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Excitation energies of the [Kr]ns1/2, [Kr]npj , [Kr]ndj , and [Kr]nfj (n � 9 and [Kr] = (1s22s22p63s23p6

3d104s24p6) in Sr II are evaluated. First-order, second-order, third-order, and all-order Coulomb energies
and first-order and second-order Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator
strengths, transition rates, and lifetimes are determined for the levels up to n = 7. Electric-dipole (5s1/2-npj ,
n = 5–26), electric-quadrupole (5s1/2-ndj , n = 4–26), and electric-octupole (5s1/2-nfj , n = 4–26) matrix
elements are calculated to obtain the ground-state E1, E2, and E3 static polarizabilities. Scalar and tensor
polarizabilities for the 5pj -9pj and 4dj -8dj excited states in Sr II are also calculated. All the above-mentioned
matrix elements are determined using the all-order method. We also investigate the hyperfine structure in 87Sr+.
The hyperfine A values and B values are determined for the first low-lying levels up to n = 7. The quadratic
Stark effect on hyperfine-structure levels of the 87Sr+ ground state is investigated. The calculated shift for the
(F = 5,M = 0) ↔ (F = 4,M = 0) transition is found to be 0.120(1) Hz/(kV/cm)2. These calculations provide
a theoretical benchmark for comparison with the experiment and theory. A careful study of uncertainty of
our calculations is carried out for the transition-matrix elements, line strengths, transition rates, lifetimes,
polarizabilities, and the Stark shift coefficient.

DOI: 10.1103/PhysRevA.82.022504 PACS number(s): 31.15.ac, 31.15.ag, 31.15.ap

I. INTRODUCTION

The lifetimes of the metastable 4d 2D3/2 and 4d 2D5/2 levels
in Sr+ have been the subjects of theoretical and experimental
studies. The properties of Sr+ are of present interest of
many applications in various fields such as optical frequency
standards, quantum information, and astronomy. Recently,
precision lifetime measurement of the 4d 2D5/2 level in Sr+
was presented by Letchumanan et al. in Ref. [1]. The mea-
surement was performed using a single laser-cooled ion in a
radio-frequency trap. Precision measurements and calculations
of the 4d 2DJ lifetimes were presented by Biémont et al. [2].
The experiment was performed at an ion storage ring utilizing
collinear laser excitation. The calculation was carried out
using the Hartree-Fock method including relativistic effects
and core polarization [2]. Recently [3], the calculation of
the 4d 2DJ -4s 2S1/2 electric-quadrupole matrix elements in
Sr+ was performed using an ab initio relativistic all-order
method, which sums infinite sets of many-body perturbation
theory terms. These matrix elements were used to evaluate
the 4d-level radiative lifetimes and their ratio [3]. In Ref. [4],
the relativistic coupled-cluster theory was used to perform
accurate calculations of the lifetimes of the lowest-excited
4d 2DJ states in singly ionized strontium. The lifetimes of
the 4d 2DJ levels and other Sr+ properties were recently
evaluated by Mitroy et al. [5] by diagonalizing a semiempirical
Hamiltonian in a large-dimension single-electron basis. Early
theoretical calculations and measurements of the 4d 2D3/2 and
4d 2D5/2 lifetimes in Sr+ were presented in Refs. [6–11].

Early theoretical calculations of the polarizabilities of the
low-lying states presented in Refs. [12–14] used the simplest
nonrelativistic approximations. Indirect spin-orbit K splittings
in strontium were used recently by Nunkaew et al. [15] to
determine the Sr+ dipole and quadrupole polarizabilities. The
polarizabilities of the low-lying states (5s,6s,5p,6p,4d,5d)

of the Sr+ ions were recently evaluated by Mitroy et al.
[5]. The nonrelativistic semiempiriacal Hamiltonians in a
large-dimension single-electron basis were used to evaluate
polarizabilities and oscillator strengths [5]. The blackbody
radiation (BBR) shift of the 5s-4d5/2 clock transition in 88Sr II

was calculated in Ref. [3] using the relativistic all-order
method where all single and double excitations of the Dirac-
Fock wave function are included to all orders of perturbation
theory. The scalar polarizabilities of the 5s and 4d5/2 levels,
as well as the tensor polarizability of the 4d5/2 level, were
presented together with the evaluation of their uncertainties.

The first lifetime measurements of the 5p 2P1/2 and
5p 2P3/2 levels in Sr+ were performed by Gallagher [16]
using the Hanle-effect method with optical excitation from
the 5s 2S1/2 ground state. The same technique was used later
in Refs. [17–19] to measure the 5p 2P3/2 lifetime. A pulsed dye
laser was used to determine the lifetime of the resonance levels
of Sr II [19] via the beam-laser method. Lifetime measurements
of using frequency-doubled laser-induced fluorescence were
used by Pinnington et al. [20] to determine the lifetimes of the
5p 2P1/2,3/2 and 4f 2F5/2,7/2 levels in Sr II.

Experimental values of a few Sr+ oscillator strengths
derived from lifetime measurements were presented by
Penkin [21], Gallagher [16], and Pinnington et al. [20].
Warner reported [6] theoretical oscillator strengths for the
ns-n′p, np-n′d, and nd-n′f transitions with ns = 5s-9s, np =
5p-9p, nd = 4d-7d, and nf = 4f -7f calculated using scaled
Thomas-Fermi-Dirac wave functions, including the spin-orbit
interaction. Dipole transition rates, oscillator strengths life-
times, and branching ratios derived from a numerical Coulomb
approximation were presented by Lindgård and Nielsen [22]
for the Sr II and other ions of the rubidium isoelectronic
sequence. Relativistic Hartree-Fock oscillator strengths for
the lowest 5s 2S1/2-5p 2P1/2,3/2 transitions in Sr II, with an
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allowance for core polarization, were presented by Migdalek
and Baylis [23]. The SUPERSTRUCTURE code was used by
Bautista et al. [24] to evaluate oscillator strengths, transition
rates, and electron-impact excitation-rate coefficients for Sr II.
The authors underlined that the purpose of their work was to
study the nature of the peculiar Sr II emission filament found
in the ejecta of Eta Carinae. The oscillator strengths of the
resonance transitions in Sr II calculated by the Dirac-Fock
method were recently presented by Zilitis in Ref. [25].

High-precision measurement of the ground-state hyper-
fine splitting of 87Sr+ was presented by Shinozuka et al.
[26]. The magnetic-dipole hyperfine constant was determined
to be A = 1000.473 673(11) kHz. Early measurements of
the A constant for the 5s 2S1/2 state were presented in
Refs. [27–30]. The magnetic-dipole A and electric quadrupole
B hyperfine constants for the 5p 2P3/2 state were measured by
collinear fast-beam laser spectroscopy [29,30]. The hyperfine
structure of the 2S1/2-2D5/2 quadrupole transition at 674 nm
in 87Sr+ was observed by Barwood et al. [31]. The 2D5/2

state hyperfine-structure constants were determined to be
A = 2.174 3(14) MHz and B = 49.11(6) MHz [31].

The hyperfine interactions in Sr II were investigated
using the relativistic linked-cluster many-body perturbation
theory (RLCMBPT) [32]. The theoretical value of hyperfine
magnetic-dipole constant A for the ground-state 5s 2S1/2 was
found to be −987 MHz [32]. Relativistic coupled-cluster cal-
culations for the magnetic and quardupole hyperfine constants
were presented by Mårtensson-Pendrill [33] for the low-lying
states of the ion 87Sr+. The author underlined that those
properties are of interest as a possible frequency standard. The
calculated B/Q value for the 5p 2P3/2 state was combined
with experimental B factors for the isotope sequence 79−93Sr,
giving revised values for the nuclear quadrupole moments
Q [33]. A relativistic many-body calculation was performed
in Ref. [34] for the low-lying states of 87Sr+. The zeroth-order
hyperfine-structure constants were evaluated with Dirac-Fock
wave functions, and the finite basis sets of the Dirac-Fock
equation were constructed by B splines. Numerical results
were given for the A (5s 2S1/2, 5p 2PJ , and 4d 2DJ states)
and B (5p 2P3/2 and 4d 2DJ states) hyperfine constants [34].

In the present paper, the relativistic all-order method is used
to calculate atomic properties of singly ionized strontium for
the ns, npj , ndj , and nfj (n � 9) states. We evaluated a large
number of transition-matrix elements to calculate the E1, E2,
and E3 ground-state polarizabilities, scalar polarizabilities of
the ns1/2, npj and ndj states, and tensor polarizabilities of the
np3/2 and ndj excited states of Sr+. Excitation energies are
calculated for the 37 first excited states. The hyperfine A and
B values are determined for the first low-lying levels up to
n = 7. The quadratic Stark effect on hyperfine-structure levels
of the 87Sr+ ground state is investigated.

The main motivation for this work is to provide rec-
ommended values for a number of atomic properties via
a systematic high-precision study for use in the planning
and analysis of various experiments as well as theoretical
modeling. We evaluated the uncertainties of the recommended
values for the transition-matrix elements, line strengths,
transition rates, lifetimes, polarizabilities, and the Stark
shift coefficient. The calculation of uncertainties involved
the estimation of missing high-order effects and ab initio

calculations in different approximations to establish the size
of the higher-order corrections and approximate missing
contributions. Another motivation is to study the methods to
accelerate the convergence of the all-order iterative scheme
for the nd states. We have tested an approach that significantly
reduced the time required for the calculation of the all-order
excitation coefficients without loss of accuracy. Moreover,
our tests demonstrate the improvement of the accuracy over
the original scheme. Such a method is of importance for
evaluating properties of the nd states in heavy systems where
the calculation time is significant or for the combination of
the all-order and configuration interaction methods where the
calculations have to be carried out for a large number of
states [35].

