Complete Feshbach-type calculations of energy positions and widths of autoionizing states in Li-like atoms

Juan Carlos Cardona, ${ }^{1}$ José Luis Sanz-Vicario, ${ }^{1,{ }^{*}}$ and Fernando Martín ${ }^{2}$
${ }^{1}$ Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia
${ }^{2}$ Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Received 13 April 2010; published 3 August 2010)

Abstract

Applications of the Feshbach formalism to systems of more than two active electrons are very scarce due to practical limitations in the construction of the projection operators \mathcal{P} and \mathcal{Q} that are inherent to the theory. As a consequence, most previous applications rely on the use of approximate quasiprojection operators, whose theoretical justification is not yet clear. In this work, an implementation of the Feshbach formalism for threeelectron atoms is presented that includes all the ingredients of the original formalism. Energy positions and autoionization widths of the lowest ${ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e}$ autoionizing states of Li and Ne^{7+} have been evaluated. The results show that the use of quasiprojection operators is justified for the evaluation of resonant positions. However, for the ${ }^{2} S^{e}$ states of Li , the use of quasiprojection operators can lead to errors in the autoionization widths of the order of 100%.

DOI: 10.1103/PhysRevA.82.022501
PACS number(s): 31.15.ac, 32.80.Zb, 31.15.vj

I. INTRODUCTION

Recent advances in the generation of subfemtosecond laser pulses and subsequently in attosecond metrology have opened up the way to photodynamical studies of short-living metastable states at the atomic time scale. Probing with attosecond pulses has revealed the excitation and relaxation dynamics of core-excited atoms [1,2] and more specifically the time-evolution of autoionizing states [3]. In particular, ultrafast probing of localization of inner holes in molecules is receiving a great deal of attention [4]. These advances call for theoretical methods that can provide an accurate description of autoionizing states in many-electron atoms in both stationary and dynamical pictures.

Among these, the Feshbach projection-operator formalism [5] has been successfully used in the past to evaluate resonance parameters of two-electron systems (see, e.g., [6,7] and references therein). This method provides a rigorous procedure for decomposing the total wave function into its resonant and nonresonant parts through the use of \mathcal{Q} and \mathcal{P} orthogonal projection operators. However, the explicit construction of these operators for systems with three or more electrons poses practical difficulties. Thus, prescriptions based on the use of quasiprojectors have been derived and applied by relaxing the idempotency condition inherent in true projection operators [6,8-13]. Procedures for separating the resonant and nonresonant components of the scattering wave function without explicit use of Feshbach projectors have also been proposed [14,15], with some reported results for He^{-}[16], but their applicability to three or more electron systems depends very much on the specific atom under consideration.

Alternatively, the saddle-point method proposed by Chung [17] has proven to be effective and accurate to evaluate resonance positions in two- and three-electron systems with one or more holes in the inner shells. These holes are built directly into the variational wave function [18] through
*sanjose@fisica.udea.edu.co
hole-projection operators. In spite of this success, results for autoionization widths are still very scarce. Also, a rigorous foundation of the method is missing, which has led to some controversy [19-22].

At variance, complex scaling methods remain in general valid without considerable restrictions when applied to manyelectron atomic systems. In this method, all radial coordinates are rotated in the complex plane through the transformation $r_{i} \rightarrow r_{i} e^{i \theta}$, where θ is the rotation angle. In this way, energy positions E_{s}, which directly include the correction due to the energy shift (see the following), and widths Γ_{s} are directly obtained from the real and imaginary parts of complex eigenvalues associated with a generalized complex symmetric eigenvalue problem; that is, $E=E_{s}+i \Gamma_{s} / 2$. This approach has been used by many authors (for reviews on the subject, see [23-25]) and more recently by one of us to calculate resonance positions and widths, as well as the photodetachment spectra of three-(active)-electron negative ions like He^{-}[26], Be^{-} [27], Mg^{-}, and Ca^{-}[28]. In spite of the huge success of this approach, the performance of this kind of methods in time-dependent pictures is still uncertain, at variance with the well established time-dependent close-coupling methods (see, e.g., [29] and new developments in time-dependent R-matrix theory [30]) which make explicit use of atomic eigenstates associated with the true (non-complex-rotated) Hamiltonian. In the last few years, time-dependent close-coupling methods that make use of Feshbach states have been shown to be a powerful approach to describing the time evolution of the autoionizing decay in two-electron systems [31]. Therefore, investigations on the applicability of the Feshbach method for obtaining resonance parameters in many-electron systems is the necessary first step before going into the time domain.

The aim of this work is to apply the Feshbach formalism to three-electron atomic systems, essentially without approximations, apart from the obvious one which is truncation of the basis set. As mentioned earlier, most existing approximations are related to the construction of the \mathcal{P} projector, which is precisely the fundamental tool in Feshbach's theory. Feshbach himself [5] provided in his seminal 1962 article a general
prescription for building the \mathcal{P} projector. More than 20 years later, Temkin and Bhatia [6,32] proposed the first practical way to construct projection operators for three-electron systems. With the exception of the work of Berk et al. [33] on the He^{-}resonances, we are unaware of published work using the full \mathcal{P} projector. Nevertheless, the results of Berk et al. are intriguing since the resonance positions obtained with the full projector compare worse with experiment than those obtained with a quasiprojector in which several terms are removed from \mathcal{P}. That is why most calculations for three-electron atomic systems have been performed with quasiprojectors. However, a detailed investigation of the importance of the different terms in the \mathcal{P} projector is still lacking. A first attempt toward this goal in Li-like atoms can be found in Ref. [34], although the reported calculations were performed with the simplest possible description of the remaining ion (a single configuration in terms of pure hydrogenic functions) and with a rather small basis set, so that no relevant conclusion on this particular issue could be obtained.

In this work we have used a computational method that allows us to perform complete Feshbach calculations that include the full projection operators and the optical polarization potential that appears in the rigorous theory. Contributions of the different terms to the energy positions and Auger widths are quantitatively evaluated for Li and Ne^{7+}. The much more correlated He^{-}system will be the subject of future investigations.

This article is organized as follows. In Sec. II, we present a short description of the Feshbach method and our implementation for three-electron atoms. We will emphasize those aspects related to the construction of the projector operator \mathcal{P}. In Sec. III we present our results for energy positions, energy shifts, and widths for the ${ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e}$ doubly excited states of Li and Ne^{7+} lying below the first excitation threshold of the remaining ions Li^{+}and Ne^{8+}. We end up with some conclusions in Sec. IV. Atomic units are used throughout unless otherwise stated.

