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states in Li-like atoms
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Applications of the Feshbach formalism to systems of more than two active electrons are very scarce due
to practical limitations in the construction of the projection operators P and Q that are inherent to the theory.
As a consequence, most previous applications rely on the use of approximate quasiprojection operators, whose
theoretical justification is not yet clear. In this work, an implementation of the Feshbach formalism for three-
electron atoms is presented that includes all the ingredients of the original formalism. Energy positions and
autoionization widths of the lowest 2Se, 2P o, and 2De autoionizing states of Li and Ne7+ have been evaluated.
The results show that the use of quasiprojection operators is justified for the evaluation of resonant positions.
However, for the 2Se states of Li, the use of quasiprojection operators can lead to errors in the autoionization
widths of the order of 100%.
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I. INTRODUCTION

Recent advances in the generation of subfemtosecond
laser pulses and subsequently in attosecond metrology have
opened up the way to photodynamical studies of short-living
metastable states at the atomic time scale. Probing with
attosecond pulses has revealed the excitation and relaxation
dynamics of core-excited atoms [1,2] and more specifically
the time-evolution of autoionizing states [3]. In particular,
ultrafast probing of localization of inner holes in molecules is
receiving a great deal of attention [4]. These advances call for
theoretical methods that can provide an accurate description of
autoionizing states in many-electron atoms in both stationary
and dynamical pictures.

Among these, the Feshbach projection-operator formalism
[5] has been successfully used in the past to evaluate resonance
parameters of two-electron systems (see, e.g., [6,7] and
references therein). This method provides a rigorous procedure
for decomposing the total wave function into its resonant and
nonresonant parts through the use of Q and P orthogonal
projection operators. However, the explicit construction of
these operators for systems with three or more electrons
poses practical difficulties. Thus, prescriptions based on the
use of quasiprojectors have been derived and applied by
relaxing the idempotency condition inherent in true projection
operators [6,8–13]. Procedures for separating the resonant
and nonresonant components of the scattering wave function
without explicit use of Feshbach projectors have also been
proposed [14,15], with some reported results for He− [16], but
their applicability to three or more electron systems depends
very much on the specific atom under consideration.

Alternatively, the saddle-point method proposed by Chung
[17] has proven to be effective and accurate to evaluate
resonance positions in two- and three-electron systems with
one or more holes in the inner shells. These holes are
built directly into the variational wave function [18] through
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hole-projection operators. In spite of this success, results for
autoionization widths are still very scarce. Also, a rigorous
foundation of the method is missing, which has led to some
controversy [19–22].

At variance, complex scaling methods remain in general
valid without considerable restrictions when applied to many-
electron atomic systems. In this method, all radial coordinates
are rotated in the complex plane through the transformation
ri → rie

iθ , where θ is the rotation angle. In this way, energy
positions Es , which directly include the correction due to
the energy shift (see the following), and widths �s are
directly obtained from the real and imaginary parts of complex
eigenvalues associated with a generalized complex symmetric
eigenvalue problem; that is, E = Es + i�s/2. This approach
has been used by many authors (for reviews on the subject, see
[23–25]) and more recently by one of us to calculate resonance
positions and widths, as well as the photodetachment spectra
of three-(active)-electron negative ions like He− [26], Be−
[27], Mg−, and Ca− [28]. In spite of the huge success of
this approach, the performance of this kind of methods in
time-dependent pictures is still uncertain, at variance with the
well established time-dependent close-coupling methods (see,
e.g., [29] and new developments in time-dependent R-matrix
theory [30]) which make explicit use of atomic eigenstates
associated with the true (non-complex-rotated) Hamiltonian.
In the last few years, time-dependent close-coupling methods
that make use of Feshbach states have been shown to be a
powerful approach to describing the time evolution of the
autoionizing decay in two-electron systems [31]. Therefore,
investigations on the applicability of the Feshbach method for
obtaining resonance parameters in many-electron systems is
the necessary first step before going into the time domain.

The aim of this work is to apply the Feshbach formalism
to three-electron atomic systems, essentially without approxi-
mations, apart from the obvious one which is truncation of the
basis set. As mentioned earlier, most existing approximations
are related to the construction of the P projector, which is
precisely the fundamental tool in Feshbach’s theory. Feshbach
himself [5] provided in his seminal 1962 article a general
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prescription for building the P projector. More than 20 years
later, Temkin and Bhatia [6,32] proposed the first practical way
to construct projection operators for three-electron systems.
With the exception of the work of Berk et al. [33] on the
He− resonances, we are unaware of published work using the
full P projector. Nevertheless, the results of Berk et al. are
intriguing since the resonance positions obtained with the full
projector compare worse with experiment than those obtained
with a quasiprojector in which several terms are removed
from P . That is why most calculations for three-electron
atomic systems have been performed with quasiprojectors.
However, a detailed investigation of the importance of the
different terms in theP projector is still lacking. A first attempt
toward this goal in Li-like atoms can be found in Ref. [34],
although the reported calculations were performed with the
simplest possible description of the remaining ion (a single
configuration in terms of pure hydrogenic functions) and with
a rather small basis set, so that no relevant conclusion on this
particular issue could be obtained.

In this work we have used a computational method
that allows us to perform complete Feshbach calculations
that include the full projection operators and the optical
polarization potential that appears in the rigorous theory.
Contributions of the different terms to the energy positions
and Auger widths are quantitatively evaluated for Li and Ne7+.
The much more correlated He− system will be the subject of
future investigations.

This article is organized as follows. In Sec. II, we present
a short description of the Feshbach method and our imple-
mentation for three-electron atoms. We will emphasize those
aspects related to the construction of the projector operator
P . In Sec. III we present our results for energy positions,
energy shifts, and widths for the 2Se,2P o, and 2De doubly
excited states of Li and Ne7+ lying below the first excitation
threshold of the remaining ions Li+ and Ne8+. We end up with
some conclusions in Sec. IV. Atomic units are used throughout
unless otherwise stated.

II. THEORY

A. Feshbach projection formalism

We will not dig into all the details of the Feshbach theory,
which can be found elsewhere [5,6], but only into those
that are of interest in the present work. The foundation of
the Feshbach projection-operator formalism stems from the
definition of projection operators P and Q which split the
total wave function into nonresonant scatteringlike P� and
resonant quadratically integrable Q� parts, such that � =
P� + Q�. These projector operators must satisfy conditions
of completeness (P + Q = 1), idempotency (P2 = P and
Q2 = Q), and orthogonality (PQ = 0). The projected wave
functions must satisfy the asymptotic boundary conditions
limri→∞ P� = � and limri→∞ Q� = 0.

Starting from the Schrödinger equation H� = E� and the
aforementioned splitting of the total wave function, a formal
equation for P� easily arises,

(PHP + Vopt − E)P� = 0, (1)

where the nonlocal generalized optical potential Vopt reads

Vopt(E) = PHQ(E − QHQ)−1QHP. (2)

This optical potential may be expanded in terms of the
eigensolutions �n of the projected Hamiltonian QHQ:

(QHQ − En)�n = 0, (3)

where the En eigenvalues are close to the true resonance
energies.