II. THIRD-ORDER AND ALL-ORDER
CALCULATIONS OF ENERGIES

The energies of nlj states in Sr II are evaluated for n �
10 and l � 3 using both third-order relativistic many-body
perturbation theory (RMBPT) and the single-double (SD)
all-order method discussed in Ref. [36], in which single and
double excitations of Dirac-Fock (DF) wave functions are
iterated to all orders. The results of our energy calculations
are summarized in Table I. Columns 2 through 8 of Table I
give the lowest-order DF energies E(0), second-order and
third-order Coulomb correlation energies E(2) and E(3),
first-order and second-order Breit corrections B(1) and B(2),
and an estimated Lamb-shift contribution E(LS). The Lamb
shift E(LS) is calculated as the sum of the one-electron
self-energy and the first-order vacuum-polarization energy.
The vacuum-polarization contribution is calculated from the
Uehling potential using the results of Fullerton and Rinker
[38]. The self-energy contribution is estimated for the s, p1/2,
and p3/2 orbitals by interpolating among the values obtained
by [39–41] using Coulomb wave functions. For this purpose,
an effective nuclear charge Zeff is obtained by finding the
value of Zeff required to give a Coulomb orbital with the same
average 〈r〉 as the DF orbital. It should be noted that the values
of E(LS) are very small. For states with l > 0, the Lamb shift is
estimated to be smaller than 0.1 cm−1 using scaled Coulomb
values and is ignored. We list the all-order SD energies in
the column labeled ESD and list that part of the third-order
energies missing from ESD in the column labeled E

(3)
extra. The

sum of the seven terms E(0), ESD, E
(3)
extra, B(1), B(2), and E(LS)

is our final all-order result ESD
tot , listed in the 11th column of

Table I. Recommended energies from the National Institute of
Standards and Technology (NIST) database [37] are given in
the column labeled ENIST. The differences between our third-
order and all-order calculations the and experimental data,
δE(3) = E

(3)
tot − ENIST and δESD = ESD

tot − ENIST, are given in
the two final columns of Table I, respectively.

As expected, the largest correlation contribution to the
valence energy comes from the second-order term E(2).
Therefore, we calculate E(2) with higher numerical accuracy.
The second-order energy includes partial waves up to lmax = 8
and is extrapolated to account for contributions from higher
partial waves (see, for example, Refs. [42,43] for details of the
extrapolation procedure). As an example of the convergence of
E(2) with the number of partial waves l, consider the 5s1/2 state.
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TABLE I. Zeroth-order (DF), second-order, and third-order Coulomb correlation energies E(n), single-double Coulomb energies ESD, E(3)
extra,

first-order Breit and second-order Coulomb-Breit corrections B (n) to the energies of Sr II. The total energies [E(3)
tot = E(0) + E(2) + E(3) + B (1) +

B (2), ESD
tot = E(0) + ESD + E

(3)
extra + B (1) + B (2)] for Sr II are compared with experimental energies ENIST [37], δE = Etot − ENIST. Units are

given in cm−1.

nlj E(0) E(2) E(3) B (1) B (2) E(LS) E
(3)
tot ESD E

(3)
extra ESD

tot ENIST δE(3) δESD

5s1/2 −84042 −5610.2 1236.9 48.8 −63.7 5.9 −88425 −5386.3 618.2 −88819 −88964 539 145
4d3/2 −67385 −7907.6 1643.5 61.3 −161.5 0.0 −73750 −7718.7 758.3 −74446 −74408 659 −38
4d5/2 −67242 −7727.6 1592.7 44.5 −157.4 0.0 −73490 −7546.1 732.8 −74169 −74128 638 −41
5p1/2 −62512 −2982.0 572.4 37.8 −30.7 −0.1 −64915 −3000.4 309.5 −65196 −65249 334 53
5p3/2 −61828 −2844.0 544.3 27.9 −31.3 0.1 −64131 −2860.7 294.4 −64397 −64447 317 50
5d3/2 −34247 −1689.5 334.5 15.6 −37.5 0.0 −35624 −1489.2 159.7 −35599 −35678 54 79
5d5/2 −34177 −1660.5 326.5 11.5 −37.0 0.0 −35537 −1467.9 155.4 −35515 −35591 54 76
4f5/2 −27545 −430.5 62.0 0.0 −0.5 0.0 −27914 −460.6 46.4 −27960 −27972 58 13
4f7/2 −27547 −430.2 61.9 0.0 −0.5 0.0 −27915 −460.1 46.3 −27961 −27972 57 11
5f5/2 −17647 −252.2 37.9 0.0 −0.4 0.0 −17862 −270.9 27.0 −17892 −17898 36 7
5f7/2 −17649 −251.9 37.8 0.0 −0.4 0.0 −17863 −270.4 26.9 −17893 −17898 35 6
6s1/2 −39906 −1552.4 351.6 15.5 −19.5 0.6 −41111 −1427.7 172.4 −41165 −41227 117 63
6p1/2 −32302 −995.5 93.8 14.4 −11.6 0.0 −33201 −968.6 48.9 −33219 −33194 −6 −24
6p3/2 −32044 −957.2 190.2 10.6 −11.9 0.0 −32812 −931.7 99.8 −32877 −32906 94 29
6d3/2 −20835 −711.1 138.0 6.9 −16.0 0.0 −21417 −630.0 67.0 −21407 −21441 24 34
6d5/2 −20800 −700.8 135.2 5.0 −15.8 0.0 −21376 −622.5 65.4 −21368 −21401 24 33
6f5/2 −12256 −155.9 23.8 0.0 −0.3 0.0 −12388 −167.7 16.7 −12407 −12411 22 3
6f7/2 −12257 −155.6 23.7 0.0 −0.3 0.0 −12389 −167.3 16.6 −12408 −12411 22 3
7s1/2 −23442 −663.5 152.0 7.0 −8.7 0.1 −23955 −601.0 73.8 −23971 −24000 45 29
7p1/2 −19870 −465.7 93.8 7.0 −5.7 0.0 −20241 −448.0 48.9 −20268 −20319 78 51
7p3/2 −19745 −449.5 90.4 5.2 −5.8 0.0 −20105 −432.6 47.0 −20131 −20170 66 39
7d3/2 −14023 −374.6 72.0 3.7 −8.4 0.0 −14331 −333.1 35.3 −14326 −14343 12 17
7d5/2 −14004 −369.7 70.6 2.7 −8.4 0.0 −14308 −329.5 34.5 −14304 −14321 12 16
7f5/2 −9002 −101.9 15.7 0.0 −0.2 0.0 −9089 −109.8 10.9 −9101 −9103 14 1
7f7/2 −9003 −101.7 15.6 0.0 −0.2 0.0 −9089 −109.5 10.8 −9102 −9103 14 1
8s1/2 −15438 −346.7 79.9 3.7 −4.6 0.0 −15706 −312.0 38.6 −15712 −15727 21 15
8p1/2 −13478 −257.0 52.0 4.0 −3.2 0.0 −13682 −245.8 27.0 −13696
8p3/2 −13407 −248.8 50.2 2.9 −3.3 0.0 −13606 −237.9 26.0 −13620 −13652 46 33
8d3/2 −10085 −223.2 42.6 2.2 −5.0 0.0 −10268 −198.8 21.0 −10265 −10275 7 10
8d5/2 −10073 −220.4 41.9 1.6 −5.0 0.0 −10255 −196.8 20.6 −10252 −10262 7 9
8f5/2 −6890 −69.9 11.0 0.0 −0.1 0.0 −6949 −75.3 7.6 −6958 −6958 9 0
8f7/2 −6890 −69.7 11.0 0.0 −0.1 0.0 −6949 −75.1 7.6 −6958 −6958 9 0
9s1/2 −10937 −203.6 47.2 2.2 −2.7 0.0 −11094 −183.2 22.8 −11098 −11107 12 8
9p1/2 −9747 −157.7 31.8 2.4 −2.0 0.0 −9872 −149.8 16.5 −9880
9p3/2 −9704 −153.1 30.8 1.8 −2.0 0.0 −9826 −145.2 15.9 −9833
9d3/2 −7601 −144.1 27.6 1.4 −3.2 0.0 −7720 −128.5 13.7 −7718 −7724 4 6
9d5/2 −7593 −142.4 27.1 1.1 −3.2 0.0 −7711 −127.3 13.4 −7709 −7715 4 6

Calculations of E(2) with lmax = 6 and 8 yield E(2)(5s1/2) =
−5567.9 and −5595.3 cm−1, respectively. An extrapolation
of these calculations yields −5610.2 and −5611.2 cm−1,
respectively. Thus, in this particular case, we have a numerical
uncertainty in E(2)(5s1/2) of 1.0 cm−1. It should be noted that
the 27.4 cm−1 contribution from partial waves with l > 6 for
the 5s state is the largest among all the states considered in
Table I; smaller (about 4–6 cm−1) contributions are obtained
for the 4d, 5p, and 5d states and much smaller contributions
(0.5–1.5 cm−1) are obtained for the n = 6 states.

Owing to numerical complexity, we restrict l � lmax = 6
in the ESD calculation. As noted previously, the second-
order contribution dominates ESD; therefore, we can use
the extrapolated value of the E(2) described previously to
account for the contributions of the higher partial waves.

Six partial waves are also used in the calculation of E(3).
Since the asymptotic l dependence of the second-order and
third-order energies are similar (both fall off as l−4), we use the
second-order remainder as a guide to estimate the remainder
in the third-order contribution. The term E

(3)
extra in Table I,

which accounts for that part of the third-order many-body
perturbation theory (MBPT) energy missing from the SD
expression for the energy, is smaller than E(3) by an order
of magnitude for the states considered here.

The column labeled δESD in Table I gives the differences
between our ab initio results and the available experimental
values [37]. The SD results agree better with the recommended
values than do the third-order MBPT results (the ratio of
δE(3)/δESD is about 10 for some of the cases), illustrating the
importance of fourth and higher-order correlation corrections.
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III. ELECTRIC-DIPOLE MATRIX ELEMENTS,
OSCILLATOR STRENGTHS, TRANSITION RATES,

AND LIFETIMES IN Sr II

A. Electric-dipole matrix elements

The calculation of the transition-matrix elements provides
another test of the quality of atomic-structure calculations and
another measure of the size of the correlation corrections.
Reduced electric-dipole matrix elements between low-lying
states of Sr II calculated in the third-order RMBPT and in
the all-order SD approximation are presented in Table II. We
include only a limited number of transitions in this table to
illustrate our results.

Our calculations of reduced matrix elements in the lowest,
second, and third orders are carried out following the method
described in Refs. [44,45]. The lowest-order DF values labeled
Z(DF) are given in the third column of Table II. The values
Z(DF+2) are obtained as the sum of the second-order correlation
correction Z(2) and the DF matrix elements Z(DF). It should be
noted that the second-order Breit corrections B(2) included
in the Z(DF+2) terms are rather small in comparison with the
second-order Coulomb corrections Z(2) [the ratio of B(2) to
Z(2) is about 1–2%].

The third-order matrix elements Z(DF+2+3) include the
DF values, the second-order Z(2) results, and the third-
order Z(3) correlation correction. Z(3) includes random-phase-
approximation (RPA) terms iterated to all orders, Brueckner
orbitals (BO) corrections, the structural radiation Z(SR), and
normalization Z(NORM) terms (see [46] for the definition of
these terms).