II. THEORY

A. Feshbach projection formalism

We will not dig into all the details of the Feshbach theory, which can be found elsewhere [5,6], but only into those that are of interest in the present work. The foundation of the Feshbach projection-operator formalism stems from the definition of projection operators \mathcal{P} and \mathcal{Q} which split the total wave function into nonresonant scatteringlike $\mathcal{P} \Psi$ and resonant quadratically integrable $\mathcal{Q} \Psi$ parts, such that $\Psi=$ $\mathcal{P} \Psi+\mathcal{Q} \Psi$. These projector operators must satisfy conditions of completeness $(\mathcal{P}+\mathcal{Q}=1)$, idempotency ($\mathcal{P}^{2}=\mathcal{P}$ and $\left.\mathcal{Q}^{2}=\mathcal{Q}\right)$, and orthogonality $(\mathcal{P Q}=0)$. The projected wave functions must satisfy the asymptotic boundary conditions $\lim _{r_{i} \rightarrow \infty} \mathcal{P} \Psi=\Psi$ and $\lim _{r_{i} \rightarrow \infty} \mathcal{Q} \Psi=0$.

Starting from the Schrödinger equation $H \Psi=E \Psi$ and the aforementioned splitting of the total wave function, a formal equation for $\mathcal{P} \Psi$ easily arises,

$$
\begin{equation*}
\left(\mathcal{P} H \mathcal{P}+V_{\mathrm{opt}}-E\right) \mathcal{P} \Psi=0 \tag{1}
\end{equation*}
$$

where the nonlocal generalized optical potential $V_{\text {opt }}$ reads

$$
\begin{equation*}
V_{\mathrm{opt}}(E)=\mathcal{P} H \mathcal{Q}(E-\mathcal{Q} H \mathcal{Q})^{-1} \mathcal{Q} H \mathcal{P} \tag{2}
\end{equation*}
$$

This optical potential may be expanded in terms of the eigensolutions Φ_{n} of the projected Hamiltonian $\mathcal{Q H Q}$:

$$
\begin{equation*}
\left(\mathcal{Q H \mathcal { Q }}-\mathcal{E}_{n}\right) \Phi_{n}=0, \tag{3}
\end{equation*}
$$

where the \mathcal{E}_{n} eigenvalues are close to the true resonance energies.

For an energy $E \sim \mathcal{E}_{s}$ (close to an isolated resonant state s) the optical potential may be separated into two components,

$$
\begin{align*}
V_{\mathrm{opt}}(E)= & V_{\mathrm{opt}}^{s}(E)+V_{\mathrm{opt}}^{n \neq s}(E)=\mathcal{P} H \mathcal{Q} \frac{\left|\Phi_{s}\right\rangle\left\langle\Phi_{s}\right|}{E-\mathcal{E}_{s}} \mathcal{Q} H \mathcal{P} \\
& +\sum_{n \neq s} \mathcal{P} H \mathcal{Q} \frac{\left|\Phi_{n}\right\rangle\left\langle\Phi_{n}\right|}{E-\mathcal{E}_{n}} \mathcal{Q} H \mathcal{P} \tag{4}
\end{align*}
$$

so that Eq. (1) for $\mathcal{P} \Psi$ can now be written in the form

$$
\begin{equation*}
\left(\mathcal{P} H^{\prime} \mathcal{P}-E\right) \mathcal{P} \Psi=-V_{\mathrm{opt}}^{s} \mathcal{P} \Psi, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
H^{\prime}=H+V_{\mathrm{opt}}^{n \neq s} \tag{6}
\end{equation*}
$$

A formal solution to Eq. (5) can be written by using the Lippman-Schwinger equation in terms of the solution $\mathcal{P} \Psi^{0}$ of its related homogeneous scattering equation (nonresonant continuum),

$$
\begin{equation*}
\left(\mathcal{P} H^{\prime} \mathcal{P}-E\right) \mathcal{P} \Psi^{0}=0 \tag{7}
\end{equation*}
$$

and the Green function,

$$
\begin{equation*}
G_{P}^{s}(E)=\mathrm{P}\left(\frac{1}{E-\mathcal{P} H^{\prime} \mathcal{P}}\right)+i \pi \delta\left(E-\mathcal{P} H^{\prime} \mathcal{P}\right) \tag{8}
\end{equation*}
$$

where P stands for the Cauchy principal value. In this way, the solution $\mathcal{P} \Psi$ resulting from Eq. (5) reads

$$
\begin{align*}
\mathcal{P} \Psi= & \mathcal{P} \Psi^{0}+G_{P}^{s}(E) \\
& \times \frac{\mathcal{P} H \mathcal{Q}\left|\Phi_{s}\right\rangle\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P}\left|\mathcal{P} \Psi^{0}\right\rangle}{E-\mathcal{E}_{s}-\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P} G_{P}^{s}(E) \mathcal{P} H \mathcal{Q}\left|\Phi_{s}\right\rangle} \tag{9}
\end{align*}
$$

The resonant contribution to the electronic continuum comes from the second term of the latter equation. In the vicinity of the s resonance, this contribution has a total width Γ_{s} given by

$$
\begin{equation*}
\Gamma_{s}=2 \pi\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P} \delta\left(E_{s}-\mathcal{P} H^{\prime} \mathcal{P}\right) \mathcal{P} H \mathcal{Q}\left|\Phi_{s}\right\rangle \tag{10}
\end{equation*}
$$

and is centered at an energy $E=\mathcal{E}_{s}+\Delta_{s}$, where Δ_{s} is an energy shift given by

$$
\begin{equation*}
\Delta_{s}=\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P} \mathrm{P}\left(\frac{1}{E_{s}-\mathcal{P} H^{\prime} \mathcal{P}}\right) \mathcal{P} H \mathcal{Q}\left|\Phi_{s}\right\rangle \tag{11}
\end{equation*}
$$

Introducing the resolvent $1 /\left(E-\mathcal{P} H^{\prime} \mathcal{P}\right)$ written in terms of the eigensolutions of $\mathcal{P} H^{\prime} \mathcal{P}$, one finally arrives at expressions for the width and the energy shift suitable for computational purposes:

$$
\begin{equation*}
\left.\Gamma_{s}=2 \pi\left|\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P}\right| \mathcal{P} \Psi^{0}\left(E=E_{s}\right)\right\rangle\left.\right|^{2} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{s}=\sum \int_{E^{\prime} \neq E_{s}} d E^{\prime} \frac{\left.\left|\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P}\right| \mathcal{P} \Psi^{0}\left(E^{\prime}\right)\right\rangle\left.\right|^{2}}{E_{s}-E^{\prime}} \tag{13}
\end{equation*}
$$

As the actual position of the s resonance is $E_{s}=\mathcal{E}_{s}+\Delta_{s}$, the eigenvalues of $\mathcal{Q H Q}$ are (usually very good) approximations for this position. The nonresonant contribution to the optical potential in the Hamiltonian $H^{\prime}, V_{\mathrm{opt}}^{n \neq s}$ [see Eq. (6)] has been included in previous Feshbach-like calculations for two-electron systems [7] but never for three-electron atoms. It contributes to second order in $\mathcal{Q H P}$ to $\mathcal{P} \Psi$, to second order to the widths, and to fourth order to the energy shifts. It represents polarization of the two-electron ionic system and is usually small when all resonances lie very far away from each other.