For an energy E ∼ Es (close to an isolated resonant state s)
the optical potential may be separated into two components,

Vopt(E) = V s
opt(E) + V

n�=s
opt (E) = PHQ |�s〉〈�s |

E − Es

QHP

+
∑∫

n�=s

PHQ |�n〉〈�n|
E − En

QHP, (4)

so that Eq. (1) for P� can now be written in the form

(PH ′P − E)P� = −V s
optP�, (5)

with

H ′ = H + V
n�=s

opt . (6)

A formal solution to Eq. (5) can be written by using the
Lippman-Schwinger equation in terms of the solution P�0

of its related homogeneous scattering equation (nonresonant
continuum),

(PH ′P − E)P�0 = 0, (7)

and the Green function,

Gs
P (E) = P

(
1

E − PH ′P

)
+ iπδ(E − PH ′P), (8)

where P stands for the Cauchy principal value. In this way, the
solution P� resulting from Eq. (5) reads

P� = P�0 + Gs
P (E)

× PHQ|�s〉〈�s |QHP|P�0〉
E − Es − 〈�s |QHPGs

P (E)PHQ|�s〉 . (9)

The resonant contribution to the electronic continuum comes
from the second term of the latter equation. In the vicinity of
the s resonance, this contribution has a total width �s given by

�s = 2π〈�s |QHPδ(Es − PH ′P)PHQ|�s〉 (10)

and is centered at an energy E = Es + �s , where �s is an
energy shift given by

�s = 〈�s |QHP P

(
1

Es − PH ′P

)
PHQ|�s〉. (11)

Introducing the resolvent 1/(E − PH ′P) written in terms of
the eigensolutions of PH ′P , one finally arrives at expressions
for the width and the energy shift suitable for computational
purposes:

�s = 2π |〈�s |QHP|P�0(E = Es)〉|2, (12)

�s =
∑∫

E′ �=Es

dE′ |〈�s |QHP|P�0(E′)〉|2
Es − E′ . (13)
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As the actual position of the s resonance is Es = Es + �s , the
eigenvalues of QHQ are (usually very good) approximations
for this position. The nonresonant contribution to the optical
potential in the Hamiltonian H ′, V

n�=s
opt [see Eq. (6)] has

been included in previous Feshbach-like calculations for
two-electron systems [7] but never for three-electron atoms.
It contributes to second order in QHP to P�, to second
order to the widths, and to fourth order to the energy shifts. It
represents polarization of the two-electron ionic system and is
usually small when all resonances lie very far away from each
other.

B. Projection operators

As mentioned earlier, in Feshbach theory, the projection
operators P and Q are not univocally defined but must
satisfy specific mathematical conditions. Feshbach [5] and
later Temkin and Bhatia [32] proposed a rigorous construction
procedure of these operators that is valid for any many-electron
atom. For an N -electron system, the complete expression of
the P projector for the case of autoionizing states lying below
the first excited state of the ionized system (i.e., below the
second ionization threshold) reads [5]

P =
N∑

i=1

|ψ0(x(i))〉
⎡
⎣1 +

∑
λα �=1

|vα(xi)〉〈vα(xi)|
λα − 1

⎤
⎦ 〈ψ0(x(i))|,

(14)

where x(i) stands for the collection of all coordinates xk =
(rk,�k,sk) (radial rk , angular �k , and spin sk coordinates) for
the N electrons (k = 1,2, . . . ,N ) with only the coordinate
xi of the ith electron excluded, ψ0 corresponds to the (fully
antisymmetric) wave function of the ionized atom (hereafter
called target wave function), and the vα(xi) one-electron wave
functions are the eigensolutions (and λα the eigenvalues) of
the integral equation

vα(xi) = λα

∫
K(xi ,xj )vα(xj )dxj , (15)

with the kernel function defined as K(xi ,xj ) =
N〈ψ0(x(i))|ψ0(x(j ))〉. The intricacies involved in the
solution of the latter integral equation for arbitrary expansions
of the target wave function has led in most cases to drop
the sum over λα in Eq. (14). In this work, we solve this
equation by expanding the one-electron vα functions in terms
of the very same one-electron basis used to build the target
configuration interaction (CI) wave function. The integral
equation thus turns into an algebraic eigenvalue problem
(K · S − λ−1) · C = 0 that can be solved straightforwardly.

It has been demonstrated [32] that the preceding form of
the projection operator (14) guarantees its idempotency, but
only when the operators are computed as matrix elements of
antisymmetrized wave functions. Hereafter we frequently use
the notation P = P (0) + �P to denote the two terms in the P
projection operator (14). If one removes the second term �P ,
idempotency is lost and the projector becomes instead a so-
called quasiprojector. Almost all calculations carried out with
Feshbach-like formalisms in three-electron atoms have made
use of quasiprojectors. Neglect of �P is an approximation
that works better as the nuclear charge Z increases, since

this term scales as ∼1/Z. It must be stressed that when a
single configuration built upon hydrogenic functions is used to
describe the target 1s2 state, �P = 0 andP reduces identically
to P (0), since all λα eigenvalues are equal to unity. However,
this choice [34] turns out to be a rather poor approximation for
the description of the target state.

In this work we use a CI wave function for the target
ground state, in which the configurations are built from a
basis of Slater-type orbitals (STOs). Berk et al. [33] used
Hylleraas-type correlated configurations from which they
could only obtain an approximate description of �P . They
compared results for resonant positions in He− computed
with the complete projector and with the quasiprojector,
and, surprisingly, those with the full projector compared
worse with the experiment. Unfortunately, energy shifts were
not calculated, so it is difficult to say if the origin of the
discrepancy is due to the neglect of these energy shifts or to
the approximations made to describe �P . With our method
we can compute energy shifts very easily and describe �P
very accurately within the same subspace as that used to build
the two-electron configurations of the target state.

C. Pseudopotential method

A Phillips-Kleinman pseudopotential approach was intro-
duced by Martı́n et al. [35] as an alternative but equivalent way
of solving Eq. (3) that avoids explicit projection of the basis
set onto the Q subspace. In this method, instead of QHQ, one
uses the effective Hamiltonian Heff :

Heff = H + MP, (16)

where M is a very large number. This Hamiltonian projects
upward in energy (up to E ∼ M , that is, well above the Q
states) all eigenstates associated with the P subspace. In the
limit M → ∞, the solutions obtained for the Q states are
identical to those arising from Eq. (3). The main practical issue
with the pseudopotential approach is that partition into QHQ
and PHP is no longer necessary and the QHQ resonance
eigenvalues are directly obtained from the diagonalization
of Heff in the CI basis. In this way, explicit projection onto
the Q subspace is avoided and only construction of the P
operator is required. Applications of this method have so
far been restricted to one-electron targets [36,37] for which
the projector is known exactly. Recently, this pseudopotential
approach has been used to compute autoionizing states in
Be-like atomic systems in order to remove the unphysical
Rydberg series of virtual core states [38].

D. Three-electron calculations

We have implemented a three-electron code [39], following
the general approach proposed by Yan and Drake [40], but
for uncorrelated radial configurations. The three-electron CI
wave function � is expanded in terms of antisymmetrized
configurations {ωn}N3

n=1 (N3 is the number of three-electron
configurations), with ωn = Wn(x1,x2,x3), where is the
antisymmetrization operator defined as = ∑6

p=1 εp
p =

(1) − (12) − (13) − (23) + (123) + (132). Note that xi =
(ri ,si) refers to all coordinates (space and spin) of the ith
electron. Thus a single configuration may be written as
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ωn = Wn = ∑6
p=1 φ

p
n χp, where φ

p
n and χp correspond to a

particular permutation of the space coordinate function and the
spin function, respectively. For a symmetric spin-independent
operator , the computation of matrix elements between
two configurations reduces to calculating some particular
integrals. For instance, in the case of spin doublets (the
explicit spin function is given in what follows) the matrix el-
ement reads 〈ωi | |ωj 〉 = 12 11

ij + 12 12
ij − 6 13

ij − 6 14
ij −

6 15
ij − 6 16

ij , where p′p
ij = 〈φp′

i | |φp

j 〉. Consequently, only
one permutation is required in the bra configuration. The
explicit form of Wn reads