The terms Z(RPA) and Z(BO) give the largest contributions
to Z(3). The sum of the terms Z(RPA) and Z(BO) is about
10–20% of the Z(DF) term and they have a different sign for
the 5s-5p and 4d-5p transitions. As a result, the values of
Z(DF+2+3) became smaller than the Z(DF) value by 15–25%.
The values of Z(BO) are larger than the values of Z(RPA) and
have a different sign for the 5p-5d transitions. The structural
radiation Z(SR) and normalization Z(NORM) terms are small. All
results given in Table II are obtained using the length form of
the matrix elements. The length-form and velocity-form matrix
elements differ typically by 5–20% for the DF matrix elements
and 2–5% for the second-order matrix elements in these
calculations.

The electric-dipole matrix elements evaluated in the all-
order SD and single-double all-order method including partial
triple excitations (SDpT [45]) approximations are given in the
columns labeled Z(SD) and Z(SDpT) of Table II. The SD and
SDpT matrix elements Z(SD) include Z(3) completely, along
with the important fourth-order and higher-order corrections.
The fourth-order corrections omitted from the SD matrix
elements were discussed recently by [47]. The Z(SD) values are
smaller than the Z(DF+2) values and larger than the Z(DF+2+3)

values for some of the transitions given in Table II. The
difference between the Z(SD) and Z(SDpT) values is about
0.1–0.2%.

To evaluate the uncertainties of our matrix-element values
and to provide the recommended values, we carry out a
semiempiriacal evaluation of the missing correlation correc-
tions using the scaling procedure described in Ref. [48].
The correlation terms that are adjusted by this procedure are

dominant for most of the transitions listed in Table II. We
note that it is a rather complicated procedure that involves
the scaling of valence excitation coefficients and a complete
recalculation of the matrix elements. The scaling factors
depend on the correlation energy given by the particular
calculation. Therefore, the scaling factors are different for the
SD and SDpT calculations, and these values have to be scaled
separately. Generally, scaled SD and SDpT values are close
together, as expected. The corresponding results are listed
in Table II with the subscript “sc” [3,49]. We chose the SD
scaled values as final (see Ref. [48] and references therein for a
discussion of the selection of the final values). We estimate the
uncertainty of these values as the maximum difference between
the Z(SD)

sc result and the other three results obtained in the SD,
SDpT, and SDpTsc approximations. The last column of Table II
gives the uncertainties in percent relative to the final values
Z(final). We find that the uncertainties are 0.2–0.5% for most of
the transitions. Larger uncertainties (1.2–1.5%) occur for the
4dj -5pj ′ and 4dj -4fj ′ transitions. Our final results and their
uncertainties are used to calculate the recommended values for
lifetimes and polarizabilities and evaluate the uncertainties of
these results.

B. Transition rates, oscillator strengths, and line
strengths in Sr II

Transition rates Ar (s−1), oscillator strengths (f ), and line
strengths S (a.u.) for the ns-n1pj , n1pj -n2dj ′ , and n2dj -n3fj ′

(n = 5–9, n1 = 5–8, n2 = 4–7, and n3 = 4–5) transitions in
Sr II calculated in the SD scaled approximation are summarized
in Table III. We use the available, recommended NIST energies
[37] or SD energies given in Table I in the calculation of the
transition rates Ar and oscillator strengths f . In Table III,
we divide the transitions into groups according to the initial
state for a better presentation. The relative uncertainties of
the transition rates, oscillator strengths, and line strengths are
double those of the corresponding matrix elements as all these
properties depend on the square of the matrix elements. The
uncertainties in percent are listed in the column labeled “Unc.”

We present the ns-n1pj , n1pj -n2dj ′ , and n2dj -n3fj ′ transi-
tions with n = 5–9, n1 = 5–8, n2 = 4–7, and n3 = 4–5. In all
these cases, we check the quality of our functions created in
the R = 220 a.u. cavity with N = 70 splines by comparing the
nlj -nl′j ′ dipole matrix elements evaluated using the B-spline
basis set orbitals and directly obtained DF values.

Using transition rates A given in Table III, we calcu-
late the values of the branching ratios of the 5p 2P3/2

and 5p 2P1/2 decays of Sr+. Our value of branch-
ing ratios A(P3/2-S1/2)/

∑
J A(P3/2-DJ ) and A(P1/2-S1/2)/∑

J A(P1/2-DJ ) are equal to 15.96 and 17.30, respectively.
The results of branching ratios A(P3/2-S1/2)/

∑
J A(P3/2-DJ )

and A(P1/2-S1/2)/
∑

J A(P1/2-DJ ) from measurements given
by Gallagher [16] are 14.8 ± 2.5 and 13.4 ± 2. Our SD value
for the A(P3/2-S1/2)/

∑
J A(P3/2-DJ ) agree with the results

from Ref. [16] when uncertainties are taken into account, while
our SD value for the A(P1/2-S1/2)/

∑
J A(P1/2-DJ ) branching

ratios rather disagree with the measurements [16].
In Table IV, the SD and SDpT oscillator strengths (f )

are compared with the available experimental [16,50] and
theoretical [23–25] results. Relativistic single-configuration
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TABLE II. Reduced electric-dipole matrix elements calculated to first-order, second-order, third-order, SD, and SDpT methods; the label
“sc” indicates the scaled values. Final results and their uncertainties are given in the [Z(final)] column. The last column gives uncertainties in
percent relative to the final values.

Transition Z(DF) Z(DF+2) Z(DF+2+3) Z(SD) Z(SDpT) Z(SD)
sc Z

(SDpT)
sc Z(final) Unc. (%)

6s1/2 5p1/2 2.375 1 2.419 9 2.342 2 2.321 1 2.327 5 2.331 0 2.328 4 2.331(10) 0.43
6s1/2 5p3/2 3.497 2 3.553 4 3.457 0 3.425 5 3.433 5 3.437 2 3.433 6 3.437(12) 0.34
6s1/2 6p1/2 6.810 3 6.715 8 6.475 0 6.517 1 6.539 3 6.530 2 6.528 0 6.530(22) 0.34
6s1/2 6p3/2 9.577 5 9.447 9 9.100 5 9.161 9 9.193 9 9.181 5 9.178 3 9.181(32) 0.35
7s1/2 5p1/2 0.640 4 0.663 8 0.642 8 0.640 0 0.641 1 0.640 0 0.641 3 0.640(1) 0.17
7s1/2 5p3/2 0.920 2 0.950 0 0.921 6 0.918 0 0.919 5 0.917 8 0.919 7 0.918(1) 0.16
7s1/2 6p1/2 4.859 8 4.889 9 4.787 5 4.758 3 4.769 1 4.772 3 4.767 7 4.772(14) 0.29
7s1/2 6p3/2 7.119 7 7.156 5 7.033 2 6.989 5 7.002 9 7.004 6 6.998 5 7.005(15) 0.22
7s1/2 7p1/2 11.152 6 11.110 0 10.794 7 10.852 9 10.881 3 10.889 1 10.885 3 10.889(36) 0.33
7s1/2 7p3/2 15.652 4 15.595 3 15.136 6 15.222 1 15.263 2 15.268 3 15.262 9 15.268(46) 0.30
8s1/2 6p1/2 1.193 1 1.210 5 1.177 9 1.178 4 1.180 9 1.178 5 1.180 8 1.178(2) 0.21
8s1/2 6p3/2 1.699 0 1.721 8 1.675 7 1.677 3 1.680 8 1.677 4 1.680 7 1.677(4) 0.21
8s1/2 7p1/2 8.078 2 8.103 1 7.981 7 7.935 5 7.949 7 7.880 5 7.873 2 7.880(55) 0.69
8s1/2 7p3/2 11.806 1 11.836 5 11.693 6 11.627 2 11.644 6 11.572 2 11.562 5 11.572(55) 0.47
9s1/2 6p1/2 0.622 3 0.636 8 0.617 5 0.618 3 0.619 4 0.618 1 0.619 4 0.618(1) 0.02
9s1/2 6p3/2 0.881 0 0.900 5 0.872 5 0.874 2 0.875 8 0.874 1 0.875 9 0.874(2) 0.01
9s1/2 7p1/2 1.885 8 1.903 6 1.855 3 1.858 4 1.862 0 1.858 6 1.862 4 1.859(4) 0.20
9s1/2 7p3/2 2.673 4 2.698 9 2.627 9 2.633 7 2.638 9 2.635 3 2.640 7 2.635(5) 0.20
4d3/2 5p1/2 3.729 2 3.477 9 2.978 5 3.083 0 3.119 3 3.111 9 3.101 7 3.112(36) 1.18
4d3/2 5p3/2 1.657 2 1.549 3 1.321 7 1.369 4 1.385 8 1.382 5 1.377 9 1.382(16) 1.20
4d5/2 5p3/2 5.002 5 4.677 6 4.011 5 4.149 7 4.197 7 4.186 8 4.173 2 4.187(48) 1.16
5d3/2 6p1/2 9.087 2 9.022 6 8.446 1 8.559 3 8.596 5 8.555 9 8.549 3 8.556(37) 0.43
5d3/2 6p3/2 4.036 8 4.010 2 3.746 2 3.798 5 3.815 4 3.797 1 3.794 1 3.797(17) 0.45
5d5/2 6p3/2 12.163 8 12.080 5 11.306 6 11.457 3 11.507 0 11.451 0 11.442 1 11.451(50) 0.43
6d3/2 6p1/2 7.125 9 7.117 1 7.270 8 7.155 9 7.163 0 7.202 9 7.197 4 7.203(47) 0.66
6d3/2 6p3/2 3.297 2 3.290 5 3.367 7 3.315 9 3.318 3 3.334 8 3.332 5 3.335(19) 0.57
6d5/2 6p3/2 9.821 6 9.806 0 10.019 3 9.870 2 9.878 8 9.930 5 9.923 4 9.930(60) 0.61
6d3/2 7p1/2 16.063 1 16.038 4 15.335 0 15.457 9 15.504 8 15.474 5 15.466 4 15.474(47) 0.30
6d3/2 7p3/2 7.138 7 7.129 3 6.805 5 6.862 6 6.884 1 6.867 5 6.863 9 6.867(22) 0.31
6d5/2 7p3/2 21.493 4 21.461 0 20.512 4 20.676 7 20.739 7 20.687 7 20.677 0 20.688(63) 0.30
7d3/2 6p1/2 2.421 3 2.406 9 2.372 2 2.363 5 2.368 4 2.365 1 2.369 6 2.365(5) 0.21
7d3/2 6p3/2 1.093 2 1.085 8 1.068 3 1.065 0 1.067 3 1.065 4 1.067 4 1.065(2) 0.21
7d5/2 6p3/2 3.277 3 3.255 8 3.205 4 3.195 3 3.202 0 3.196 7 3.202 7 3.197(7) 0.21
7d3/2 7p1/2 10.450 3 10.456 0 10.697 3 10.551 8 10.559 5 10.515 2 10.504 7 10.515(37) 0.35
7d3/2 7p3/2 4.847 1 4.847 1 4.970 0 4.902 5 4.904 7 4.896 4 4.892 0 4.896(6) 0.12
7d5/2 7p3/2 14.423 9 14.430 0 14.771 3 14.577 8 14.586 5 14.566 2 14.553 1 14.566(12) 0.08
7d3/2 8p1/2 24.719 1 24.709 4 23.856 3 23.999 4 24.057 1 24.024 9 24.014 4 24.025(58) 0.24
7d3/2 8p3/2 10.988 8 10.985 9 10.591 6 10.658 2 10.684 8 10.677 3 10.672 5 10.677(27) 0.25
7d5/2 8p3/2 33.070 4 33.057 2 31.902 3 32.094 1 32.171 8 32.144 0 32.129 9 32.144(78) 0.24
4d3/2 4f5/2 3.579 3 3.403 4 2.716 2 2.878 5 2.921 6 2.916 5 2.900 6 2.916(43) 1.50
4d5/2 4f5/2 0.964 1 0.916 7 0.737 3 0.779 2 0.790 4 0.788 7 0.784 6 0.789(11) 1.44
4d5/2 4f7/2 4.312 9 4.100 5 3.298 3 3.485 8 3.536 0 3.527 8 3.509 2 3.528(50) 1.44
5d3/2 4f5/2 12.730 0 12.619 7 12.211 4 12.194 3 12.237 7 12.209 6 12.205 5 12.210(43) 0.36
5d5/2 4f5/2 3.406 3 3.376 7 3.269 0 3.264 3 3.275 8 3.268 2 3.267 1 3.268(11) 0.35
5d5/2 4f7/2 15.231 9 15.100 0 14.618 9 14.597 6 14.648 8 14.615 7 14.610 8 14.616(51) 0.35
6d3/2 4f5/2 5.917 8 5.937 7 6.376 8 6.198 3 6.187 0 6.227 3 6.222 0 6.227(29) 0.47
6d5/2 4f5/2 1.568 4 1.574 5 1.688 1 1.641 6 1.638 9 1.650 0 1.648 6 1.650(8) 0.51
6d5/2 4f7/2 7.011 1 7.038 1 7.546 8 7.339 5 7.326 8 7.378 6 7.372 4 7.379(39) 0.53
7d3/2 4f5/2 1.249 0 1.267 0 1.251 5 1.238 6 1.242 0 1.240 2 1.242 5 1.240(3) 0.28
7d5/2 4f5/2 0.333 3 0.338 1 0.334 4 0.330 9 0.331 8 0.331 4 0.332 0 0.331(1) 0.27
7d5/2 4f7/2 1.490 1 1.511 7 1.495 1 1.479 4 1.483 4 1.481 7 1.484 4 1.482(4) 0.27
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TABLE III. Wavelengths λ (Å), transition rates Ar (s−1), oscillator strengths (f ), and line strengths S (a.u.) for transitions in Sr II calculated
using our “final” values of reduced electric-dipole matrix elements [Z(final)] and their uncertainties. The uncertainties in column “Unc.” are
given in percent. Numbers in brackets represent powers of 10 here and in the following tables.