B. Projection operators

As mentioned earlier, in Feshbach theory, the projection operators \mathcal{P} and \mathcal{Q} are not univocally defined but must satisfy specific mathematical conditions. Feshbach [5] and later Temkin and Bhatia [32] proposed a rigorous construction procedure of these operators that is valid for any many-electron atom. For an N-electron system, the complete expression of the \mathcal{P} projector for the case of autoionizing states lying below the first excited state of the ionized system (i.e., below the second ionization threshold) reads [5]

$$
\begin{equation*}
\mathcal{P}=\sum_{i=1}^{N}\left|\psi_{0}\left(\mathbf{x}^{(i)}\right)\right\rangle\left[1+\sum_{\lambda_{\alpha} \neq 1} \frac{\left|v_{\alpha}\left(\mathbf{x}_{i}\right)\right\rangle\left\langle v_{\alpha}\left(\mathbf{x}_{i}\right)\right|}{\lambda_{\alpha}-1}\right]\left\langle\psi_{0}\left(\mathbf{x}^{(i)}\right)\right| \tag{14}
\end{equation*}
$$

where $\mathbf{x}^{(i)}$ stands for the collection of all coordinates $\mathbf{x}_{k}=$ $\left(r_{k}, \Omega_{k}, s_{k}\right)$ (radial r_{k}, angular Ω_{k}, and spin s_{k} coordinates) for the N electrons $(k=1,2, \ldots, N)$ with only the coordinate \mathbf{x}_{i} of the i th electron excluded, ψ_{0} corresponds to the (fully antisymmetric) wave function of the ionized atom (hereafter called target wave function), and the $v_{\alpha}\left(\mathbf{x}_{i}\right)$ one-electron wave functions are the eigensolutions (and λ_{α} the eigenvalues) of the integral equation

$$
\begin{equation*}
v_{\alpha}\left(\mathbf{x}_{i}\right)=\lambda_{\alpha} \int K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) v_{\alpha}\left(\mathbf{x}_{j}\right) d \mathbf{x}_{j} \tag{15}
\end{equation*}
$$

with the kernel function defined as $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=$ $N\left\langle\psi_{0}\left(\mathbf{x}^{(i)}\right) \mid \psi_{0}\left(\mathbf{x}^{(j)}\right)\right\rangle$. The intricacies involved in the solution of the latter integral equation for arbitrary expansions of the target wave function has led in most cases to drop the sum over λ_{α} in Eq. (14). In this work, we solve this equation by expanding the one-electron v_{α} functions in terms of the very same one-electron basis used to build the target configuration interaction (CI) wave function. The integral equation thus turns into an algebraic eigenvalue problem $\left(\mathbf{K} \cdot \mathbf{S}-\lambda^{-1}\right) \cdot \mathbf{C}=0$ that can be solved straightforwardly.

It has been demonstrated [32] that the preceding form of the projection operator (14) guarantees its idempotency, but only when the operators are computed as matrix elements of antisymmetrized wave functions. Hereafter we frequently use the notation $\mathcal{P}=\mathcal{P}^{(0)}+\Delta \mathcal{P}$ to denote the two terms in the \mathcal{P} projection operator (14). If one removes the second term $\Delta \mathcal{P}$, idempotency is lost and the projector becomes instead a socalled quasiprojector. Almost all calculations carried out with Feshbach-like formalisms in three-electron atoms have made use of quasiprojectors. Neglect of $\Delta \mathcal{P}$ is an approximation that works better as the nuclear charge Z increases, since
this term scales as $\sim 1 / Z$. It must be stressed that when a single configuration built upon hydrogenic functions is used to describe the target $1 s^{2}$ state, $\Delta \mathcal{P}=0$ and \mathcal{P} reduces identically to $\mathcal{P}^{(0)}$, since all λ_{α} eigenvalues are equal to unity. However, this choice [34] turns out to be a rather poor approximation for the description of the target state.

In this work we use a CI wave function for the target ground state, in which the configurations are built from a basis of Slater-type orbitals (STOs). Berk et al. [33] used Hylleraas-type correlated configurations from which they could only obtain an approximate description of $\Delta \mathcal{P}$. They compared results for resonant positions in He^{-}computed with the complete projector and with the quasiprojector, and, surprisingly, those with the full projector compared worse with the experiment. Unfortunately, energy shifts were not calculated, so it is difficult to say if the origin of the discrepancy is due to the neglect of these energy shifts or to the approximations made to describe $\Delta \mathcal{P}$. With our method we can compute energy shifts very easily and describe $\Delta \mathcal{P}$ very accurately within the same subspace as that used to build the two-electron configurations of the target state.

C. Pseudopotential method

A Phillips-Kleinman pseudopotential approach was introduced by Martín et al. [35] as an alternative but equivalent way of solving Eq. (3) that avoids explicit projection of the basis set onto the \mathcal{Q} subspace. In this method, instead of $\mathcal{Q H \mathcal { Q }}$, one uses the effective Hamiltonian $H_{\text {eff }}$:

$$
\begin{equation*}
H_{\mathrm{eff}}=H+M \mathcal{P} \tag{16}
\end{equation*}
$$

where M is a very large number. This Hamiltonian projects upward in energy (up to $E \sim M$, that is, well above the \mathcal{Q} states) all eigenstates associated with the \mathcal{P} subspace. In the limit $M \rightarrow \infty$, the solutions obtained for the \mathcal{Q} states are identical to those arising from Eq. (3). The main practical issue with the pseudopotential approach is that partition into $\mathcal{Q H Q}$ and $\mathcal{P} H \mathcal{P}$ is no longer necessary and the $\mathcal{Q H Q}$ resonance eigenvalues are directly obtained from the diagonalization of $H_{\text {eff }}$ in the CI basis. In this way, explicit projection onto the \mathcal{Q} subspace is avoided and only construction of the \mathcal{P} operator is required. Applications of this method have so far been restricted to one-electron targets [36,37] for which the projector is known exactly. Recently, this pseudopotential approach has been used to compute autoionizing states in Be-like atomic systems in order to remove the unphysical Rydberg series of virtual core states [38].