Wn(x1,x2,x3) = Rn(r1,r2,r3) · Y (�1,�2)�12,�3
LML

(�1,�2,�3)

·χS,MS (s1,s2,s3), (17)

where the radial part is a product of STOs, Rn(r1,r2,r3) =
r

j1
1 r

j2
2 r

j3
3 e−αr1−βr2−γ r3 (which allows for analytical evaluation

of all radial integrals), and the coupled angular part is given
by

Y (�1,�2)�12,�3
LML

(�1,�2,�3)

= (−)�1−�2+m12+�12−�3+M [�12,L]1/2

×
∑

all mi

(
�1 �2 �12

m1 m2 −m12

)(
�12 �3 L

m12 m3 −M

)

×Y�1,m1 (�1)Y�2,m2 (�2)Y�3,m3 (�3). (18)

In Eq. (17) the label n represents all indexes as-
sociated with a single configuration; that is, n ≡
{j1(n),j2(n),j3(n),αn,βn,γn,�1,�2,�3}. In this work, we only
consider spin doublets and, consequently, we only use one
spin eigenfunction associated with this symmetry, namely,
χ1/2,1/2(s1,s2,s3) = α(s1)β(s2)α(s3) − β(s1)α(s2)α(s3). This
suffices to achieve convergence in large CI expansions [41].
All angular integrals are analytical and were evaluated using
graphical methods for angular momentum [42]. We do not
include relativistic corrections since they are expected to
be negligible for the light ions considered in this work
(Z = 3–10).

E. Construction of MP matrix elements

As discussed in Sec. II B the correct Feshbach projector
contains two parts. We may restrict our projection operator
P to the first term in Eq. (14), that is, a quasiprojector P0,
or to include additionally the second term, P0 + �P . In both
cases, the target wave function ψ0 is computed in terms of
a two-electron CI expansion with components {ϕn}N2

n=1 (N2

is the number of two-electron configurations), where ϕn =
Un(x1,x2) and Un is given by

Un(x1,x2) = Sn(r1,r2)Y (�1,�2)�12
�12m12

(�1,�2)χS,MS (s1,s2), (19)

with Sn(r1,r2) = r
j1
1 r

j2
2 e−αr1−βr2 and the angular part may be

deduced from Eq. (18). The second term in the projection
operator poses no difficulties since we use the same STO basis
to build the {Sn}N2

n=1 configurations and the one-electron vα

functions.
In calculating the matrix elements for P we use the fact

that [P, ] = 0 and consequently one arrives at the identity

〈ωi |P|ωj 〉 = 〈PWi | Wj 〉. Thus, it is sufficient to apply the
antisymmetrizer on the ket and the projectorP on the bra, both
onto nonantisymmetrized functions Wn, which results very
convenient for computational purposes. After spin projection
for each permutation, projection onto the correct angular
momentum components by using graphical techniques is
straightforward. The radial functions Sn are chosen again as
STOs, so that all radial integrals in the projection are analytical,
as described in [38,43].

F. Building the P subspace

To construct the nonresonant P subspace, we solve
Eq. (7) in a basis of configurations that is orthogonal to the Q
subspace. This basis contains configurations of the form

�k(x1,x2,x3) = (ψ0(x(3))υk(x3)), (20)

where ψ0(x(3)) (using the notation x(i) introduced in Sec. II B)
is the target eigenfunction that was used to build the projection
operator P and υk(x3) = r

jk+�3
3 e−γkr3Y�3,m3 (�3)α(s3) corre-

sponds to a set of single-electron STO functions (its size is N1)
with the appropriate angular and spin symmetries representing
a third electron attached to the target. Diagonalization of the
H ′ Hamiltonian in this basis leads to states that approximately
represent the Rydberg series and the continuum states of the
three-electron atom. Since the basis is finite, the continuum
is discretized and a finite number of energies {En}N1

n=1 and
eigenfunctions {P�0

En
} are obtained. The latter are normalized

to unity, while the proper continuum states must be normalized
to the Dirac δ. The correct normalization is achieved by
multiplying the calculated continuum wave function by the
density of states ρ(En) ∼ 2/(En+1 − En−1) [44]. Hence, the
correct expression for the width in terms of the calculated wave
functions is

�s = 2πρ(En = Es)
∣∣〈�s |QHP

∣∣P�0
En=Es

〉∣∣2
. (21)

In general, none of the calculated PH ′P eigenvalues will
match a given resonance energy Es . To satisfy the resonance
condition En = Es , we use an inverse interpolation method
[45] that basically consists of slightly modifying the exponents
of the STO basis set used to describe the third electron
through a common scaling factor. Since the variation of the
continuum energies against the scaling parameter ξ is smooth,
the interpolation is quite efficient in finding a critical value
ξc such that one of the continuum discretized eigenvalues
satisfies the matching condition En(ξc) = Es . Only then is the
corresponding continuum eigenfunction P�0

En=Es
introduced

in Eq. (21).

III. RESULTS AND DISCUSSION

We have computed energy positions, energy shifts, and
Auger widths of the core-excited autoionizing states of Li
and Ne7+ located below the second ionization threshold. The
different approximations that have been made in earlier calcu-
lations work differently for both systems due to the different
role played by electron correlation in the representation of
the wave functions and the projection operator P . We restrict
our study to angular symmetries 2Se, 2P o, and 2De for which
theoretical and a few experimental results are available.
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TABLE I. Energies, widths, and energy shifts for 2Se resonances of Li below the Li+ 1s2s 3S threshold located at ∼−5.110 86 a.u..
Convergence of resonance parameters for the lowest 11 2Se states (using 9740 configurations in Q space) is shown for different expansions of
the quasiprojector P0, from one-term (closed-shell) to several CI expansions of the target (10, 20, 30, and 40). The last two columns correspond,
respectively, to adding �P (full projector) and the latter plus 40 terms in the optical polarization potential V

n �=s
opt . Numbers between parentheses

mean powers of 10; that is, x(a) = x × 10a .

Quasiprojector P0 +�P +�P& Vopt

1 10 20 30 40 40 40

Energy Es

1 −5.407 432 −5.393 348 −5.399 921 −5.399 861 −5.399 854 −5.399 711 −5.399 711
2 −5.200 077 −5.197 824 −5.199 368 −5.199 346 −5.199 343 −5.199 333 −5.199 333
3 −5.157 246 −5.157 244 −5.156 682 −5.156 718 −5.156 723 −5.156 723 −5.156 723
4 −5.150 832 −5.149 689 −5.148 183 −5.148 278 −5.148 291 −5.148 237 −5.148 237
5 −5.143 909 −5.140 838 −5.141 064 −5.141 076 −5.141 078 −5.140 977 −5.140 977
6 −5.135 989 −5.135 163 −5.135 388 −5.135 394 −5.135 395 −5.135 389 −5.135 389
7 −5.127 076 −5.126 754 −5.126 893 −5.126 893 −5.126 893 −5.126 891 −5.126 891
8 −5.121 354 −5.121 229 −5.121 291 −5.121 290 −5.121 290 −5.121 290 −5.121 290
9 −5.117 357 −5.117 316 −5.117 337 −5.117 337 −5.117 337 −5.117 337 −5.117 337

10 −5.114 617 −5.114 602 −5.114 610 −5.114 610 −5.114 610 −5.114 610 −5.114 610
11 −5.112 666 −5.112 659 −5.112 662 −5.112 662 −5.112 662 −5.112 662 −5.112 662

