/2–7p1/2 0.902(2)
5p3/2–7p1/2 0.124(1) 6p1/2–7p3/2 0.073(1)
5p3/2–7p3/2 1.04(1)
6p3/2–6p3/2 0.889(1) 7p1/2–7p1/2 0.6020(3)
6p3/2–7p1/2 0.072(2) 7p1/2–7p3/2 0.049(1)
6p3/2–7p3/2 0.58(1) 7p3/2–7p3/2 0.4034(3)

Most of the diagonal hyperfine matrix elements are taken
from the experiment. Experimental uncertainties are listed
where experimental data are used. Off-diagonal hyperfine
matrix elements between the s states 〈ns‖T (1)‖n′s〉 can be
also evaluated from experimental hyperfine constants using
the formula

|〈ns‖T (1)‖n′s〉| =
√

〈ns‖T (1)‖ns〉〈n′s‖T (1)‖n′s〉, (6)

which is useful for the cases where accurate values of the
hyperfine constants A are available. We list such values for
the off-diagonal matrix elements as experimental. Since a large
number of high-precision experimental values were available
for matrix elements in Table III, the remaining uncertainties
for off-diagonal matrix elements are assigned based on the
differences of the theory values for the most relevant diagonal
matrix elements with experiment. For example, the entry “from
5p1/2” in the “Unc. source” column indicates that the differ-
ence of the theoretical 5p1/2 hyperfine constant with the ex-
perimental value was used to assign the uncertainty of the off-
diagonal matrix element. We note that contributions of the
np–np′ matrix elements to total uncertainty of the static Stark
coefficient kS is very small, and an approximate estimate of
uncertainties is sufficient.

The best set values for the hyperfine matrix elements and
their uncertainties are summarized in Table IV.

IV. BBR SHIFT UNCERTAINTY

The total uncertainty of the main terms of the static
Stark coefficient is obtained by adding uncertainties from all
contibutions in quadrature. The uncertainties in the remainders
are evaluated separately for each term.

Term T contains two sums, over ns and over mpj . First, we
study the the remainder of the mpj sum (m > 12) for each of

TABLE V. Comparison of the DHF values for the main contri-
butions (

∑12
m=5) to term T with the final best set values. n refers to

terms of the ns sum. The relative difference between the two values
is given in the last column.

n DHF Final Dif.

6 0.001 611 4 0.001 515 9(83) −6.3%
7 0.000 227 7 0.000 215 6(18) −5.6%
8 0.000 078 7 0.000 075 6(7) −4.1%
9 0.000 037 8 0.000 036 5(5) −3.7%
10 0.000 021 7 0.000 020 9(4) −3.7%
11 0.000 014 1 0.000 013 5(4) −3.9%
12 0.000 010 4 0.000 009 9(4) −5.0%

the first few ns terms; that is, we break down each ns term as

∑
ns

⎛
⎝12pj∑

2pj

[· · ·] +
Npj∑
13pj

[· · ·]
⎞
⎠ .

There is no 5s term according to Eq. (5). For the 6s, 7s, and
8s terms, the m > 12 tail accounts for only 0.05%, 0.3%, and
0.9%, respectively. As expected, the relative tail contribution
increases with n since the contributions from higher m states
become relatively more important. However, the contribution
of the mpj tail is so small for the most important terms that
its uncertainty is negligible. The sum over ns converges much
slower, with n > 12 terms contributing 17%. Therefore, we
had to evaluate the accuracy of the DHF approximation for
the term T . To do so, we used DHF approximation for main
ns terms, and compared the results with out final best set
values. The comparison is illustrated in Table V. Columns 2
and 3 contain the main T terms given by Eq. (5) for each ns,
n = 6–12,

12∑
m=5

AT

〈5s‖D‖mpj 〉〈mpj‖D‖ns〉〈ns‖T (1)‖5s〉(
Emp − E5s

)
(Ens − E5s)

. (7)

Column 4 gives the relative differences between the DHF and
final results. We expect slightly larger differences for n = 6
and n = 7 owing to larger relative correlation corrections for
lower n. Then, the ratio is stable and on the order of 4%.
A slightly larger ratio for n = 12 is due to cavity size; that
is, n = 12 basis set orbitals already slightly differ from true
DHF orbitals. We conclude that the accuracy of the DHF
approximation for term T is very high, about 4%. Therefore,
we adjusted the DHF tail for the term T by 4%. We took
100% of the adjustment to be the uncertainty of the term T

remainder.
The DHF value for term C is 3 orders of magnitude

smaller than the two other terms. However, it is necessary
to evaluate this term accurately as its final contribution to
the total is 0.5%. Term C also contains two sums, but terms
with m,n = 5–7 account for 97% of the total, making the
uncertainty in the remainder negligible. In fact, the {m,n} = 5
term contributes 89%. The interesting feature of term C is
a very strong cancelation between individual contributions
leading to a change of sign between the DHF and final values.
We list DHF and best set values for individual contributions
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TABLE VI. Comparison of the DHF values for the main contri-
butions to term C with the final best set values (a.u.).

{m,n} DHF Final

5p1/25p1/2 3.96 × 10−5 3.74 × 10−5

5p1/25p3/2 3.51 × 10−5 1.65 × 10−5

5p3/25p3/2 −6.77 × 10−5 −7.52 × 10−5

Total {m,n} = 5 6.94 × 10−6 −2.13 × 10−5

5p1/26p1/2 1.89 × 10−6 1.74 × 10−6

6p1/25p3/2 8.37 × 10−7 3.79 × 10−7

5p1/26p3/2 9.53 × 10−7 4.52 × 10−7

5p3/26p3/2 −3.68 × 10−6 −4.07 × 10−6

Total {m,n} = 5,6 −1.63 × 10−9 −1.49 × 10−6

6p1/26p1/2 2.26 × 10−8 2.03 × 10−8

6p1/26p3/2 2.28 × 10−8 1.05 × 10−8

6p3/26p3/2 −5.02 × 10−8 −5.55 × 10−8

Total {m,n} = 6 −4.76 × 10−9 −2.47 × 10−8

to term C in Table VI to illustrate this cancelation. The terms
with m ↔ n are the same and are added together.

Term R is essentially defined by the n = 5 term, which
contributes 99.8% of the total. Therefore, its uncertainty is
dominated by the experimental uncertainty of the 5s–5pj

matrix elements [17]. The contribution of the remainder and
its uncertainty is negligible.

The resulting final values for the T , C, and R terms in
atomic units are

2T = 2.247(17) × 10−3, C = −2.385(20) × 10−5,

R = 2.769(2) × 10−3.

We substitute these values into Eqs. (3) and (4) and multiply
the total by 2.488 32 × 10−8 conversion factor (see earlier
paragraph on atomic units) to obtain our predicted value of
the Stark coefficient, kS = −1.240(4) × 10−10 Hz/(V/m)2. It
is in agreement with the value −1.24 × 10−10 Hz/(V/m)2

of Ref. [9] that was estimated to be accurate to 1%. It
is also in agreement with measurement kS = −1.23(3) ×
10−10 Hz/(V/m)2 by Mowat [19].

We use our value of the scalar Stark shift coefficient to
calculate the quantity β defined as

β = kS

ν0
(831.9 V/m)2 (8)

to be −1.256(4) × 10−14.

V. CONCLUSION

We calculated the scalar Stark coefficient kS for the 87Rb
microwave frequency standard and carried out a detailed
evaluation of the uncertainties of all its contributions. Our
calculation reduced the ultimate limit to the uncertainty of the
87Rb frequency standard due to the BBR shift to 4 × 10−17.
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