D. Three-electron calculations

We have implemented a three-electron code [39], following the general approach proposed by Yan and Drake [40], but for uncorrelated radial configurations. The three-electron CI wave function Ψ is expanded in terms of antisymmetrized configurations $\left\{\omega_{n}\right\}_{n=1}^{N_{3}}$ (N_{3} is the number of three-electron configurations), with $\omega_{n}=\mathcal{A} W_{n}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$, where \mathcal{A} is the antisymmetrization operator defined as $\mathcal{A}=\sum_{p=1}^{6} \epsilon_{p} \mathcal{P}^{p}=$ (1) $-(12)-(13)-(23)+(123)+(132)$. Note that $\mathbf{x}_{i}=$ $\left(\mathbf{r}_{i}, s_{i}\right)$ refers to all coordinates (space and spin) of the i th electron. Thus a single configuration may be written as
$\omega_{n}=\mathcal{A} W_{n}=\sum_{p=1}^{6} \phi_{n}^{p} \chi^{p}$, where ϕ_{n}^{p} and χ^{p} correspond to a particular permutation of the space coordinate function and the spin function, respectively. For a symmetric spin-independent operator O, the computation of matrix elements between two configurations reduces to calculating some particular integrals. For instance, in the case of spin doublets (the explicit spin function is given in what follows) the matrix element reads $\left\langle\omega_{i}\right| O\left|\omega_{j}\right\rangle=12 O_{i j}^{11}+12 O_{i j}^{12}-6 O_{i j}^{13}-6 O_{i j}^{14}-$ $6 O_{i j}^{15}-6 O_{i j}^{16}$, where $O_{i j}^{p^{\prime} p}=\left\langle\phi_{i}^{p^{\prime}}\right| O\left|\phi_{j}^{p}\right\rangle$. Consequently, only one permutation is required in the bra configuration. The explicit form of W_{n} reads

$$
\begin{align*}
W_{n}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)= & R_{n}\left(r_{1}, r_{2}, r_{3}\right) \cdot \mathcal{Y}_{L M_{L}}^{\left(\ell_{1}, \ell_{2}\right) \ell_{12}, \ell_{3}}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) \\
& \cdot \chi^{S, M_{S}}\left(s_{1}, s_{2}, s_{3}\right) \tag{17}
\end{align*}
$$

where the radial part is a product of STOs, $R_{n}\left(r_{1}, r_{2}, r_{3}\right)=$ $r_{1}^{j_{1}} r_{2}^{j_{2}} r_{3}^{j_{3}} e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}}$ (which allows for analytical evaluation of all radial integrals), and the coupled angular part is given by

$$
\begin{align*}
& \mathcal{Y}_{L M_{L}}^{\left(\ell_{1}, \ell_{2}\right) \ell_{12}, \ell_{3}}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) \\
& \quad=(-)^{\ell_{1}-\ell_{2}+m_{12}+\ell_{12}-\ell_{3}+M}\left[\ell_{12}, L\right]^{1 / 2} \\
& \quad \times \sum_{\text {all } m_{i}}\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{12} \\
m_{1} & m_{2} & -m_{12}
\end{array}\right)\left(\begin{array}{ccc}
\ell_{12} & \ell_{3} & L \\
m_{12} & m_{3} & -M
\end{array}\right) \\
& \quad \times \mathcal{Y}_{\ell_{1}, m_{1}}\left(\Omega_{1}\right) \mathcal{Y}_{\ell_{2}, m_{2}}\left(\Omega_{2}\right) \mathcal{Y}_{\ell_{3}, m_{3}}\left(\Omega_{3}\right) \tag{18}
\end{align*}
$$

In Eq. (17) the label n represents all indexes associated with a single configuration; that is, $n \equiv$ $\left\{j_{1}(n), j_{2}(n), j_{3}(n), \alpha_{n}, \beta_{n}, \gamma_{n}, \ell_{1}, \ell_{2}, \ell_{3}\right\}$. In this work, we only consider spin doublets and, consequently, we only use one spin eigenfunction associated with this symmetry, namely, $\chi^{1 / 2,1 / 2}\left(s_{1}, s_{2}, s_{3}\right)=\alpha\left(s_{1}\right) \beta\left(s_{2}\right) \alpha\left(s_{3}\right)-\beta\left(s_{1}\right) \alpha\left(s_{2}\right) \alpha\left(s_{3}\right)$. This suffices to achieve convergence in large CI expansions [41]. All angular integrals are analytical and were evaluated using graphical methods for angular momentum [42]. We do not include relativistic corrections since they are expected to be negligible for the light ions considered in this work ($Z=3-10$).

E. Construction of $\boldsymbol{M P}$ matrix elements

As discussed in Sec. II B the correct Feshbach projector contains two parts. We may restrict our projection operator \mathcal{P} to the first term in Eq. (14), that is, a quasiprojector \mathcal{P}^{0}, or to include additionally the second term, $\mathcal{P}^{0}+\Delta \mathcal{P}$. In both cases, the target wave function ψ_{0} is computed in terms of a two-electron CI expansion with components $\left\{\varphi_{n}\right\}_{n=1}^{N_{2}}\left(N_{2}\right.$ is the number of two-electron configurations), where $\varphi_{n}=$ $\mathcal{A} U_{n}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and U_{n} is given by

$$
\begin{equation*}
U_{n}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=S_{n}\left(r_{1}, r_{2}\right) \mathcal{Y}_{\ell_{12} m_{12}}^{\left(\ell_{1}, \ell_{2}\right) \ell_{12}}\left(\Omega_{1}, \Omega_{2}\right) \chi^{S, M_{S}}\left(s_{1}, s_{2}\right) \tag{19}
\end{equation*}
$$

with $S_{n}\left(r_{1}, r_{2}\right)=r_{1}^{j_{1}} r_{2}^{j_{2}} e^{-\alpha r_{1}-\beta r_{2}}$ and the angular part may be deduced from Eq. (18). The second term in the projection operator poses no difficulties since we use the same STO basis to build the $\left\{S_{n}\right\}_{n=1}^{N_{2}}$ configurations and the one-electron v_{α} functions.

In calculating the matrix elements for \mathcal{P} we use the fact that $[\mathcal{P}, \mathcal{A}]=0$ and consequently one arrives at the identity
$\left\langle\omega_{i}\right| \mathcal{P}\left|\omega_{j}\right\rangle=\left\langle\mathcal{P} W_{i} \mid \mathcal{A} W_{j}\right\rangle$. Thus, it is sufficient to apply the antisymmetrizer on the ket and the projector \mathcal{P} on the bra, both onto nonantisymmetrized functions W_{n}, which results very convenient for computational purposes. After spin projection for each permutation, projection onto the correct angular momentum components by using graphical techniques is straightforward. The radial functions S_{n} are chosen again as STOs, so that all radial integrals in the projection are analytical, as described in $[38,43]$.