Width �s

1 1.219 636(−3) 3.140 223(−3) 2.530 501(−3) 2.535 945(−3) 2.533 445(−3) 2.533 184(−3) 2.558 364(−3)
2 2.510 337(−4) 5.204 214(−4) 3.919 277(−4) 3.955 406(−4) 3.956 074(−4) 3.960 473(−4) 3.999 220(−4)
3 7.292 964(−5) 7.353 528(−5) 2.662 248(−5) 2.729 574(−5) 2.740 224(−5) 2.733 448(−5) 2.226 770(−5)
4 5.476 426(−6) 4.117 884(−5) 8.025 546(−5) 7.949 541(−5) 7.920 005(−5) 8.179 077(−5) 1.087 680(−4)
5 1.064 434(−4) 1.825 391(−4) 2.095 890(−4) 2.081 916(−4) 2.077 350(−4) 2.038 979(−4) 2.056 092(−4)
6 4.734 551(−5) 1.652 718(−4) 1.654 927(−4) 1.639 553(−4) 1.635 326(−4) 1.634 554(−4) 1.524 937(−4)
7 2.267 713(−5) 6.727 902(−5) 5.988 366(−5) 5.974 428(−5) 5.965 103(−5) 5.957 545(−5) 5.658 184(−5)
8 9.298 445(−6) 2.693 569(−5) 2.237 465(−5) 2.239 494(−5) 2.237 043(−5) 2.234 914(−5) 2.144 792(−5)
9 2.991 860(−6) 8.567 874(−6) 6.937 594(−6) 6.954 706(−6) 6.948 156(−6) 6.951 880(−6) 6.733 312(−6)

10 9.874 776(−7) 2.843 079(−6) 2.305 277(−6) 2.313 382(−6) 2.311 603(−6) 2.317 913(−6) 2.260 000(−6)
11 4.382 822(−7) 1.364 300(−6) 1.118 129(−6) 1.122 613(−6) 1.121 929(−6) 1.121 845(−6) 1.098 459(−6)

Shift �s

1 1.862 419(−3) −4.174 002(−3) −1.158 628(−3) −1.175 177(−3) −1.175 794(−3) −1.173 611(−3) −1.183 584 25(−3)
2 3.580 939(−4) −3.512 037(−4) 5.620 598(−6) 9.038 625(−7) 2.388 532(−7) 5.480 105(−7) −2.625 400 81(−6)
3 9.652 531(−5) 9.681 158(−5) −1.906 334(−5) −1.441 365(−5) −1.377 065(−5) −1.373 478(−5) −2.150 642 92(−5)
4 1.932 362(−4) −2.080 654(−4) −5.499 020(−4) −5.329 823(−4) −5.300 642(−4) −5.365 925(−4) −5.652 220 72(−4)
5 2.372 199(−3) −1.568 332(−4) −1.397 789(−4) −1.323 562(−4) −1.317 235(−4) −1.247 982(−4) −1.121 665 74(−4)
6 6.269 459(−5) −2.007 228(−4) −1.636 043(−4) −1.606 383(−4) −1.600 431(−4) −1.601 996(−4) −1.510 775 97(−4)
7 2.965 730(−5) −7.386 815(−5) −4.058 619(−5) −4.053 338(−5) −4.047 335(−5) −4.048 776(−5) −3.880 319 47(−5)
8 1.297 110(−5) −2.758 825(−5) −1.199 159(−5) −1.209 170(−5) −1.208 980(−5) −1.208 851(−5) −1.171 531 14(−5)
9 5.115 783(−6) −8.367 629(−6) −3.133 724(−6) −3.182 278(−6) −3.184 647(−6) −3.187 457(−6) −3.111 425 91(−6)

10 2.174 737(−6) −2.692 248(−6) −9.167 560(−7) −9.369 256(−7) −9.383 768(−7) −9.410 868(−7) −9.222 313 65(−7)
11 1.314 824(−6) −1.275 004(−6) −4.025 160(−7) −4.131 213(−7) −4.140 280(−7) −4.141 474(−7) −4.067 447 13(−7)

The 1Se ground states of Li+ and Ne8+ (i.e., the target wave
functions), which are necessary to construct the corresponding
P operator, are computed by including up to N2 = 40
configurations as those defined in Eq. (19). The powers j1

and j2 (j1 � j2) range from 0 to 3, the angular momenta �i

from 0 to 3, and the exponents α and β, which are common
to all configurations and have been optimized for the full
expansion, take the values αi = 5.004 54 and βi = 3.265 46
for Li+, and αi = 16.681 81 and βi = 10.884 86 for Ne7+.
The calculated energies for the 1Se ground state of Li+ and
Ne8+ are, respectively, −7.278 311 a.u. (to be compared with
the experimental value −7.279 84 a.u.) and −93.904 44 a.u.
(experimental value −94.005 53 a.u.).

To calculate the resonant wave functions in Q subspace,
we diagonalize the effective Hamiltonian of Eq. (16), with
M = 80–100 a.u., in a large basis of configurations as those
given in Eq. (17). 2Se resonances are obtained with N3 = 9740
configurations built from STOs (2946 sss, 2600 pps, 1800
ppd, 1404 dds, and 972 ff s) for Li and with N3 = 7996
configurations (2268 sss, 2093 pps, 1008 dds, 972 ppd, 810
pdf , 700 ff s, and 145 ddd) for Ne7+. 2P o resonances are
obtained with N3 = 10 470 configurations built from STOs
(2700 ssp, 2520 ppp, 1056 spd, 1764 pdd, 1458 ppf , and
972 ffp) for Li and with N3 = 7000 configurations (2700 ssp,
3240 ppp, 1056 spd, and 4 pdd) for Ne7+. 2De resonances are
obtained with N3 = 9912 configurations (2592 ssd, 1764 spp,
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1764 ppd, 1296 sdd, 1344 spf , 576 sff , and 576 ff d) for
Li and with N3 = 7000 configurations (1800 ssd, 1470 spp,
1764 ppd, 1080 sdd, and 342 spf ) for Ne7+. The powers
j1, j2, and j3 (j1 � j2 � j3) range from 0 to 5, the angular
momenta �i from 0 to 3, and the exponents αi , βi , and γi

are the terms of the even-tempered sequences αi = α0/(nηi),
βi = β0/(nηi), and γi = γ0/(nηi), where n is the principal
quantum number (n = 1 for s functions, n = 2 for p functions
and so on) and η = 1.6–2.0. The first term of these sequences
is α0 = β0 = γ0 = 20.0 for Li. The basis for Ne7+ is the same
as for Li but scaled by the factor 10/3. We have checked that
slightly smaller basis sets lead to very similar results.

The P states are obtained by diagonalizing Eq. (7) in a
basis of configurations as those defined in Eq. (20). In these
configurations, the target wave function is in turn the CI
expansion described earlier, and the third electron is described
by s STOs for states of 2Se symmetry, p STOs for the 2P o

symmetry, and d STOs for the 2De symmetry. The exponents
γk of the latter STOs are given by an even-tempered sequence
containing N1 = 60 STOs (120 STOs for 2Se symmetry).
This leads to 60 (120) P states among which approximately
half of them belong to the three-electron continuum. Some
of the latter lie between the first and the second ionization
thresholds, which is the region we are interested in. A complete
calculation (for the largest basis sets) in each angular symmetry
requires no more than 10 hours of CPU time in a desktop
computer with 4GB of RAM memory and a single 2.2-GHz
processor.