Transition λ Ar f S Unc. Transition λ Ar f S Unc.

5p1/2 6s1/2 4163.0 7.63[7] 1.98[−1] 5.43[ 0] 0.85 5p3/2 5d3/2 3475.9 4.72[7] 8.54[−2] 3.91[ 0] 1.09
5p3/2 6s1/2 4306.6 1.50[8] 2.08[−1] 1.18[ 1] 0.68 5p3/2 5d5/2 3465.4 2.82[8] 7.63[−1] 3.48[ 1] 1.15
5p1/2 7s1/2 2424.3 2.91[7] 2.57[−2] 4.10[−1] 0.40 5p1/2 5d3/2 3381.7 2.41[8] 8.26[−1] 1.84[ 1] 1.23
5p3/2 7s1/2 2472.3 5.65[7] 2.59[−2] 8.42[−1] 0.41 5p3/2 6d3/2 2325.2 1.50[7] 1.22[−2] 3.72[−1] 1.06
5p1/2 8s1/2 2019.3 1.50[7] 9.14[−3] 1.22[−1] 0.44 5p3/2 6d5/2 2323.1 9.08[7] 1.10[−1] 3.37[ 0] 1.04
5p3/2 8s1/2 2052.5 2.89[7] 9.13[−3] 2.47[−1] 0.45 5p1/2 6d3/2 2282.7 7.90[7] 1.23[−1] 1.86[ 0] 0.98
5p1/2 9s1/2 1847.0 8.76[6] 4.48[−3] 5.45[−2] 0.45 5p3/2 7d3/2 1995.8 6.93[6] 4.14[−3] 1.09[−1] 1.57
5p3/2 9s1/2 1874.7 1.69[7] 4.46[−3] 1.10[−1] 0.45 5p3/2 7d5/2 1995.0 4.21[7] 3.77[−2] 9.90[−1] 1.57
6p1/2 7s1/2 10876.2 1.79[7] 3.18[−1] 2.28[ 1] 0.58 5p1/2 7d3/2 1964.4 3.70[7] 4.28[−2] 5.53[−1] 1.49
6p3/2 7s1/2 11228.1 3.51[7] 3.32[−1] 4.91[ 1] 0.43 6p3/2 6d3/2 8722.2 8.49[6] 9.68[−2] 1.11[ 1] 1.13
6p1/2 8s1/2 5725.0 7.50[6] 3.68[−2] 1.39[ 0] 0.40 6p3/2 6d5/2 8691.7 5.07[7] 8.62[−1] 9.86[ 1] 1.21
6p3/2 8s1/2 5821.0 1.45[7] 3.67[−2] 2.81[ 0] 0.41 6p1/2 6d3/2 8508.3 4.27[7] 9.26[−1] 5.19[ 1] 1.30
6p1/2 9s1/2 4527.4 4.17[6] 1.28[−2] 3.82[−1] 0.42 6p3/2 7d3/2 5386.9 3.68[6] 1.60[−2] 1.14[ 0] 0.36
6p3/2 9s1/2 4587.2 8.02[6] 1.26[−2] 7.64[−1] 0.42 6p3/2 7d5/2 5380.6 2.22[7] 1.44[−1] 1.02[ 1] 0.33
7p1/2 8s1/2 21777.5 6.09[6] 4.33[−1] 6.21[ 1] 1.40 6p1/2 7d3/2 5304.6 1.90[7] 1.60[−1] 5.59[ 0] 0.28
7p3/2 8s1/2 22504.8 1.19[7] 4.52[−1] 1.34[ 2] 0.95 7p3/2 7d3/2 17159.4 2.40[6] 1.06[−1] 2.40[ 1] 0.34
7p1/2 9s1/2 10855.1 2.74[6] 4.83[−2] 3.45[ 0] 0.37 7p3/2 7d5/2 17095.5 1.43[7] 9.42[−1] 2.12[ 2] 0.28
7p3/2 9s1/2 11032.8 5.24[6] 4.78[−2] 6.94[ 0] 0.28 7p1/2 7d3/2 16733.3 1.20[7] 1.00[ 0] 1.11[ 2] 0.85
8p1/2 9s1/2 38619.4 2.44[6] 5.46[−1] 1.39[ 2] 1.34
8p3/2 9s1/2 39281.9 4.94[6] 5.71[−1] 2.95[ 2] 1.97 5s1/2 5p1/2 4216.7 1.29[8] 3.44[−1] 9.55[ 0] 0.80

5s1/2 5p3/2 4078.9 1.42[8] 7.11[−1] 1.91[ 1] 0.81
4d3/2 5p1/2 10917.9 7.54[6] 6.74[−2] 9.68[ 0] 1.84 6s1/2 6p1/2 12448.4 2.24[7] 5.20[−1] 4.26[ 1] 0.40
4d5/2 5p3/2 10330.2 8.05[6] 8.59[−2] 1.75[ 1] 1.76 6s1/2 6p3/2 12017.3 2.46[7] 1.07[ 0] 8.43[ 1] 0.43
4d3/2 5p3/2 10039.5 9.57[5] 1.45[−2] 1.91[ 0] 1.89 7s1/2 7p1/2 27165.8 5.99[6] 6.63[−1] 1.19[ 2] 0.66
5d3/2 6p1/2 40267.5 1.14[6] 1.38[−1] 7.32[ 1] 0.95 7s1/2 7p3/2 26113.1 6.63[6] 1.36[ 0] 2.33[ 2] 0.60
5d5/2 6p3/2 37244.9 1.29[6] 1.78[−1] 1.31[ 2] 0.98 8s1/2 8p1/2 49236.1 2.24[6] 8.14[−1] 2.64[ 2] 0.67
5d3/2 6p3/2 36080.4 1.55[5] 3.03[−2] 1.44[ 1] 0.97 8s1/2 8p3/2 48199.7 2.35[6] 1.63[ 0] 5.19[ 2] 0.88
6d3/2 7p1/2 89100.4 3.43[5] 2.04[−1] 2.39[ 2] 0.39
6d5/2 7p3/2 81271.1 4.04[5] 2.67[−1] 4.28[ 2] 0.50 4f5/2 6d3/2 15311.2 5.47[6] 1.28[−1] 3.88[ 1] 0.93
6d3/2 7p3/2 78694.9 4.90[4] 4.55[−2] 4.72[ 1] 0.48 4f7/2 6d5/2 15217.3 5.22[6] 1.36[−1] 5.44[ 1] 1.06
7d3/2 8p1/2 154600.1 1.58[5] 2.84[−1] 5.77[ 2] 0.21 4f5/2 6d5/2 15217.3 2.61[5] 9.06[−3] 2.72[ 0] 1.01
7d5/2 8p3/2 149543.9 1.56[5] 3.50[−1] 1.03[ 3] 0.31 4f5/2 7d3/2 7337.0 1.97[6] 1.06[−2] 1.54[ 0] 0.27
7d3/2 8p3/2 144822.6 1.90[4] 5.98[−2] 1.14[ 2] 0.36 4f7/2 7d5/2 7325.3 1.89[6] 1.14[−2] 2.20[ 0] 0.31