F. Building the \mathcal{P} subspace

To construct the nonresonant \mathcal{P} subspace, we solve Eq. (7) in a basis of configurations that is orthogonal to the \mathcal{Q} subspace. This basis contains configurations of the form

$$
\begin{equation*}
\varpi_{k}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\mathcal{A}\left(\psi_{0}\left(\mathbf{x}^{(3)}\right) v_{k}\left(\mathbf{x}_{3}\right)\right) \tag{20}
\end{equation*}
$$

where $\psi_{0}\left(\mathbf{x}^{(3)}\right)$ (using the notation $\mathbf{x}^{(i)}$ introduced in Sec. II B) is the target eigenfunction that was used to build the projection operator \mathcal{P} and $v_{k}\left(\mathbf{x}_{3}\right)=r_{3}^{j_{k}+\ell_{3}} e^{-\gamma_{k} r_{3}} \mathcal{Y}_{\ell_{3}, m_{3}}\left(\Omega_{3}\right) \alpha\left(s_{3}\right)$ corresponds to a set of single-electron STO functions (its size is N_{1}) with the appropriate angular and spin symmetries representing a third electron attached to the target. Diagonalization of the H^{\prime} Hamiltonian in this basis leads to states that approximately represent the Rydberg series and the continuum states of the three-electron atom. Since the basis is finite, the continuum is discretized and a finite number of energies $\left\{E_{n}\right\}_{n=1}^{N_{1}}$ and eigenfunctions $\left\{\mathcal{P} \Psi_{E_{n}}^{0}\right\}$ are obtained. The latter are normalized to unity, while the proper continuum states must be normalized to the Dirac δ. The correct normalization is achieved by multiplying the calculated continuum wave function by the density of states $\rho\left(E_{n}\right) \sim 2 /\left(E_{n+1}-E_{n-1}\right)$ [44]. Hence, the correct expression for the width in terms of the calculated wave functions is

$$
\begin{equation*}
\left.\Gamma_{s}=2 \pi \rho\left(E_{n}=\mathcal{E}_{s}\right)\left|\left\langle\Phi_{s}\right| \mathcal{Q} H \mathcal{P}\right| \mathcal{P} \Psi_{E_{n}=\mathcal{E}_{s}}^{0}\right\rangle\left.\right|^{2} \tag{21}
\end{equation*}
$$

In general, none of the calculated $\mathcal{P} H^{\prime} \mathcal{P}$ eigenvalues will match a given resonance energy \mathcal{E}_{s}. To satisfy the resonance condition $E_{n}=\mathcal{E}_{s}$, we use an inverse interpolation method [45] that basically consists of slightly modifying the exponents of the STO basis set used to describe the third electron through a common scaling factor. Since the variation of the continuum energies against the scaling parameter ξ is smooth, the interpolation is quite efficient in finding a critical value ξ_{c} such that one of the continuum discretized eigenvalues satisfies the matching condition $E_{n}\left(\xi_{c}\right)=\mathcal{E}_{s}$. Only then is the corresponding continuum eigenfunction $\mathcal{P} \Psi_{E_{n}=\mathcal{E}_{s}}^{0}$ introduced in Eq. (21).

III. RESULTS AND DISCUSSION

We have computed energy positions, energy shifts, and Auger widths of the core-excited autoionizing states of Li and Ne^{7+} located below the second ionization threshold. The different approximations that have been made in earlier calculations work differently for both systems due to the different role played by electron correlation in the representation of the wave functions and the projection operator \mathcal{P}. We restrict our study to angular symmetries ${ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e}$ for which theoretical and a few experimental results are available.

TABLE I. Energies, widths, and energy shifts for ${ }^{2} S^{e}$ resonances of Li below the $\mathrm{Li}{ }^{+} 1 s 2 s{ }^{3} S$ threshold located at ~-5.11086 a.u.. Convergence of resonance parameters for the lowest $11{ }^{2} S^{e}$ states (using 9740 configurations in \mathcal{Q} space) is shown for different expansions of the quasiprojector \mathcal{P}^{0}, from one-term (closed-shell) to several CI expansions of the target ($10,20,30$, and 40). The last two columns correspond, respectively, to adding $\Delta \mathcal{P}$ (full projector) and the latter plus 40 terms in the optical polarization potential $V_{\text {opt }}^{n \neq s}$. Numbers between parentheses mean powers of 10 ; that is, $x(a)=x \times 10^{a}$.

	Quasiprojector \mathcal{P}^{0}					$+\Delta \mathcal{P}$	$+\Delta \mathcal{P} \& V_{\text {opt }}$
	1	10	20	30	40	40	40
Energy \mathcal{E}_{s}							
1	-5.407432	-5.393 348	-5.399921	-5.399 861	-5.399854	-5.399711	-5.399711
2	-5.200 077	-5.197824	-5.199368	-5.199346	-5.199343	-5.199333	-5.199333
3	-5.157246	-5.157244	-5.156682	-5.156718	-5.156723	-5.156723	-5.156723
4	-5.150832	-5.149689	-5.148183	-5.148278	-5.148291	-5.148237	-5.148237
5	-5.143909	-5.140838	-5.141064	-5.141076	-5.141078	-5.140977	-5.140977
6	-5.135989	-5.135163	-5.135388	-5.135394	-5.135395	-5.135389	-5.135389
7	-5.127076	-5.126754	-5.126893	-5.126893	-5.126893	-5.126891	-5.126891
8	-5.121354	-5.121229	-5.121291	-5.121290	-5.121290	-5.121290	-5.121290
9	-5.117357	-5.117316	-5.117337	-5.117337	-5.117337	-5.117337	-5.117337
10	-5.114617	-5.114602	-5.114610	-5.114610	-5.114610	-5.114610	-5.114610
11	-5.112666	-5.112659	-5.112662	-5.112662	-5.112662	-5.112662	-5.112662
Width Γ_{s}							
1	$1.219636(-3)$	$3.140223(-3)$	$2.530501(-3)$	$2.535945(-3)$	$2.533445(-3)$	$2.533184(-3)$	$2.558364(-3)$
2	$2.510337(-4)$	$5.204214(-4)$	$3.919277(-4)$	$3.955406(-4)$	$3.956074(-4)$	$3.960473(-4)$	3.999 220(-4)
3	$7.292964(-5)$	$7.353528(-5)$	$2.662248(-5)$	$2.729574(-5)$	$2.740224(-5)$	$2.733448(-5)$	$2.226770(-5)$
4	$5.476426(-6)$	$4.117884(-5)$	8.025 546(-5)	$7.949541(-5)$	$7.920005(-5)$	$8.179077(-5)$	$1.087680(-4)$
5	1.064 434(-4)	$1.825391(-4)$	$2.095890(-4)$	$2.081916(-4)$	$2.077350(-4)$	2.038 979(-4)	$2.056092(-4)$
6	$4.734551(-5)$	$1.652718(-4)$	1.654 927(-4)	$1.639553(-4)$	$1.635326(-4)$	$1.634554(-4)$	$1.524937(-4)$
7	$2.267713(-5)$	6.727 902(-5)	$5.988366(-5)$	$5.974428(-5)$	$5.965103(-5)$	$5.957545(-5)$	$5.658184(-5)$
8	$9.298445(-6)$	2.693 569(-5)	$2.237465(-5)$	$2.239494(-5)$	$2.237043(-5)$	2.234 914(-5)	$2.144792(-5)$
9	$2.991860(-6)$	$8.567874(-6)$	$6.937594(-6)$	$6.954706(-6)$	$6.948156(-6)$	$6.951880(-6)$	6.733 312(-6)
10	$9.874776(-7)$	2.843 079(-6)	2.305 277(-6)	2.313 382(-6)	$2.311603(-6)$	$2.317913(-6)$	$2.260000(-6)$
11	$4.382822(-7)$	$1.364300(-6)$	$1.118129(-6)$	$1.122613(-6)$	$1.121929(-6)$	$1.121845(-6)$	1.098 459(-6)
Shift Δ_{s}							
1	$1.862419(-3)$	-4.174002(-3)	$-1.158628(-3)$	$-1.175177(-3)$	-1.175 794(-3)	$-1.173611(-3)$	-1.183 584 25(-3)
2	$3.580939(-4)$	-3.512037(-4)	$5.620598(-6)$	9.038 625(-7)	2.388 532(-7)	$5.480105(-7)$	-2.625 $40081(-6)$
3	$9.652531(-5)$	$9.681158(-5)$	$-1.906334(-5)$	$-1.441365(-5)$	$-1.377065(-5)$	$-1.373478(-5)$	-2.150642 92(-5)
4	$1.932362(-4)$	$-2.080654(-4)$	$-5.499020(-4)$	-5.329 823(-4)	$-5.300642(-4)$	$-5.365925(-4)$	-5.652 $22072(-4)$
5	2.372 199(-3)	$-1.568332(-4)$	$-1.397789(-4)$	$-1.323562(-4)$	$-1.317235(-4)$	-1.247 982(-4)	$-1.12166574(-4)$
6	$6.269459(-5)$	$-2.007228(-4)$	$-1.636043(-4)$	$-1.606383(-4)$	$-1.600431(-4)$	$-1.601996(-4)$	-1.510775 97(-4)
7	$2.965730(-5)$	$-7.386815(-5)$	$-4.058619(-5)$	-4.053 338(-5)	-4.047 335(-5)	-4.048776(-5)	-3.88031947(-5)
8	$1.297110(-5)$	$-2.758825(-5)$	$-1.199159(-5)$	$-1.209170(-5)$	-1.208 980(-5)	$-1.208851(-5)$	-1.17153114(-5)
9	$5.115783(-6)$	$-8.367629(-6)$	$-3.133724(-6)$	-3.182 278(-6)	$-3.184647(-6)$	$-3.187457(-6)$	-3.111425 91(-6)
10	$2.174737(-6)$	$-2.692248(-6)$	$-9.167560(-7)$	$-9.369256(-7)$	$-9.383768(-7)$	$-9.410868(-7)$	$-9.22231365(-7)$
11	$1.314824(-6)$	$-1.275004(-6)$	-4.025 160(-7)	-4.131 213(-7)	-4.140 280(-7)	-4.141474(-7)	-4.067447 13(-7)