In Tables I and II we report the calculated energies Es ,
energy shifts �s , and Auger widths �s (corrected positions
are given by Es + �s) for Li 2Se, 2P o, and 2De resonances.
All resonances lie close to the Li+ (1s2s 3S) threshold, so
even with the largest basis set used in this work, we only
find a reduced number of them, namely, 11 resonances for
the 2Se symmetry, 8 for the 2P o one, and 5 for the 2De one.
We have carefully investigated convergence of the calculated
energies and widths with (i) the number of configurations used
to diagonalize QHQ, (ii) the number of Q states included
in the optical potential V

n�=s
opt to build the PH ′P projected

Hamiltonian, and (iii) the number of configurations used in
the description of the target state to build the P projection
operator. Concerning (i), we have reached good convergence
for N3 ∼ 10 000 configurations; beyond this number, linear
dependencies begin to appear due to the limited (double)
precision used in our computations. Concerning (ii), we
have systematically increased the number of terms in the
optical potential from 10 to 40 and we have found effective
convergence for ∼30 terms. The convergence with the number
of configurations included in the target state [item (iii)]
requires a more careful analysis. We have systematically
increased this number from 1 up to 40 (for N2 > 40, the first
6–7 significant figures are the same). The results obtained for
10, 20, 30, and 40 configurations are given in Table I. It can
be seen that the widths and energy shifts obtained with a low
number of terms in the target state are significantly far away
from the converged result, especially for the most correlated
symmetry, 2Se. Previous theoretical calculations have only
used one configuration to represent the target states [34,46].
As can be seen, the energies Es + �s obtained with 1 and
40 configurations are relatively similar, but this is due to a

TABLE II. Energies, widths, and energy shifts for the lowest
eight 2P o and five 2De resonances of Li below the Li+ 1s2s 3S

threshold located at ∼−5.110 86 a.u.. The different columns show
results obtained with the quasiprojector, P0, the full projector, P0 +
�P , and the latter projector plus the polarization potential V

n �=s
opt .

Numbers between parentheses mean powers of 10; that is, x(a) =
x × 10a .

P0 +�P +�P & Vopt

2P o

Energy Es

1 −5.312 551 −5.312 551 −5.312 551
2 −5.256 283 −5.256 280 −5.256 280
3 −5.183 306 −5.183 306 −5.183 306
4 −5.149 023 −5.149 024 −5.149 024
5 −5.133 396 −5.133 396 −5.133 396
6 −5.124 584 −5.124 584 −5.124 584
7 −5.121 588 −5.121 589 −5.121 589
8 −5.112 039 −5.112 039 −5.112 039

Width �s

1 1.383 031(−4) 1.382 346(−4) 1.355 093(−4)
2 3.433 205(−4) 3.438 379(−4) 3.458 710(−4)
3 6.781 350(−6) 6.762 450(−6) 6.657 223(−6)
4 1.286 440(−6) 1.269 274(−6) 1.267 614(−6)
5 1.495 400(−6) 1.465 742(−6) 1.455 920(−6)
6 1.291 420(−5) 1.291 405(−5) 1.237 354(−5)
7 1.207 306(−5) 1.211 024(−5) 1.218 747(−5)
8 2.277 558(−5) 2.282 480(−5) 2.237 714(−5)

Shift �s

1 7.250 953(−4) 7.250 392(−4) 7.233 526(−4)
2 4.312 365(−5) 4.304 486(−5) 4.392 076(−5)
3 2.071 525(−5) 2.071 395(−5) 2.085 019(−5)
4 7.436 367(−6) 7.434 603(−6) 7.451 878(−6)
5 3.191 842(−6) 3.188 896(−6) 3.191 990(−6)
6 3.990 832(−5) 3.990 920(−5) 3.921 396(−5)
7 4.633 286(−5) 4.633 767(−5) 4.657 914(−5)
8 6.462 687(−5) 6.459 138(−5) 6.454 336(−5)
2De

Energy Es

1 −5.232 980 −5.232 981 −5.232 981
2 −5.165 744 −5.165 744 −5.165 744
3 −5.141 545 −5.141 545 −5.141 545
4 −5.127 958 −5.127 958 −5.127 958
5 −5.111 720 −5.111 725 −5.111 725

Width �s

1 3.841 651(−4) 3.841 523(−4) 3.826 705(−4)
2 3.571 943(−5) 3.571 782(−5) 3.570 541(−5)
3 1.074 925(−5) 1.074 862(−5) 1.073 578(−5)
4 8.638 463(−6) 8.639 843(−6) 8.627 641(−6)
5 4.818 978(−6) 4.810 805(−6) 4.800 652(−6)

Shift �s

1 1.358 360(−4) 1.358 364(−4) 1.361 600(−4)
2 1.514 508(−5) 1.514 508(−5) 1.515 201(−5)
3 5.288 937(−6) 5.288 984(−6) 5.291 895(−6)
4 5.218 586(−6) 5.218 851(−6) 5.220 761(−6)
5 9.905 546(−6) 9.896 882(−6) 9.879 882(−6)
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TABLE III. Comparison of parameters (positions and widths) for the lowest 2Se Li resonance states obtained with our approach, other
theoretical calculations, and experimental data. Our values are reported relative to the nonrelativistic variational energy of the Li 1s22s 2Se

ground state (−7.478 060 323 650 a.u.) from Yan et al. [48]. Energy values are given in eV and widths are reported in meV by using the
conversion factor 1 a.u. = 27.211 383 86M/(M + me) = 27.209 233 eV. Numbers between parentheses mean experimental uncertainty.

Es (eV)

This work �s (meV)

Es Es + �s Other works Experiment This work Other works Experiment

2Se

56.5503 56.5181 56.384a 56.395(15)c 69.61 37.34a 50(30)f

58.389b 56.352(10)f 36.76b

40.3e

62.0024 62.0024 61.989a 62.00(1.5)c 10.88 7.94a

61.991b 61.991(6)d 7.750b

61.995(10)f 13e

63.1618 63.1612 63.145a 63.16(1.5)c 0.606 2.56a

62.144b 63.135(6)d 2.045b

63.17(3)f

63.3927 63.3773 63.326a 63.311(6)d 2.959 0.16a

63.322b 63.35(3)f 0.402b

63.5903 63.5872 63.573a 63.57(15)c 5.594 3.03a

63.571b 63.565(6)d 3.021b

63.58(3)f

63.7423 63.7382 63.718a 63.735(6)d 4.149 1.46a

63.720b 1.630b

63.9735 63.9725 63.951a 63.933(6)d 1.540 0.72a

63.951b 0.730b

64.1259 64.1256 0.584

aVerbockhaven and Hansen [46], CI truncated diagonalization method with relativistic corrections.
bChung [47], saddle-point CI method with relativistic corrections.
cRassi et al. [49], ejected electron spectroscopy, detection of electrons.
dMcIlrath and Lucatorto [50], VUV absorption spectrum from 1s22p 2P o, detection of photons.
eBhatia [11], CI calculation.
fZiem et al. [51], collision experiment, detection of electrons.

compensation of errors. Indeed, Table I shows that, as the size
of the target expansion is increased, the unshifted energies Es

increase, but the energy shifts decrease going in some cases
from positive to negative values. Variation of the Auger widths
with the number of terms included in the target expansion
is even more pronounced: Converged values may be twice
as large as those obtained by using a single configuration.
Thus, a proper description of the target state included in the P
projection operator is of utmost importance to obtain correct
widths, especially for the most correlated states of Li: 2Se.

We analyze now the effect of �P (the second term in the
P projection operator) and the optical potential V

n�=s
opt [see

Eq. (5)]. Table I shows that, except for the first resonance,
corrections to the energy due to �P are very small and only
affect the seventh significant figure; at variance, corrections to
the widths and the energy shifts generally affect the third and
the second significant figure, respectively. The optical potential
affects at most the fifth significant figure of the energies and
the second or the third of the widths, while energy shifts are
much more sensitive (although they remain very small).

Table II shows our results for the 2P o and 2De resonances. As
can be seen, the effect of including �P and the optical potential
V

n�=s
opt is much less pronounced than for the 2Se resonances.