4f5/2 7d5/2 7325.3 9.43[4] 7.59[−4] 1.10[−1] 0.30
4d3/2 4f5/2 2153.5 2.88[8] 3.00[−1] 8.51[ 0] 2.59 5f5/2 7d3/2 28125.4 3.37[6] 2.66[−1] 1.48[ 2] 0.89
4d5/2 4f5/2 2166.6 2.07[7] 1.45[−2] 6.22[−1] 2.39 5f5/2 7d5/2 27954.0 1.60[5] 1.88[−2] 1.04[ 1] 0.99
4d5/2 4f7/2 2166.6 3.10[8] 2.91[−1] 1.24[ 1] 2.37 5f7/2 7d5/2 27954.0 3.21[6] 2.82[−1] 2.08[ 2] 1.05

Hartree-Fock oscillator strengths were presented by Migdalek
and Baylis [23]. The effect of polarization of the ion core by
the valence electron was included by introducing a polarization
potential in the one-electron Hamiltonian and by employing
the corresponding correction for the dipole-moment operator
in the transition-matrix elements [23]. The radiative transition
probabilities and ion wave functions were obtained with the
atomic structure code SUPERSTRUCTURE [24]. The configura-
tion interaction (CI) expansion employed includes the electron
configurations 4s24p6nl, 4s24p5nln′l′, and 4s4p6nln′l′ with
n = 4 − 6, n′ = 4 − 6 [24]. The oscillator strengths of the
resonance transitions in Sr II calculated by the DF method were
recently presented by Zilitis in Ref. [25]. The author underlined
that the core polarization in [25] was neglected because the
corresponding values are unavailable in the literature. It can
be seen from the comparison of the results listed in Table IV
that our f (SD) and f (SDpT) values agree with f (theor) results

from Refs. [23,24] and disagree with the result from Ref. [25].
This disagreement is explained by the large contribution of
correlation effects that were omitted in [25]. Our results are in
good agrement with the experimental values presented by Volz
and Schmoranzer [50]. Measurements of the 4d-5p oscillator
strengths given in [16] have large uncertainties.

Averaged-over-j oscillator strengths evaluated by the SD
method in the Sr II ion are listed in Table V for the 5s-np,
6s-np, 5p-ns, 5p-nd, 6p-ns, 6p-nd, 4d-np, 4d-nf , 5d-np,
and 5d-nf with a large number of n up to n = 10.

Our averaged-over-j oscillator strengths evaluated by the
SD and SDpT methods are compared with the theoretical
results from Ref. [5] in Table VI. It should be noted that
the nonrelativisic approach was used in Ref. [5] to evaluate
oscillator strengths. The wave functions and transition-matrix
elements by Mitroy et al. were obtained by diagonalizing the
semiempiriacal Hamiltonian in a large, mixed Laguerre-type
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TABLE IV. The SD and SDpT oscillator strengths (f ) are
compared with experimental (expt) and theoretical (theor) results.

Transitions f (SD) f (SDpT) f (expt) f (theor)

5s1/2 5p1/2 0.3413 0.3454 0.342 [50] 0.344 [23]
5s1/2 5p3/2 0.704 8 0.713 3 0.696 [50] 0.696 [23]
4d5/2 5p3/2 0.084 4 0.086 4 0.096(0.02) [16] 0.084 [24]
4d3/2 5p3/2 0.014 2 0.014 5 0.016(0.03) [16] 0.015 [24]
4d3/2 5p1/2 0.066 1 0.067 7 0.084(0.015) [16] 0.062 [24]
4d3/2 4f5/2 0.292 2 0.301 0 0.384 [25]

orbital (LTO) and Slater-type orbital (STO) basis set. The
difference between our SD and SDpT oscillator strengths
and the results from Ref. [5] is about 1–3% except for
two transitions (5s-6p and 4d-6p) with very small values
of oscillator strengths. The difference in oscillator strengths
calculated by different methods is due to the large contribution
of correlation effects.

C. Lifetimes in Sr II

We calculate the lifetimes of the ns1/2 (n = 6–7), npj

(n = 5–6), ndj (n = 4–5), and nfj (n = 4) states in Sr II

using the SD, SDpT, and corresponding scaled values for
the dipole matrix elements and NIST energies [37] that were
available or SD energies otherwise. We list lifetimes from these
four different calculations, SD, SDpT, SDsc, and SDpTsc, in
columns with corresponding labels in Table VII. As in the
case of the electric-dipole matrix elements, scaled SD values
are taken as final. We estimate the uncertainty of our final
values as the maximum difference between the final result
and the other three results obtained in SD, SDpT, and SDpTsc

approximations. The final values, τ final are compared with the
available experimental [20] and theoretical [2] results. The
calculation in Ref. [2] was performed by the Hartree-Fock
method including relativistic effects and core polarization.
It should be seen from Table VII that the largest difference
between our SD and SDpT results and the results from [2]
is for the 6p1/2 and 6p3/2 lifetimes. However, the lifetimes
from [2] for these levels coincide with our τ (DF) values given
in the second column of Table VII. This agreement underlines
the importance of correlation correction since the difference
between τ (DF) and τ (SD) is about 10%.

TABLE VI. Averaged-over-j oscillator strengths evaluated by SD
and SDpT methods are compared with theoretical results from Ref. [5]
in Sr II ion.

Transitions f (SD) f (SDpT) f (theor)

5s-5p 1.046 1 1.058 7 1.026 2
5s-6p 1.507[−4] 1.476[−4] 4.02[−5]
6s-6p 1.579 2 1.589 7
5p-6s 0.203 4 0.204 5 0.207 5
5p-5d 0.830 9 0.833 1 0.833 9
5p-6d 0.123 2 0.124 1
4d-5p 0.082 0 0.084 7 0.0823 3
4d-6p 3.621[−4] 2.995[−4] 8.45[−5]
5d-6p 0.174 5 0.176 0
4d-4f 0.295 8 0.304 5 0.303 8
5d-4f 0.866 6 0.872 7 0.851 9

In Table VIII, we list lifetimes of the 4dj states in Sr II. The
SD [τ (SD)], SDpT [τ (SDpT)], SD-scaled [τ (SDsc)], and SDpT-
scaled [τ (SDpTsc)] values are compared with the theoretical [3,4]
values and experimental results given by Biémont et al. [2].
There are some small contributions to the lifetime values given
in Table VIII, such as the Breit interaction and the contribution
from high partial waves. The effect of the Breit interaction to
the values of the electric-quadrupole matrix elements in the
Ca II ion was investigated in Ref. [51]. The Breit interaction
arises from the exchange of a virtual photon between atomic
electrons. Following the procedure described in [51], we find
that the second-order electric-quadrupole matrix elements
in Sr II increase by 0.024 608 and 0.023 920 a.u. for
the 5s1/2-4d3/2 and 5s1/2-4d5/2 matrix elements, respectively.
Those contributions lead to the decreasing of the 4d3/2 and
4d5/2 lifetimes by 0.001 229 and 0.000 875 s, respectively.

The magnetic-dipole 4d3/2-4d5/2 transition gives an addi-
tional contribution (0.000 238 s) to the 4d5/2 lifetime [9]. Re-
cently, Safronova et al. [52] considered two-photon 5s-np-4d

transitions. It was found that contributions of these transitions
to the 4d3/2 and 4d5/2 lifetimes are equal to 0.000 705 and
0.000 761 s, respectively. As a result, we find additional
contributions from the previously mentioned effects are equal
to −0.000 52 and 0.000 12 s for the 4d3/2 and 4d5/2 lifetimes,
respectively. Following the procedure described in Ref. [3], we
estimate the uncertainties using the τ (SD), τ (SDpT), τ (SDsc), and
τ (SDpTsc) values. Final values for the 4d3/2 and 4d5/2 lifetimes

TABLE V. Averaged-over-j oscillator strengths evaluated by SD method in Sr II ion.

Transitions n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

5s-np 1.046[0] 1.507[−4] 6.981[−4] 6.642[−4] 4.994[−4] 3.636[−4]
6s-np 1.579[0] 5.823[−3] 2.121[−4] 2.697[−5] 3.149[−5]
5p-ns 2.034[−1] 2.575[−2] 9.156[−3] 4.478[−3] 2.572[−3]
6p-ns 3.220[−1] 3.678[−2] 1.272[−2] 6.194[−3]
5p-nd 8.309[−1] 1.232[−1] 4.245[−2] 2.017[−2] 1.136[−2] 7.098[−3]
6p-nd 9.386[−1] 1.602[−1] 5.900[−2] 2.922[−2] 1.694[−2]
4d-np 8.275[−2] 3.621[−4] 1.458[−4] 7.629[−5] 4.515[−5] 2.905[−5]
5d-np 1.745[−1] 5.782[−4] 9.325[−5] 2.584[−5] 9.764[−6]
4d-nf 2.958[−1] 1.164[−1] 5.765[−2] 3.298[−2] 2.075[−2] 1.394[−2] 9.851[−3]
5d-nf 8.666[−1] 5.807[−2] 4.177[−2] 2.565[−2] 1.649[−2] 1.117[−2] 7.921[−3]
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TABLE VII. Lifetimes (in ns) of nlj states calculated using DHF, SD, and SDpT methods; the label “sc” indicates the
scaled values. Final results together with their uncertainties given in the “τ final” column are compared with theoretical [2]
and experimental data [20].

Level τ (DF) τ (SD) τ (SDpT) τ (SD)
sc τ

(SDpT)
sc τ final τ theor [2] τ expt [20]

6s1/2 4.267 4.455 4.433 4.422 4.432 4.42(3) 4.97
7s1/2 7.102 7.225 7.199 7.213 7.200 7.21(1) 7.32
5p1/2 5.717 7.383 7.291 7.320 7.326 7.32(6) 7.71 7.39 ± 0.07
5p3/2 5.164 6.660 6.577 6.603 6.608 6.60(6) 6.96 6.63 ± 0.05
6p1/2 37.79 41.69 41.58 41.69 41.62 41.69(11) 37.50
6p3/2 32.33 37.24 37.17 37.34 37.17 37.34(17) 33.80
5d3/2 3.404 3.513 3.503 3.471 3.472 3.47(4) 3.62
5d5/2 3.474 3.583 3.573 3.541 3.542 3.54(4) 3.85
6d3/2 6.094 6.657 6.623 6.637 6.617 6.64(2) 6.60
6d5/2 6.244 6.822 6.788 6.803 6.784 6.80(2) 6.90
4f5/2 2.037 3.078 2.993 3.004 3.035 3.00(7) 3.08 3.09 ± 0.06
4f7/2 2.042 3.063 2.982 2.995 3.025 2.99(7) 3.21 2.97 ± 0.05

are equal to 0.441(3) and 0.394(2) s and are presented in the
column labeled “Final” of Table VIII.