The ${ }^{1} S^{e}$ ground states of Li^{+}and Ne^{8+} (i.e., the target wave functions), which are necessary to construct the corresponding \mathcal{P} operator, are computed by including up to $N_{2}=40$ configurations as those defined in Eq. (19). The powers j_{1} and $j_{2}\left(j_{1} \leqslant j_{2}\right)$ range from 0 to 3 , the angular momenta ℓ_{i} from 0 to 3 , and the exponents α and β, which are common to all configurations and have been optimized for the full expansion, take the values $\alpha_{i}=5.00454$ and $\beta_{i}=3.26546$ for Li^{+}, and $\alpha_{i}=16.68181$ and $\beta_{i}=10.88486$ for Ne^{7+}. The calculated energies for the ${ }^{1} S^{e}$ ground state of Li^{+}and Ne^{8+} are, respectively, -7.278311 a.u. (to be compared with the experimental value -7.27984 a.u.) and -93.90444 a.u. (experimental value -94.00553 a.u.).

To calculate the resonant wave functions in \mathcal{Q} subspace, we diagonalize the effective Hamiltonian of Eq. (16), with $M=80-100$ a.u., in a large basis of configurations as those given in Eq. (17). ${ }^{2} S^{e}$ resonances are obtained with $N_{3}=9740$ configurations built from STOs (2946 sss, 2600 pps, 1800 $p p d, 1404 d d s$, and 972 ffs) for Li and with $N_{3}=7996$ configurations (2268 sss, 2093 pps, 1008 dds, 972 ppd, 810 $p d f, 700 \mathrm{ffs}$, and $145 d d d$) for $\mathrm{Ne}^{7+} .{ }^{2} P^{o}$ resonances are obtained with $N_{3}=10470$ configurations built from STOs (2700 ssp, 2520 ppp, 1056 spd, 1764 pdd, 1458 ppf, and 972 ffp) for Li and with $N_{3}=7000$ configurations (2700 ssp , 3240 ppp, 1056 spd, and $4 p d d$) for $\mathrm{Ne}^{7+} .{ }^{2} D^{e}$ resonances are obtained with $N_{3}=9912$ configurations (2592 ssd, 1764 spp,

1764 ppd, 1296 sdd, 1344 spf, 576 sff, and 576 ffd) for Li and with $N_{3}=7000$ configurations (1800 ssd, 1470 spp, 1764 ppd, $1080 s d d$, and $342 s p f$) for Ne^{7+}. The powers j_{1}, j_{2}, and $j_{3}\left(j_{1} \leqslant j_{2} \leqslant j_{3}\right)$ range from 0 to 5 , the angular momenta ℓ_{i} from 0 to 3 , and the exponents α_{i}, β_{i}, and γ_{i} are the terms of the even-tempered sequences $\alpha_{i}=\alpha_{0} /\left(n \eta^{i}\right)$, $\beta_{i}=\beta_{0} /\left(n \eta^{i}\right)$, and $\gamma_{i}=\gamma_{0} /\left(n \eta^{i}\right)$, where n is the principal quantum number ($n=1$ for s functions, $n=2$ for p functions and so on) and $\eta=1.6-2.0$. The first term of these sequences is $\alpha_{0}=\beta_{0}=\gamma_{0}=20.0$ for Li . The basis for Ne^{7+} is the same as for Li but scaled by the factor $10 / 3$. We have checked that slightly smaller basis sets lead to very similar results.

The \mathcal{P} states are obtained by diagonalizing Eq. (7) in a basis of configurations as those defined in Eq. (20). In these configurations, the target wave function is in turn the CI expansion described earlier, and the third electron is described by s STOs for states of ${ }^{2} S^{e}$ symmetry, p STOs for the ${ }^{2} P^{o}$ symmetry, and d STOs for the ${ }^{2} D^{e}$ symmetry. The exponents γ_{k} of the latter STOs are given by an even-tempered sequence containing $N_{1}=60$ STOs (120 STOs for ${ }^{2} S^{e}$ symmetry). This leads to 60 (120) \mathcal{P} states among which approximately half of them belong to the three-electron continuum. Some of the latter lie between the first and the second ionization thresholds, which is the region we are interested in. A complete calculation (for the largest basis sets) in each angular symmetry requires no more than 10 hours of CPU time in a desktop computer with 4 GB of RAM memory and a single $2.2-\mathrm{GHz}$ processor.