This is the consequence of the fact that electrons in the 2P o

and 2De states, with dominant 1s2np or 1s2nd configurations,
are much less correlated than in the 2Se ones, with dominant
1s2ns configurations. In addition, the magnitude of the
correction introduced by �P in the 2P o and 2De symmetries
is significantly smaller than for the 2Se one. Indeed, the �P
correction depends very much on the value of λα eigenvalues
[see Eq. (14)]. The λα eigenvalues resulting from the integral
equation (15) are 1.003 33, 7.24109 × 102, 2.460 63 × 104,
3.183 71 × 104, 1.408 07 × 108, etc., for the vα functions
with � = 0, 1.730 55 × 103, 4.901 17 × 104, 1.564 82 × 106,
6.256 89 × 107, 6.522 06 × 107, etc., for those with � = 1,
5.932 43 × 104, 6.772 09 × 105, 1.286 75 × 107, 2.648 85 ×
108, 1.880 57 × 109, etc., for those with � = 2, and so on.
Therefore, the most important corrections are expected for the
states of 2Se symmetry, since the dominant configurations in the
three-electron continuum state are of the form (nsn′s)vλ(n′′s).
For the states of 2P e symmetry, the dominant configurations
are of the form (n�n′�)vλ(n′′p), but they contribute less due to
the larger value of the λα eigenvalues.

We compare now our calculations with those of Ver-
bockhaven and Hansen [46] who have reported the most
comprehensive and complete study of resonance parame-
ters for Li. These authors used a truncated diagonalization
method (TDM), in which bound 1s2n� and continuum 1s2ε�
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CARDONA, SANZ-VICARIO, AND MARTÍN PHYSICAL REVIEW A 82, 022501 (2010)

TABLE IV. Comparison of parameters (positions and widths) for the lowest eight 2P o and five 2De resonance states in Li obtained with
our approach, other theoretical calculations, and experimental data. Our values are reported relative to the nonrelativistic variational energy
of the Li 1s22s 2Se ground state (−7.478 060 323 650 a.u.) from Yan et al. [48]. Energy values are given in eV and widths are reported in
meV by using the conversion factor 1 a.u. = 27.211 383 86M/(M + me) = 27.209 233 eV. Numbers between parentheses mean experimental
uncertainty.

Es (eV)

This work �s (meV)

Es Es + �s Other works Experiment This work Other works Experiment

2P o

58.9218 58.9415 58.908a 58.911(6)d 3.68 3.78a 2.6(1)f

58.910b 58.912(15)h 3.33b 3.2(6)g

58.929c

60.4529 60.4541 60.407a 60.398(3)d 9.40 9.97a

60.398b 60.405(15)h 9.56b

60.420c

62.4385 62.4390 62.421a 62.420(3)d 0.182 0.20a

62.417b 62.422(10)e 0.203b

62.424c 62.421(15)h

63.3713 63.3715 63.356a 63.357(9)d 0.0348 0.04a

63.351b 63.353(10)e 0.0445b

62.356c 63.35(1.5)h

63.7965 63.7966 63.753a 63.755(3)d 0.0397 0.05a

63.750b 63.752(10)e 0.0445b

63.755c 63.755(15)h

64.0363 64.0373 63.953a 63.952(3)d 0.334 0.15a

63.950b 63.951(10)e 0.140b

63.962c 63.955(15)h

64.1178 64.1190 64.062a 64.048(9)d 0.328 0.50a

64.050b 64.050(10)e 0.391b

64.045(15)h

64.3776 64.3793 0.602
2De

61.0869 61.0906 61.062a 61.060(6)k 10.4 11.01a 10.5(3)f

61.099i 61.065(15)h 10.72i

61.060j 10.63j

62.9164 62.9168 62.901a 62.897(6)k 0.972 0.99a 0.89(4)f

62.933i 62.93(1.5)h 1.03i

63.903j 0.997j

63.5748 63.5750 63.560a 63.565(6)k 0.292 0.30a

63.578i 63.57(1.5)h 12.48i

63.562j 0.313j

63.9445 63.9446 63.867a 63.865(6)k 0.235 0.14a

63.869j 0.132j

64.3862 64.3864 64.042a 0.131 0.08a

64.037j 0.0638j

aVerbockhaven and Hansen [46], CI truncated diagonalization method with relativistic corrections.
bChung [47], saddle-point CI method with relativistic corrections.
cJaskòlska and Woźnicki [52], saddle-point correlated CI method, here recalculated with the ground-state energy from Yan et al. [48].
dEderer et al. [53], absorption spectroscopy from the ground state, detection of photons.
eKiernan et al. [54], synchrotron radiation, photoion detection.
fCederquist and Mannervik [55], beam foil spectroscopy, detection of photons
gPedrotti [56], extinction spectroscopy.
hRassi et al. [49], ejected electron spectroscopy, detection of electrons.
iBrage et al. [57], nonrelativistic MCHF.
jChung [58], saddle-point CI method with relativistic corrections.
kMcIlrath and Lucatorto [50], VUV absorption spectrum from 1s22p 2P o, detection of photons.
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configurations associated with the lowest ionic limit 1s2 1Se

in Li+ are removed from the Hamiltonian matrix before
diagonalization. In other words, in the TDM, one avoids
constructing three-electron CI configurations that include two
1s orbitals. The number of configurations used in Ref. [46] to
diagonalize QHQ is larger than ours, 20 000 configurations
compared to our ∼10 000. This is because they construct CI
wave functions in terms of B-spline basis sets, which do not
exhibit the problem of linear dependencies when the basis set
is increased. However, they used a simple Hartree-Fock (HF)
approximation to represent the two-electron target state and
theP projection operator (i.e., a single configuration), while in
our method we use a fully correlated two-electron 1Se state for
Li+. This serious limitation was recognized by Verbockhaven
and Hansen [46], who suggested that their reported widths
might be affected by an error of 10%. Another difference
with the calculations reported in Ref. [46] is that we did
not include relativistic corrections (however, the magnitude
of these corrections was not reported in [46]).

In Tables III and IV we compare our results for Li with
those of Ref. [46] and other representative theoretical results
(we refer to [46] for a full list of references). A noticeable
aspect in Table III for the 2Se states is the discrepancy between
our reported widths and those obtained by other authors
[46,47]. The only available experimental value for the width
of the lowest 2Se resonance is 50 meV; ours is ∼70 meV and
other theories report a value of ∼37 meV. Interestingly, the
widths of the seven lowest 2Se states that are obtained by only
including one configuration in the Li+ target state (first column
of Table I) are 33, 6.8, 2.0, 0.15, 2.9, 1.3, and 0.62 meV, which
are in good agreement with the values reported in previous
theoretical works. This suggests that the errors of the widths
reported in [46,47] are mostly due to the use of a quasiprojector
instead of the full projector P = P0 + �P . To settle this
question, more precise experiments and additional theoretical
calculations are required.

In the case of the 2P o and 2De resonances (see Table IV), our
calculated energy positions are slightly above those obtained
with other theories and the experimental values. In this respect,
it is worth noticing that our reported energies in eV are
given relative to the best nonrelativistic value available for
the Li ground state [48] using correlated STOs. A meaningful
comparison with existing theoretical values should be made
on absolute scale, but, unfortunately, absolute energies have
not been reported in previous works. In contrast, our widths
for the 2P o and 2De resonances compare fairly well with those
obtained by other authors and with experiment.

Tables V, VI, and VII present our calculated energies Es ,
energy shifts �s , and Auger widths �s (resonance positions
are given by Es + �s) for Ne7+ resonances: 12 for the 2Se

symmetry, 12 for the 2P o symmetry, and 13 for the 2De

symmetry. At variance with Li, the convergence for Ne7+
is much faster and 7000 configurations (∼8000 for 2Se) in
the Q subspace turn out to be enough to produce converged
parameters for at least the first five or six resonances. As
expected, the effect of �P and the optical potential V

n�=s
opt

is even smaller than for Li, in particular for the lowest
2Se resonance whose width is fairly well approximated by
neglecting �P .