IV. STATIC MULTIPOLE POLARIZABILITIES OF THE 5S
GROUND STATE OF Sr II

The static valence multipole polarizability αEk of Sr II in its
5s ground state can be separated into two terms: a dominant
first term from the intermediate valence-excited states and a
smaller second term from the intermediate core-excited states.
The latter term is smaller than the former one by several
orders of magnitude and is evaluated here in the RPA [53].
The dominant valence contribution is calculated using the
sum-over-state approach

αEk
v = 1

2k + 1

∑
n

|〈nlj‖rkCkq‖4s〉|2
Enlj − E4s

, (1)

where Ckq(r̂) is a normalized spherical harmonic and where
nlj is npj , ndj , and nfj for k = 1, 2, and 3, respectively [54].
The reduced matrix elements in the above sum are evaluated
using the SD approximation for basis states with n � 26 and
in the DF approximation for the remaining states, scaling is
included into the E2 and E3 matrix elements.

The contributions to dipole, quadrupole, and octupole
polarizabilities of the 5s ground state are presented in
Table IX. The first two terms in the sum-over-states for αE1,
αE2, and αE3 contribute 99.4%, 94.18%, and 48.2%, respec-
tively, of the totals. The rapid convergence of the sum-over-
states for αE1 has been emphasized in many publications (for
example, Refs. [55,56]). We use the available, recommended
NIST energies [37] for nl = 5s-13s,5p-7p,4d-14d,4f -12f

and theoretical SD energies for other states up to n = 26.
The remaining contributions to αEk from basis functions with

27 � n � 70 are evaluated in the DF approximation. As one
can see from Table IX, sums over n for n � 26 in αE2 and αE3

essentially reproduce the final results since the contributions
from 27 � n � 70 are smaller than 0.01% in all cases.

As in the lifetimes calculations, we carried out four different
calculations for the main terms with lower n, using SD, SDpT,
SDsc, and SDpTsc Ek matrix elements. Only the results of
the calculation with SD-scaled data are given. We estimate
the uncertainty of our final values as the maximum difference
between the final result and the other three results obtained in
the SD, SDpT, and SDpTsc approximations. The final results
for the multipole polarizabilities of the ground state of Sr II are
compared in Table IX with the high-precision calculations
given in Refs. [3,5] and the experimental measurements
presented in Ref. [15]. Our results agree with the values given
by [5] for the multipole polarizability. The best agreement is
found for the αE2 value (0.3%), while the differences for the
αE1 and αE3 values are equal to 1.7% and 1.3%, respectively.
The uncertainty in the experimental measurements [15] of
the dipole polarizability is too large (13%) to reflect on the
accuracy of the present calculations.

V. SCALAR POLARIZABILITIES OF THE ns1/2, np j ,
AND nd j STATES AND TENSOR POLARIZABILITIES

OF THE np3/2 AND nd j EXCITED STATES OF Sr II

The valence part of the scalar α0(v) and tensor α2(v)
polarizabilities of an excited state v of Sr II are given by

α0(v) = 2

3(2jv + 1)

∑
nlj

Iv(nlj ), Iv(nlj ) = |〈v||rC1||nlj 〉|2
Enlj − Ev

,

(2)

TABLE VIII. Lifetimes (in s) of 4dj states in Sr II. The SD [τ (SD)] and SD scaled [τ (SDsc)] values are compared with
theoretical and experimental data.

State SD SDpT SDsc SDpTsc Final Theor. [3] Theor. [4] Expt. [2]

4d3/2 0.4509 0.4379 0.4410 0.4437 0.441(3) 0.441(3) 0.426(8) 0.435(4)
4d5/2 0.4029 0.3915 0.3944 0.3967 0.394(2) 0.394(3) 0.357(12) 0.408(22)
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TABLE IX. Contributions to multipole polarizabilities (a.u.) of the 5s state of Sr II. The two leading
terms and those terms with n � 26 in the expression for αEk

v [Eq. (1)] are evaluated using “final” values of
reduced electric-multipole matrix elements [Z(final)] together with uncertainties. The remainders (n > 26),
labeled “tail” below, are evaluated in the Dirac-Hartree-Fock (DHF) approximation. Contributions from
core-excited states αEk

c are evaluated in the RPA. Our final SD αE1, αE2, and αE3 of the 5s ground state of
Sr II are compared with other calculations and with the experiment.

nlj = 5p1/2 29.470 nlj = 4d3/2 373.76 nlj = 4f5/2 5680.8
nlj = 5p3/2 56.945 nlj = 4d5/2 559.11 nlj = 4f7/2 7574.3
nl = [6p−26p] 0.214 nl = [5d−26d] 418.76 nl = [5f −26f ] 2159.7
nl = [2p−4p] −0.263 nl = [3d] 0.0
tail 0.008 tail 1.23 tail 32.8
αE1

v 86.374 αE2
v 1352.86 αE3

v 15447.5
αE1

c 5.812 αE2
c 17.14 αE3

c 113.4
αE1 92.2(7) αE2 1370.0(28) αE3 15560.0(330)
αE1

theor [5] 89.88 αE2
theor [5] 1346 αE3

theor [5] 15430.0
αE1

theor [3] 91.30
αE1

expt [15] 86(11) αE2
expt [15] 1.1(10) × 103

α2(v) = (−1)jv

√
40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑
nlj

(−1)j
{

jv 1 j

1 jv 2

}
Iv(nlj ). (3)

Our calculation of the sums is divided into three parts. The
first part contains the sum over valence states with n � 26,
which is carried out using SD wave functions. For lower n

transitions, we carried out four different calculations for the
main term, using SD, SDpT, SDsc, and SDpTsc electric-dipole
matrix elements. Only the results of the calculation with SD-
scaled data are included. We estimate the uncertainty of our
final values as the maximum difference between the final result
and the other three results obtained in the SD, SDpT, and
SDpTsc approximations.

The second part includes the sum over basis states with
n > 26, which is carried out in the RPA. The third part contains
the contribution from core-excited states, which is carried out
also in the RPA. A breakdown of the contributions to the scalar
dipole polarizability for the excited ns1/2 (n = 6–10), npj (n =
5–9), and ndj (n = 4–8) states is presented in Table X.

We evaluate the contribution from ionic core αcore in the
RPA and find αcore = 5.812a3

0 .
Contributions from the excited npj states with n > 26 in

the case of the excited ns1/2 states is too small (0.001–0.005) in
comparison with the main contribution. Therefore, we put zero
in the line for α

(RPA)
tail . Contributions from the excited ns and

nd states with n > 26 in the case of the excited npj states are
very small αn>26(5p1/2) = 0.090a3

0 , αn>26(5p3/2) = 0.071a3
0

and are calculated in the RPA approximation.
A counter term αvc(nj ) compensating for the excitation

from the core to the valence shell, which violates the Pauli
principle, is also evaluated in the RPA and found to be
very small. The largest contribution of this term αvc(nlj ) is
for the nlj = 4dj [αvc(4d3/2) = −0.363a3

0 and αvc(4d5/2) =
−0.401a3

0].
The above values were combined to obtain our final

result for the scalar polarizabilities α(SD)(nlj ) for the five nsj

(n = 6–10), npj (n = 5–9), and ndj (n = 4–8) excited states
in Sr II.

The final results for the scalar dipole polarizabilities
of α(SD)(nlj ) in Sr II are compared in Table X with the
nonrelativistic values evaluated by Mitroy et al. [5]. The largest
disagreement between our SD values and the semiempirical
values from [5] is observed for the α(SD)(5pj ) states where
relativistic effects are very important.

A breakdown of contributions to the tensor dipole po-
larizability for the excited np3/2 (n = 5–9), and ndj (n =
4–9) states is presented in Table XI. Evaluation of the
tensor polarizability follows the same pattern as the scalar
polarizability [compare Eqs. (2) and (3)]. The difference
in evaluations of the α

(SD)
0 (nlj ) and α

(SD)
2 (nlj ) values is in

the angular part only. As one sees from a comparison of
the results given in Tables X and XI, we obtain a different
distribution from the

∑26
n′=5 I (SD)

npj
(n′s1/2),

∑26
n′=4 I (SD)

npj
(n′d3/2),

and
∑26

n′=4 I (SD)
npj

(n′d5/2) terms (in the case of npj excited states)

and from the
∑26

n′=5 I
(SD)
ndj

(n′p1/2),
∑26

n′=5 I
(SD)
ndj

(n′p3/2), and∑26
n′=4 I

(SD)
ndj

(n′f5/2) terms (ndj excited states) in the scalar

and tensor polarizabilities. As a result, the values of α
(SD)
2 (nlj )

are smaller than the values of α
(SD)
0 (nlj ) and have a different

sign.
States with n > 19 in our basis have positive energies and

provide a discrete representation of the continuum. We find that
the continuous part of the spectra is responsible for 2% of the
α2(np3/2) and α2(ndj ) states. Those contributions appear from
the np-n′d transitions for the α2(np3/2) values and from the
nd-n′f transitions for the α2(ndj ) values. Contributions from
states with n > 26 are negligible (about 10−4%). Our final
results α

(SD)
2 (nlj ) are given in Table XI. The final results for

the tensor polarizabilities of α(SD)(nlj ) in Sr II are compared in
Table XI with semiempiriacal nonrelativistic values evaluated
by Mitroy et al. [5]. The best agreement between our SD
results and the semiempiriacal results from Ref. [5] is for the
5p3/2 and 4d5/2 states (less than 1% disagreement). For all
other states (6p3/2, 4d3/2, 5d3/2, and 5d5/2) the difference is
about 10%.
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TABLE X. Contributions to scalar polarizabilities of Sr II in the excited ns1/2 states (n = 6–10), np1/2, np3/2 states (n = 5–9) and
nd3/2, nd5/2 states (n = 4–8) calculated using “final” values of reduced electric-dipole matrix elements [Z(final)] together with uncertainties.
α0(ns1/2) = ∑70

n′=2 Ins1/2 (n′pj ). α0(np1/2) = ∑70
n′=3 Inp1/2 (n′d3/2) + ∑70

n′=1 Inp1/2 (n′s1/2), α0(np3/2) = ∑70
n′=3 Inp3/2 (n′dj ) + ∑70

n′=1 Inp3/2 (n′s1/2).