In Tables I and II we report the calculated energies \mathcal{E}_{s}, energy shifts Δ_{s}, and Auger widths Γ_{s} (corrected positions are given by $\mathcal{E}_{s}+\Delta_{s}$) for $\mathrm{Li}{ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e}$ resonances. All resonances lie close to the $\mathrm{Li}^{+}\left(1 s 2 s^{3} S\right)$ threshold, so even with the largest basis set used in this work, we only find a reduced number of them, namely, 11 resonances for the ${ }^{2} S^{e}$ symmetry, 8 for the ${ }^{2} P^{o}$ one, and 5 for the ${ }^{2} D^{e}$ one. We have carefully investigated convergence of the calculated energies and widths with (i) the number of configurations used to diagonalize $\mathcal{Q H Q}$, (ii) the number of \mathcal{Q} states included in the optical potential $V_{\text {opt }}^{n \neq s}$ to build the $\mathcal{P} H^{\prime} \mathcal{P}$ projected Hamiltonian, and (iii) the number of configurations used in the description of the target state to build the \mathcal{P} projection operator. Concerning (i), we have reached good convergence for $N_{3} \sim 10000$ configurations; beyond this number, linear dependencies begin to appear due to the limited (double) precision used in our computations. Concerning (ii), we have systematically increased the number of terms in the optical potential from 10 to 40 and we have found effective convergence for ~ 30 terms. The convergence with the number of configurations included in the target state [item (iii)] requires a more careful analysis. We have systematically increased this number from 1 up to 40 (for $N_{2}>40$, the first 6-7 significant figures are the same). The results obtained for $10,20,30$, and 40 configurations are given in Table I. It can be seen that the widths and energy shifts obtained with a low number of terms in the target state are significantly far away from the converged result, especially for the most correlated symmetry, ${ }^{2} S^{e}$. Previous theoretical calculations have only used one configuration to represent the target states $[34,46]$. As can be seen, the energies $\mathcal{E}_{s}+\Delta_{s}$ obtained with 1 and 40 configurations are relatively similar, but this is due to a

TABLE II. Energies, widths, and energy shifts for the lowest eight ${ }^{2} P^{o}$ and five ${ }^{2} D^{e}$ resonances of Li below the $\mathrm{Li}^{+} 1 s 2 s{ }^{3} S$ threshold located at ~-5.11086 a.u.. The different columns show results obtained with the quasiprojector, \mathcal{P}^{0}, the full projector, $\mathcal{P}^{0}+$ $\Delta \mathcal{P}$, and the latter projector plus the polarization potential $V_{\mathrm{opt}}^{n \neq s}$. Numbers between parentheses mean powers of 10 ; that is, $x(a)=$ $x \times 10^{a}$.

	\mathcal{P}^{0}	$+\Delta \mathcal{P}$	$+\Delta \mathcal{P} \& V_{\text {opt }}$
${ }^{2} P^{o}$			
		Energy \mathcal{E}_{s}	
1	-5.312551	-5.312551	-5.312 551
2	-5.256283	-5.256280	-5.256280
3	-5.183 306	-5.183 306	-5.183 306
4	-5.149 023	-5.149024	-5.149024
5	-5.133 396	-5.133 396	-5.133 396
6	-5.124 584	-5.124 584	-5.124 584
7	-5.121 588	-5.121 589	-5.121 589
8	-5.112039	-5.112039	-5.112039
		Width Γ_{s}	
1	1.383031 (-4)	$1.382346(-4)$	$1.355093(-4)$
2	3.433 205(-4)	$3.438379(-4)$	$3.458710(-4)$
3	$6.781350(-6)$	$6.762450(-6)$	6.657 223(-6)
4	1.286440 (-6)	$1.269274(-6)$	1.267 614(-6)
5	$1.495400(-6)$	$1.465742(-6)$	1.455 920(-6)
6	$1.291420(-5)$	$1.291405(-5)$	$1.237354(-5)$
7	$1.207306(-5)$	$1.211024(-5)$	$1.218747(-5)$
8	$2.277558(-5)$	$2.282480(-5)$	$2.237714(-5)$
		Shift Δ_{s}	
1	7.250 953(-4)	7.250 392(-4)	$7.233526(-4)$
2	$4.312365(-5)$	$4.304486(-5)$	$4.392076(-5)$
3	$2.071525(-5)$	$2.071395(-5)$	$2.085019(-5)$
4	$7.436367(-6)$	7.434 603(-6)	7.451 878(-6)
5	3.191 842(-6)	3.188 896(-6)	3.191 990(-6)
6	3.990 832(-5)	$3.990920(-5)$	$3.921396(-5)$
7	$4.633286(-5)$	$4.633767(-5)$	$4.657914(-5)$
8	$6.462687(-5)$	$6.459138(-5)$	$6.454336(-5)$

Energy \mathcal{E}_{s}			
1	-5.232980	-5.232981	-5.232981
2	-5.165744	-5.165744	-5.165744
3	-5.141545	-5.141545	-5.141545
4	-5.127958	-5.127958	-5.127958
5	-5.111720	-5.111725	-5.111725
		Width Γ_{s}	
1	$3.841651(-4)$	$3.841523(-4)$	$3.826705(-4)$
2	$3.571943(-5)$	$3.571782(-5)$	$3.570541(-5)$
3	$1.074925(-5)$	$1.074862(-5)$	$1.073578(-5)$
4	$8.638463(-6)$	$8.639843(-6)$	$8.627641(-6)$
5	$4.818978(-6)$	$4.810805(-6)$	$4.800652(-6)$
		Shift Δ_{s}	
1	$1.358360(-4)$	$1.358364(-4)$	$1.361600(-4)$
2	$1.514508(-5)$	$1.514508(-5)$	$1.515201(-5)$
3	$5.288937(-6)$	$5.288984(-6)$	$5.291895(-6)$
4	$5.218586(-6)$	$5.218851(-6)$	$5.220761(-6)$
5	$9.905546(-6)$	$9.896882(-6)$	$9.879882(-6)$

TABLE III. Comparison of parameters (positions and widths) for the lowest ${ }^{2} S^{e} \mathrm{Li}$ resonance states obtained with our approach, other theoretical calculations, and experimental data. Our values are reported relative to the nonrelativistic variational energy of the Li $1 s^{2} 2 s{ }^{2} S^{e}$ ground state (-7.478060323650 a.u.) from Yan et al. [48]. Energy values are given in eV and widths are reported in meV by using the conversion factor 1 a.u. $=27.21138386 M /\left(M+m_{e}\right)=27.209233 \mathrm{eV}$. Numbers between parentheses mean experimental uncertainty.