TABLE V. Energies, widths and energy shifts for the lowest 2Se

resonances of Ne7+, below the Ne8+ 1s2s 3S threshold located at
∼−60.7446 a.u.. The different columns show results obtained with
the quasiprojector, P0, the full projector, P0 + �P , and the latter
projector plus the polarization potential V

n �=s
opt . Numbers between

parentheses mean powers of 10; that is, x(a) = x × 10a .

P0 +�P +�P & Vopt

2Se

Energy Es

1 −69.924 705 −69.910 649 −69.910 649
2 −68.467 983 −68.461 159 −68.461 159
3 −64.493 814 −64.490 151 −64.490 151
4 −64.237 966 −64.235 483 −64.235 483
5 −63.866 757 −63.865 956 −63.865 956
6 −63.674 726 −63.673 218 −63.673 218
7 −62.722 492 −62.719 988 −62.719 988
8 −62.419 103 −62.417 849 −62.417 849
9 −62.314 878 −62.314 354 −62.314 354

10 −62.090 691 −62.090 463 −62.090 463
11 −61.892 305 −61.889 907 −61.889 907
12 −61.602 050 −61.601 778 −61.601 778

Width �s

1 4.894 609(−3) 4.252 310(−3) 4.269 312(−3)
2 1.019 109(−3) 1.128 854(−3) 1.121 754(−3)
3 1.469 632(−3) 1.297 279(−3) 1.297 878(−3)
4 8.153 126(−4) 7.408 758(−4) 7.428 670(−4)
5 9.691 857(−5) 1.090 318(−4) 1.088 390(−4)
6 1.108 557(−4) 1.351 661(−4) 1.328 509(−4)
7 6.043 355(−4) 5.509 588(−4) 5.507 438(−4)
8 3.009 324(−4) 2.706 820(−4) 2.710 401(−4)
9 2.412 345(−5) 3.175 870(−5) 3.113 609(−5)

10 4.359 345(−7) 1.692 879(−6) 1.692 457(−6)
11 3.326 019(−4) 3.086 182(−4) 3.083 624(−4)
12 6.322 974(−5) 5.689 576(−5) 5.670 167(−5)

Shift �s

1 3.699 802(−4) −3.501 276(−4) −3.652 470(−4)
2 −4.755 620(−3) −4.966 355(−3) −4.963 349(−3)
3 4.766 093(−5) −1.054 702(−4) −1.042 928(−4)
4 2.339 218(−4) 1.237 723(−4) 1.208 976(−4)
5 −4.054 414(−4) −4.642 386(−4) −4.668 882(−4)
6 −9.463 546(−4) −1.000 716(−3) −9.959 118(−4)
7 −1.056 247(−4) −1.608 655(−4) −1.605 708(−4)
8 8.760 870(−5) 4.398 725(−5) 4.335 870(−5)
9 −2.929 645(−4) −3.251 548(−4) −3.244 643(−4)

10 −8.000 863(−5) −1.013 552(−4) −1.010 787(−4)
11 −1.199 550(−4) −1.495 869(−4) −1.491 098(−4)
12 1.321742(−6) −1.028 244(−5) −1.089 415(−5)

The number of theoretical works on autoionizing states
of Ne7+ is very scarce. To our knowledge, there are only
three works available [60–62] based on the use of the
saddle-point method. Kramida and Ivanov [63] have compiled
experimental data for Ne7+ and performed some computations
using Vainshtein’s MZ codes [64] and Cowan’s programs [65]
to interpret the assignment of observed transition lines. In
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TABLE VI. Energies, widths and energy shifts for the lowest 12
2P o resonances of Ne7+, below the Ne8+ 1s2s 3S threshold located
at ∼−60.7446 a.u.. The different columns show results obtained
with the quasiprojector, P0, the full projector, P0 + �P , and the
latter projector plus the polarization potential V n �=s

opt . Numbers between
parentheses mean powers of 10; that is, x(a) = x × 10a .

P0 +�P +�P & Vopt

2P o

Energy Es

1 −69.333 41 −69.333 26 −69.333 26
2 −69.114 18 −69.114 17 −69.114 17
3 −64.445 69 −64.445 67 −64.445 67
4 −64.121 08 −64.120 92 −64.120 92
5 −64.030 50 −64.030 18 −64.030 18
6 −63.901 96 −63.901 84 −63.901 84
7 −63.796 26 −63.796 23 −63.796 23
8 −63.565 72 −63.565 70 −63.565 70
9 −62.724 56 −62.724 55 −62.724 55

10 −62.396 33 −62.395 46 −62.395 46
11 −62.353 65 −62.353 24 −62.353 24
12 −62.275 73 −62.275 72 −62.275 72

Width �s

1 1.691 274(−4) 1.690 092(−4) 1.643 188(−4)
2 2.128 602(−3) 2.128 571(−3) 2.132 957(−3)
3 3.157 598(−5) 3.161 926(−5) 3.173 868(−5)
4 5.316 022(−7) 4.584 772(−7) 6.251 708(−7)
5 8.040 476(−4) 8.065 038(−4) 8.079 433(−4)
6 1.689 050(−4) 1.673 312(−4) 1.658 195(−4)
7 4.459 518(−6) 4.395 444(−6) 4.342 631(−6)
8 2.430 830(−6) 2.457 976(−6) 2.441 934(−6)
9 3.658 605(−5) 3.656 545(−5) 3.658 070(−5)

10 5.409 124(−5) 5.147 872(−5) 5.157 439(−5)
11 2.992 349(−4) 3.044 220(−4) 3.045 857(−4)
12 4.497 584(−7) 4.873 757(−7) 4.787 996(−7)

Shift �s

1 2.413 462(−3) 2.413 451(−3) 2.411 143(−3)
2 8.934 335(−5) 8.889 332(−5) 9.080 107(−5)
3 7.778 932(−5) 7.779 942(−5) 7.767 047(−5)
4 1.870 044(−4) 1.884 983(−4) 1.870 056(−4)
5 5.976 183(−4) 5.952 459(−4) 5.962 961(−4)
6 6.521 083(−5) 6.622 074(−5) 6.664 819(−5)
7 1.489 796(−5) 1.508 387(−5) 1.514 836(−5)
8 3.211 098(−4) 3.209 863(−4) 3.211 344(−4)
9 2.911 952(−5) 2.915 550(−5) 2.916 125(−5)

10 −3.588 942(−6) −3.540 663(−6) −3.488 289(−6)
11 2.506 461(−4) 2.499 749(−4) 2.498 536(−4)
12 2.001 742(−6) 1.967 549(−6) 1.973 520(−6)

Table VIII we compare our data in eV with other available
theoretical results and with experimental results from NIST
compiled by Kramida and Ivanov [63]. It can be seen that
our results compare fairly well with the existing data. We
have also included in Table VIII the predictions obtained by
the saddle-point method [61,62] when relativistic corrections
are taken into account. We could not find in the literature
a better value for the ground-state energy of Ne8+ (with
relativistic corrections) than the one calculated by Chung
[59] and this value was used with the resonance energies

TABLE VII. Energies, widths, and energy shifts for the lowest 12
2De resonances of Ne7+, below the Ne8+ 1s2s 3S threshold located
at ∼−60.7446 a.u.. The different columns show results obtained
with the quasiprojector, P0, the full projector, P0 + �P , and the
latter projector plus the polarization potential V n �=s

opt . Numbers between
parentheses mean powers of 10; that is, x(a) = x × 10a .