α0(nd3/2) = ∑70
n′=4 Ind3/2 (n′f5/2) + ∑70

n′=2 Ind3/2 (n′pj ), α0(nd5/2) = ∑70
n′=4 Ind5/2 (n′fj ) + ∑70

n′=2 Ind5/2 (n′p3/2). αcore = 5.8125 a.u.

Contribution 6s1/2 7s1/2 8s1/2 9s1/2 10s1/2∑26
n′=5 I (SD)

nsj
(n′p1/2) 371.97 2175.9 8472.4 26374.4 70807.2∑26

n′=5 I (SD)
nsj

(n′p3/2) 704.45 4053.3 15984.5 48681.2 129289.9

α(SD)
main(nsj ) 1076.42 6229.2 24456.8 75055.6 200097.1

αvc(nsj ) −0.041 −0.015 −0.007 −0.004 −0.002

α(SD)(nsj ) 1082(4) 6235(39) 24463(148) 75062(220) 200100(1000)
Ref. [5] 1089.0

Contribution 5p1/2 6p1/2 7p1/2 8p1/2 9p1/2∑26
n′=5 I (SD)

npj
(n′s1/2) −11.611 −198.10 −1327.5 −5443.6 −17553.7∑26

n′=4 I (SD)
npj

(n′d3/2) −26.520 −1797.91 −14116.1 −60353.7 −203337.5

α(SD)
main(npj ) −38.132 −1996.01 −15443.6 −65797.2 −220891.2

αvc(npj ) −0.002 −0.001 0.000 0.000 0.000

α
(RPA)
tail (npj ) 0.090 0.131 0.127 0.107 0.084

α(SD)(npj ) −32.2(9) −1990(5) −15438(72) −65792(255) −220880(880)

Ref. [5] −23.13 −2056.0

Contribution 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2∑26
n′=5 I (SD)

npj
(n′s1/2) −8.505 −159.82 −1084.39 −4766.0 −14595.9∑26

n′=4 I (SD)
npj

(n′d3/2) −1.515 −151.20 −1192.87 −5501.4 −17636.1∑26
n′=4 I (SD)

npj
(n′d5/2) −17.279 −1440.28 −112 67.91 −517 82.0 −165 681.0

α(SD)
main(npj ) −27.299 −1751.30 −135 45.16 −620 49.4 −197 913.0

αvc(npj ) −0.001 0.000 0.000 0.000 0.000

α
(RPA)
tail (npj ) 0.071 0.098 0.093 0.077 0.060

α(SD)(npj ) −21.4(8) −1745(5) −13539(42) −620 44(330) −197 910(990)

Ref. [5] −23.13 −2056.0

Contribution 4d3/2 5d3/2 6d3/2 7d3/2 8d3/2∑26
n′=5 I

(SD)
ndj

(n′p1/2) 38.687 1055.67 7644.3 319 70.6 106 139.2∑26
n′=5 I

(SD)
ndj

(n′p3/2) 7.025 185.33 1322.2 5888.6 18621.6∑26
n′=4 I

(SD)
ndj

(n′f5/2) 11.929 728.45 4705.7 19169.5 60133.3

α(SD)
main(ndj ) 57.642 1969.45 13672.3 57028.7 184894.1

αvc(ndj ) −0.365 −0.040 −0.013 −0.006 −0.003

α
(RPA)
tail (ndj ) 0.228 0.175 0.129 0.092 0.066

α(SD)(ndj ) 63.3(9) 1975(2) 136 78(38) 570 35(100) 184 900(900)

Ref. [5] 61.77 2099.

Contribution 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2∑26
n′=5 I

(SD)
ndj

(n′p3/2) 44.186 1161.64 8273.5 367 96.1 116 242.3∑26
n′=4 I

(SD)
ndj

(n′f5/2) 0.582 35.22 228.2 931.1 2927.4∑26
n′=4 I

(SD)
ndj

(n′f7/2) 11.663 704.47 4563.7 186 22.3 585 58.3

α(SD)
main(ndj ) 56.431 1901.34 13065.4 563 49.5 177 728.0

αvc(ndj ) −0.401 −0.043 −0.013 −0.006 −0.003

α
(RPA)
tail (ndj ) 0.187 0.138 0.100 0.070 0.050

α(SD)(ndj ) 62.0(9) 1907(2) 130 71(45) 563 56(99) 177 730(880)

Ref. [5] 61.77 2099.0

Ref. [3] 62.0(5)
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TABLE XI. Contributions to tensor polarizabilities of Sr II in the excited np3/2 states (n = 5–9) and nd3/2, nd5/2 states
(n = 4–9) calculated using “final” values of reduced electric-dipole matrix elements [Z(final)] together with uncertainties;
α0(np3/2) = ∑70

n′=3 Inp3/2 (n′dj ) + ∑70
n′=1 Inp3/2 (n′s1/2). α0(nd3/2) = ∑70

n′=4 Ind3/2 (n′f5/2) + ∑70
n′=2 Ind3/2 (n′pj ), α0(nd5/2) =∑70

n′=4 Ind5/2 (n′fj ) + ∑70
n′=2 Ind5/2 (n′p3/2).

Contribution 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2∑26
n′=5 I (SD)

npj
(n′s1/2) 8.505 159.82 1068.99 4632.6 14595.9∑26

n′=4 I (SD)
npj

(n′d3/2) −1.212 −120.96 −959.12 −4407.9 −14108.9∑26
n′=4 I (SD)

npj
(n′d5/2) 3.456 288.06 2265.67 10376.0 33136.2

α(SD)
main(npj ) 10.749 326.92 2375.53 10600.7 33623.2

α
(RPA)
tail (npj ) −0.011 −0.011 −0.009 −0.007 −0.006

α(SD)(npj ) 10.74(23) 326.9(3.5) 2376(17) 10600(120) 33620(300)

Ref. [5] 10.58 363.5

Contribution 4d3/2 5d3/2 6d3/2 7d3/2 8d5/2 9d3/2∑26
n′=5 I

(SD)
ndj

(n′p1/2) −38.687 −1055.67 −7644.35 −31970.6 −106139.2 −307157.0∑26
n′=5 I

(SD)
ndj

(n′p3/2) 5.620 148.26 1057.73 4710.9 14897.3 42825.3∑26
n′=4 I

(SD)
ndj

(n′f5/2) −2.386 −145.69 −941.15 −3833.9 −12026.7 −31672.8

α(SD)
main(ndj ) −35.453 −1053.09 −7527.77 −31093.6 −103268.6 −296004.5

α
(RPA)
tail (ndj ) −0.046 −0.035 −0.026 −0.02 −0.01 −0.01

α(SD)(ndj ) −35.5(6) −1053(10) −7528(27) −31094(78) −103270(300) −296000(900)

Ref. [5] −47.20 −1543

Contribution 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2 9d5/2∑26
n′=5 I

(SD)
ndj

(n′p3/2) −44.186 −1161.64 −8273.53 −36796.1 −116242.3 −334211.7∑26
n′=4 I

(SD)
ndj

(n′f5/2) 0.665 40.25 260.78 1064.1 3345.6 8821.1∑26
n′=4 I

(SD)
ndj

(n′f7/2) −4.165 −251.60 −1629.88 −6650.8 −20913.7 −55144.1

α(SD)
main(ndj ) −47.686 −1372.99 −9642.63 −42382.8 −133810.4 −380534.7

α
(RPA)
tail (ndj ) −0.051 −0.037 −0.026 −0.02 −0.01 −0.01

α(SD)(ndj ) −47.7(8) −1373(13) −9643(45) −42383(112) −133800(400) −380500(1100)

Ref. [5] −47.20 −1543

Ref. [3] −47.7(3)

VI. HYPERFINE CONSTANTS FOR 87Sr II

Calculations of hyperfine constants follow the pattern
described earlier for calculations of transition-matrix elements.
In Table XII, we list hyperfine constants A for 87Sr II and
compare our values with the available theoretical [33] results
and experimental measurements of Refs. [26,30,31].

In this table, we present the lowest-order A(DF), the all-order
A(SD), and A(SDpT) values for the ns, np, and nd levels up to
n = 9. It should be noted that the values of A(SDpT) are obtained
by using the single-double all-order method including partial
triple excitations. The difference between A(SD) and A(SDpT) is
about 0.1–0.4%, while the ratios A(DF) and A(SD) are equal to
0.5–10 for some cases. For the ground 5s 2S1/2 state, our SDpT
result is in better agreement with a very precision measurement
[26] than the SD result. On the opposite side, the A(SD) value is
in better agreement with the experimental measurements [30]
than the A(SDpT) value for the 5p 2P3/2 state. Both A(SD)

and A(SDpT) values are in disagreement with recent precision
experimental measurements [31] for the 4d 2D5/2 state. For
this state, the correlation contribution is larger than the A(DF)

value by a factor of 10. We present theoretical results given
by Mårtensson-Pendrill [33] in the column of Table XII
labeled Atheor. A relativistic coupled-cluster was used in [33]
to evaluate the A constant for the 5s1/2, 5pj , and 4dj states.
The A values from [33] are in excellent agreement with our
A(SDpT) values except for the result for the 4d 2D5/2 state, where
disagreement is about 50% owing to the very large correlation
contributions to the A value for this state.

Hyperfine constants B (in MHz) in 87Sr+ are given in Table
XIII. The nuclear quadrupole moment Q is equal to 0.327(24)
in barns (1 b = 10−24cm2) [33]. The SD and SDpT data are
compared with the theoretical [33] and experimental data from
Refs. [30,31]. Three columns of Table XIII list the B (DF), B(SD),
and B(SDpT) values divided by nuclear quadrupole moment
Q. Those values are compared with the theoretical results
given by Mårtensson-Pendrill [33]. For the 5p 2P3/2 state,
the B(SDpT)/Q value is in better agreement with the result
from [33] than the B(SD)/Q value. On the opposite side, the
B(SD)/Q values are in better agreement with the results from
[33] than the B(SDpT)/Q values for the 4d 2DJ states. Three
other columns of Table XIII list the B(DF), B(SD), and B(SDpT)
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TABLE XII. Hyperfine constants A (in MHz) in 87Sr+ (I = 9/2, µ = −1.092 83 [57]). The SD and
SDpT data are compared with other theoretical values and experimental results.