P0 +�P +�P & Vopt

2De

Energy Es

1 −68.891 89 −68.891 89 −68.891 89
2 −64.260 78 −64.260 78 −64.260 78
3 −63.954 02 −63.954 02 −63.954 02
4 −63.920 31 −63.920 30 −63.920 30
5 −63.729 06 −63.729 06 −63.729 06
6 −62.675 42 −62.675 42 −62.675 42
7 −62.310 63 −62.310 63 −62.310 63
8 −62.302 42 −62.302 41 −62.302 41
9 −62.172 39 −62.172 39 −62.172 39

10 −62.068 82 −62.068 82 −62.068 82
11 −61.940 86 −61.940 85 −61.940 85
12 −61.559 67 −61.559 66 −61.559 66

Width �s

1 3.194 127(−3) 3.194 142(−3) 3.192 746(−3)
2 1.123 234(−4) 1.123 333(−4) 1.119 912(−4)
3 2.804 081(−5) 2.804 081(−5) 2.743 577(−5)
4 4.149 861(−4) 4.149 813(−4) 4.144 623(−4)
5 8.747 417(−4) 8.747 355(−4) 8.758 858(−4)
6 2.394 918(−5) 2.395 017(−5) 2.393 616(−5)
7 3.325 807(−4) 3.325 761(−4) 3.320 086(−4)
8 7.332 321(−6) 7.329 808(−6) 7.866 038(−6)
9 1.901 330(−9) 1.899 660(−9) 2.094 176(−9)

10 2.429 795(−4) 2.429 773(−4) 2.430964(−4)
11 4.984 582(−6) 4.984 551(−6) 4.999 672(−6)
12 1.840 667(−4) 1.842 297(−4) 1.841 458(−4)

Shift �s

1 1.122 062(−3) 1.122 080(−3) 1.122 414(−3)
2 7.326 813(−5) 7.326 550(−5) 7.329 864(−5)
3 1.037 055(−4) 1.037 058(−4) 1.036 631(−4)
4 1.442 213(−4) 1.442 228(−4) 1.446 739(−4)
5 1.985 504(−4) 1.985 531(−4) 1.982 598(−4)
6 1.895 758(−5) 1.895 943(−5) 1.895 916(−5)
7 1.217 880(−4) 1.217 872(−4) 1.217 630(−4)
8 3.216 047(−5) 3.216 818(−5) 3.224 025(−5)
9 6.999 764(−6) 6.999 801(−6) 7.000 429(−6)

10 4.987 502(−5) 4.987 596(−5) 4.982 772(−5)
11 8.637 081(−6) 8.640 592(−6) 8.636 653(−6)
12 8.292 269(−5) 8.294 523(−5) 8.305 816(−5)

given in Refs. [61,62] to compose the relativistic values
quoted in Table VIII. These relativistic positions clearly
overestimate the experimental values, but the reason remains
unclear to us, unless a better correct value for the ground
state is available. However, nonrelativistic values seem to
provide good precisions for positions and widths to compare
with experimental data. We cannot judge the quality of the
theoretical results given in Ref. [63] since there are no specific
details on the computational procedure and a further analysis
would be only a guess.
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TABLE VIII. Comparison of the lowest 2Se, 2P o, and 2De Ne7+ resonance parameters obtained with our approach, other theoretical
calculations, and experimental values. Our values are reported relative to the nonrelativistic variational energy for the Ne7+ 1s22s 2Se ground
state (−102.682 231 482 398 a.u.) from Yan et al. [48]. For relativistic values of energy positions denoted with (r) we make use of the relativistic
ground-state energy (−102.804 800 322 a.u.) given by Chung [59]. Energy values are given in eV and widths are reported in meV by using
the conversion factor 1 a.u. = 27.211 383 86M/(M + me) = 27.210 644 eV. Experimental values are taken from NIST [66] as compiled by
Kramida and Ivanov [63].

Es (eV)

This work �s (meV)

Es Es + �s Other works Experiment This work Other works Experiment

2Se

891.736 891.726 891.078c 891.5207 116.2 81.1c

931.177 931.042 930.778c 932.1875 30.52 11.3c

1039.231 1039.228 1039.112 35.32
1046.161 1046.164 1045.063 20.21
1056.216 1056.203 1057.337 2.962
1061.460 1061.433 3.615
1087.398 1087.394 14.99
1095.620 1095.621 7.375
1098.436 1098.427 0.847
1104.528 1104.526 0.0461
1109.985 1109.981 8.391
2P o

907.447 907.513 907.376a 907.899 4.47 6.12a

907.295; 908.292(r)b 4.0b

907.273; 908.243(r)c 3.9c

908.023d

913.409 913.411 913.148; 914.164(r)b 913.912 58.0 52.94a

913.147; 914.134(r)c 51.3b

913.946d 53.5c

1040.44 1040.44 1040.648d 1041.59 0.864
1049.28 1049.28 1049.906d 1050.15 0.0170
1051.74 1051.76 1051.163d 1052.13 21.9
1055.24 1055.24 4.51
1058.11 1058.11 1057.09 0.118
1064.39 1064.39 0.0664
1087.27 1087.27 0.995
1096.23 1096.23 1.40
1097.38 1097.38 8.29
1099.49 1099.49 0.0130
2De

919.457 919.487 919.324;920.568(r)b 920.384 86.9 77.8b

919.323;920.530(r)c 77.5c

920.451d

1045.47 1045.47 1045.77d 1046.01 3.06
1053.82 1053.82 1054.11 0.763
1054.74 1054.74 1054.87d 1054.86 11.3
1059.94 1059.95 1059.76d 1060.07 23.8
1088.61 1088.61 1089.15d 1089.08 0.652
1098.54 1098.54 9.03
1098.76 1098.76 0.200
1102.30 1102.30 5.17 × 10−5

1105.12 1105.12 6.61
1108.60 1108.60 0.136
1118.97 1118.97 5.01
1119.09 1119.09 0.355

aWu and Xi [60], nonrelativistic saddle-point with R-matrix method.
bGou and Deng [61], saddle-point with complex rotation method (nonrelativistic and with relativistic corrections).
cZhu et al. [62], saddle-point with complex rotation method (nonrelativistic and with relativistic corrections).
dKramida and Ivanov [63], compilation and fitting of experimental data, and theoretical predictions using MZ and Cowan’s codes.
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IV. CONCLUSION

We have presented a method for computing resonant states
of three-electron atomic systems, which is based on the
Feshbach projection formalism and includes ingredients that
are usually neglected in implementations of this formalism:
(i) the term that guarantees idempotency of the projection
operators, (ii) the nonresonant optical potential and (iii) a
proper converged description of the target state. The method
has been used to compute energy positions and autoionization
widths of the lowest 2Se, 2P o, and 2De autoionizing states of Li
and Ne7+, for which electron correlation is expected to play
a quite different role. We have shown that inclusion of these
extra terms play a minor role in the evaluation of the resonant
positions. In contrast, for the 2Se states of Li, the neglect of (iii)
can lead to errors in the autoionization widths as large as 100%.
A similar conclusion was anticipated in 1986 by Berk et al. [33]
for the 2Se resonances of He−, but the limited capacity of the
computer resources available in those days prevented these

authors from performing an accurate evaluation of the different
terms. At variance with Li, our results for Ne7+ show that the
contribution of the extra terms (i) and (ii) is almost irrelevant.
Implementation of the present approach with other basis sets,
such as B splines, and inclusion of relativistic corrections is in
progress.
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6635 (1987).
[37] A. Macı́as, F. Martı́n, A. Riera, and M. Yáñez, J. Chem. Phys.
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