Level A(DF) A(SD) A(SDpT) A(theor) A(expt)

5s 2S1/2 −731.59 −1021.27 −997.85 −1000 [33] −1000.473 673(11) [26]
6s 2S1/2 −233.28 −299.47 −296.04
7s 2S1/2 −104.70 −130.98 −129.91
8s 2S1/2 −55.94 −69.11 −68.65
9s 2S1/2 −33.36 −40.91 −40.68
5p 2P1/2 −121.51 −181.73 −177.33 −177 [33]
6p 2P1/2 −46.21 −64.43 −63.40
7p 2P1/2 −22.54 −30.67 −30.26
8p 2P1/2 −12.67 −17.02 −16.82
9p 2P1/2 −7.82 −10.43
5p 2P3/2 −21.33 −36.13 −35.26 −35.3 [33] −36.0(0.4) [30]
6p 2P3/2 −8.15 −12.86 −12.65
7p 2P3/2 −3.99 −6.14 −6.06
8p 2P3/2 −2.24 −3.41 −3.37
9p 2P3/2 −1.39 −2.09
4d 2D3/2 −31.12 −47.51 −46.70 −46.7 [33]
5d 2D3/2 −8.03 −10.72 −10.73
6d 2D3/2 −3.54 −4.68 −4.69
7d 2D3/2 −1.90 −2.49 −2.50
8d 2D3/2 −1.14 −1.49
9d 2D3/2 −0.74 −0.96
4d 2D5/2 −12.97 1.41 1.63 1.07 [33] 2.1743(14) [31]
5d 2D5/2 −3.36 −1.99 −1.93
6d 2D5/2 −1.48 −1.13 −1.10
7d 2D5/2 −0.79 −0.66 −0.65
8d 2D5/2 −0.48 −0.41
9d 2D5/2 −0.31 −0.28

TABLE XIII. Hyperfine constants B (in MHz) in 87Sr+. Nuclear quadrupole moment Q is equal to 0.327(24)b in
barns (1 b = 10−24 cm2) [33]. The SD and SDpT data are compared with experimental results.

Level
B (DF)

Q

B (SD)

Q

B (SDpT)

Q
B (DF) B (SD) B (SDpT) B (theor)

Q
B (expt)

5p 2P3/2 165.61 278.09 271.98 54.15 90.93 88.94 271 [33] 88.5(5.4) [30]
6p 2P3/2 63.20 97.66 96.20 20.67 31.93 31.46
7p 2P3/2 30.84 46.16 45.59 10.09 15.10 14.91
8p 2P3/2 17.30 25.49 25.20 5.66 8.34 8.24
9p 2P3/2 10.64 15.54 3.48 5.08
4d 2D3/2 80.21 115.23 113.26 26.23 37.68 37.04 115 [33]
5d 2D3/2 20.59 32.93 32.75 6.73 10.77 10.71
6d 2D3/2 9.00 14.52 14.46 2.94 4.75 4.73
7d 2D3/2 4.76 7.69 7.66 1.56 2.51 2.51
8d 2D3/2 2.81 4.54 0.92 1.48
9d 2D3/2 1.77 2.89 0.58 0.94
4d 2D5/2 109.85 160.24 157.58 35.92 52.40 51.53 160 [33] 49.11(6) [31]
5d 2D5/2 28.27 45.98 45.71 9.25 15.03 14.95
6d 2D5/2 12.37 20.27 20.19 4.05 6.63 6.60
7d 2D5/2 6.55 10.74 10.70 2.14 3.51 3.50
8d 2D5/2 3.86 6.34 1.26 2.07
9d 2D5/2 2.44 4.03 0.80 1.32
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values. In the last column of Table XIII we show two available
experimental measurements of B constant for the 5p 2P3/2 and
4d 2D5/2 states. Experimental values for the 5p 2P3/2 state [30]
are given with 6% uncertainty. The difference between our
B(SD) and B(SDpT) values is 2%. In this case, we can use the
experimental value to judge our approximation for the 5p 2P3/2

state. The uncertainty in the B constant for the 4d 2D5/2

given in Ref. [31] is too small to compare with the difference
between the experimental value and our B(SD) and B(SDptT)

values.

VII. HYPERFINE-INDUCED TRANSITION
POLARIZABILITY OF THE 87Sr II GROUND STATE

We now turn to the calculation of the quadratic Stark shift
of the ground-state hyperfine interval (F = 5 − F = 4) in
87Sr II. The quadratic Stark shift is closely related to the BBR
shift discussed, for example, in Refs. [36,49,58,59] and our
calculation follows the procedure outlined in [36].

The dominant second-order contribution to the polarizabil-
ity cancels between the two hyperfine components of the 5s

state so the Stark shift of the hyperfine interval is governed
by the the third-order F -dependent polarizability α

(3)
F (0). The

expression for the α
(3)
F (0) is [36]

α
(3)
F (0) = 1

3

√
(2I )(2I + 1)(2I + 2)

{
jv I F

I jv 1

}
× gIµn(−1)F+I+jv (2T + C + R), (4)

where gI is the nuclear gyromagnetic ratio, µn is the nuclear
magneton, I = 9/2 is the nuclear spin, and jv = 1/2 is the
total angular momentum of the atomic ground state in Sr II.
The F -independent sums are (|v〉 ≡ |5s1/2〉) given by Eqs. (5)
through (7) by [36].

We note first that in the DHF approximation the values of
T , C, and R in atomic units are

2T DF = 5.639 2 × 10−4, CDF = 3.831 4 × 10−6,

RDF = 1.016 9 × 10−3. (5)

Since the value of CDF is smaller than the T DF and RDF by
three orders of magnitude, we do not recalculate the C term in
the SD approximation.

The expression for R is similar to that for αE1(0) [compare
Eqs. (1) and (7) [36]]. The difference is an additional factor of
the diagonal hyperfine matrix element

〈5s1/2‖T ‖5s1/2〉(SD) = 7.668 42 × 10−7 a.u.

We evaluate the reduced electric-dipole matrix elements
〈v‖rC1‖n〉 in the SD, SDpT, SDsc, and SDpTsc approxima-
tions. We use the available, recommended NIST energies
[37] for nl = 5s–13s,5p–7p and SD energies for other
states up to n = 26. The sum of terms for n � 26 is
equal to

RSD = 8.932 5 × 10−4, RSDpT = 9.039 7 × 10−4,
(6)

RSDsc = 9.005 3 × 10−4, RSDpTsc = 9.000 9 × 10−4.

Following the procedure described previously, we find Rfinal =
9.005(73) × 10−4. The remainder of the sum, evaluated in
the DHF approximation Rn>26 = 3.9 × 10−9 is less than
0.001%.

The expression for T includes sums over two indices m and
n. To calculate the dominant part of T , we limit sum over m to
four states (m = 5p1/2, 5p3/2, 6p1/2, 6p3/2, 7p1/2, and 7p3/2)
and sum over n up to n = 26

2T m�3
n�26

= −
26s∑

ns=6s

〈ns‖T (1)‖5s〉
(Ens − E5s)

[
〈5s‖rC1‖5p1/2〉〈5p1/2‖rC1‖ns〉(

E5p1/2 − E5s

) − 〈5s‖rC1‖5p3/2〉〈5p3/2‖rC1‖ns〉(
E5p3/2 − E5s

)
+ 〈5s‖rC1‖6p1/2〉〈6p1/2‖rC1‖ns〉(

E6p1/2 − E5s

) − 〈5s‖rC1‖6p3/2〉〈6p3/2‖rC1‖ns〉(
E6p3/2 − E5s

)
+ 〈5s‖rC1‖7p1/2〉〈7p1/2‖rC1‖ns〉(

E7p1/2 − E5s

) − 〈5s‖rC1‖7p3/2〉〈7p3/2‖rC1‖ns〉(
E7p3/2 − E5s

)
]

. (7)

The sum of the six contributions from Eq. (7) is 5.491 9 ×
10−4, 5.535 7 × 10−4, 5.528 6 × 10−4, and 5.524 2 × 10−4 in
the SD, SDpT, SDsc, and SDpTsc approximations, respectively.
The ratio of contributions to the sum from the 6p and 7p to 5p

states is surprisingly very small (about 10−3). The relatively
small remainder T − T m>7

n>26
= 0.010 5 × 10−4 is evaluated in

the DHF approximation, leading to a final value 2T (final) =
5.539(37) × 10−4. Combining these contributions, we obtain

2T final + CDF + Rfinal = 1.458(11) × 10−3 a.u. (8)

The F-dependent factor [see Eq. (4)]

A(F ) = gIµn

3I

√
(2I )(2I + 1)(2I + 2)

×
{

jv I F

I jv 1

}
(−1)F+I+jv ,

is equal to 0.363526 for F = 4 and −0.297431 for F = 5.
Using these values and the result from Eq. (8), we obtain

α
(3)
F=5(0) − α

(3)
F=4(0) = −9.638(72) × 10−4 a.u.
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The Stark shift coefficient k defined as �ν = kE2 is k =
− 1

2 [α(3)
F=5(0) − α

(3)
F=4(0)]. Converting from atomic units, we

obtain

k(final) = 4.819(36) × 10−4a.u. = 1.199(9) × 10−11 Hz/(V/m)2.

In the DHF approximation [Eq. (5)], we find k(DF) = 1.303 1 ×
10−11Hz/(V/m)2.

The relative blackbody radiative shift β is defined as

β = − 2

15

1

νhf
(απ )3T 4αhf(5s1/2), (9)

where νhf is the 87Sr II hyperfine (F = 5 and F = 4) splitting
equal to 5002.368 365 MHz and T is a temperature equal to
300 K. Using those factors, we can rewrite Eq. (9)

β = −1.721 42 × 10−12 αhf(5s1/2). (10)

Using the SD value for αhf(5s1/2) = −9.638(72) × 10−4 a.u.,
we obtain finally

β(SD) = 1.66(1) × 10−15. (11)

VIII. CONCLUSION

In summary, a systematic RMBPT study of the energies of
the ns1/2, npj , ndj , and nfj (n � 9) states in singly ionized
strontium is presented. The energy values are in excellent
agreement with the existing experimental data. Electric-dipole
(5s1/2-npj , n = 5–26), electric-quadrupole (5s1/2-ndj , n =
4–26), and electric-octupole (5s1/2-nfj , n = 4–26) matrix
elements are calculated to obtain the ground-state E1, E2,
and E3 static polarizabilities. Scalar polarizabilities of the
ns1/2, npj , and ndj states and tensor polarizabilities of
the np3/2 and ndj excited states of Sr II are evaluated by
including matrix elements with high n up to n = 26. All of the
previously mentioned matrix elements are determined using
the all-order method. Hyperfine A and B values are presented
for the first low-lying levels up to n = 7. The quadratic Stark
shift of the ground-state hyperfine interval in 87Sr II is also
evaluated. These calculations provide a theoretical benchmark
for comparison with the experiment and theory.
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