$E_{s}(\mathrm{eV})$				$\Gamma_{s}(\mathrm{meV})$		
This work		Other works	Experiment			
\mathcal{E}_{s}	$\mathcal{E}_{s}+\Delta_{s}$			This work	Other works	Experiment
${ }^{2} S^{e}$						
56.5503	56.5181	$\begin{aligned} & 56.384^{\mathrm{a}} \\ & 58.389^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 56.395(15)^{\mathrm{c}} \\ & 56.352(10)^{\mathrm{f}} \end{aligned}$	69.61	$\begin{aligned} & 37.34^{\mathrm{a}} \\ & 36.76^{\mathrm{b}} \\ & 40.3^{\mathrm{e}} \end{aligned}$	$50(30)^{\text {f }}$
62.0024	62.0024	$\begin{aligned} & 61.989^{\mathrm{a}} \\ & 61.991^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 62.00(1.5)^{\mathrm{c}} \\ & 61.991(6)^{\mathrm{d}} \\ & 61.995(10)^{\mathrm{f}} \end{aligned}$	10.88	$\begin{gathered} 7.94^{\mathrm{a}} \\ 7.750^{\mathrm{b}} \\ 13^{\mathrm{e}} \end{gathered}$	
63.1618	63.1612	$\begin{aligned} & 63.145^{\mathrm{a}} \\ & 62.144^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 63.16(1.5)^{\mathrm{c}} \\ & 63.135(6)^{\mathrm{d}} \\ & 63.17(3)^{f} \end{aligned}$	0.606	$\begin{aligned} & 2.56^{\mathrm{a}} \\ & 2.045^{\mathrm{b}} \end{aligned}$	
63.3927	63.3773	$\begin{aligned} & 63.326^{a} \\ & 63.322^{b} \end{aligned}$	$\begin{aligned} & 63.311(6)^{\mathrm{d}} \\ & 63.35(3)^{\mathrm{f}} \end{aligned}$	2.959	$\begin{aligned} & 0.16^{\mathrm{a}} \\ & 0.402^{\mathrm{b}} \end{aligned}$	
63.5903	63.5872	$\begin{aligned} & 63.573^{\mathrm{a}} \\ & 63.571^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 63.57(15)^{\mathrm{c}} \\ & 63.565(6)^{\mathrm{d}} \\ & 63.58(3)^{\mathrm{f}} \end{aligned}$	5.594	$\begin{aligned} & 3.03^{\mathrm{a}} \\ & 3.021^{\mathrm{b}} \end{aligned}$	
63.7423	63.7382	$\begin{aligned} & 63.718^{\mathrm{a}} \\ & 63.720^{\mathrm{b}} \end{aligned}$	$63.735(6)^{\text {d }}$	4.149	$\begin{aligned} & 1.46^{\mathrm{a}} \\ & 1.630^{\mathrm{b}} \end{aligned}$	
63.9735	63.9725	$\begin{aligned} & 63.951^{\mathrm{a}} \\ & 63.951^{\mathrm{b}} \end{aligned}$	$63.933(6)^{\text {d }}$	1.540	$\begin{aligned} & 0.72^{\mathrm{a}} \\ & 0.730^{\mathrm{b}} \end{aligned}$	
64.1259	64.1256			0.584		

[^0]compensation of errors. Indeed, Table I shows that, as the size of the target expansion is increased, the unshifted energies \mathcal{E}_{s} increase, but the energy shifts decrease going in some cases from positive to negative values. Variation of the Auger widths with the number of terms included in the target expansion is even more pronounced: Converged values may be twice as large as those obtained by using a single configuration. Thus, a proper description of the target state included in the \mathcal{P} projection operator is of utmost importance to obtain correct widths, especially for the most correlated states of $\mathrm{Li}:{ }^{2} S^{e}$.

We analyze now the effect of $\Delta \mathcal{P}$ (the second term in the \mathcal{P} projection operator) and the optical potential $V_{\mathrm{opt}}^{n \neq s}$ [see Eq. (5)]. Table I shows that, except for the first resonance, corrections to the energy due to $\Delta \mathcal{P}$ are very small and only affect the seventh significant figure; at variance, corrections to the widths and the energy shifts generally affect the third and the second significant figure, respectively. The optical potential affects at most the fifth significant figure of the energies and the second or the third of the widths, while energy shifts are much more sensitive (although they remain very small).

Table II shows our results for the ${ }^{2} P^{o}$ and ${ }^{2} D^{e}$ resonances. As can be seen, the effect of including $\Delta \mathcal{P}$ and the optical potential $V_{\text {opt }}^{n \neq s}$ is much less pronounced than for the ${ }^{2} S^{e}$ resonances. This is the consequence of the fact that electrons in the ${ }^{2} P^{o}$
and ${ }^{2} D^{e}$ states, with dominant $1 s^{2} n p$ or $1 s^{2} n d$ configurations, are much less correlated than in the ${ }^{2} S^{e}$ ones, with dominant $1 s^{2} n s$ configurations. In addition, the magnitude of the correction introduced by $\Delta \mathcal{P}$ in the ${ }^{2} P^{o}$ and ${ }^{2} D^{e}$ symmetries is significantly smaller than for the ${ }^{2} S^{e}$ one. Indeed, the $\Delta \mathcal{P}$ correction depends very much on the value of λ_{α} eigenvalues [see Eq. (14)]. The λ_{α} eigenvalues resulting from the integral equation (15) are $1.00333,7.24109 \times 10^{2}, 2.46063 \times 10^{4}$, $3.18371 \times 10^{4}, 1.40807 \times 10^{8}$, etc., for the v_{α} functions with $\ell=0,1.73055 \times 10^{3}, 4.90117 \times 10^{4}, 1.56482 \times 10^{6}$, $6.25689 \times 10^{7}, 6.52206 \times 10^{7}$, etc., for those with $\ell=1$, $5.93243 \times 10^{4}, 6.77209 \times 10^{5}, 1.28675 \times 10^{7}, 2.64885 \times$ $10^{8}, 1.88057 \times 10^{9}$, etc., for those with $\ell=2$, and so on. Therefore, the most important corrections are expected for the states of ${ }^{2} S^{e}$ symmetry, since the dominant configurations in the three-electron continuum state are of the form $\left(n s n^{\prime} s\right) v_{\lambda}\left(n^{\prime \prime} s\right)$. For the states of ${ }^{2} P^{e}$ symmetry, the dominant configurations are of the form $\left(n \ell n^{\prime} \ell\right) v_{\lambda}\left(n^{\prime \prime} p\right)$, but they contribute less due to the larger value of the λ_{α} eigenvalues.

We compare now our calculations with those of Verbockhaven and Hansen [46] who have reported the most comprehensive and complete study of resonance parameters for Li. These authors used a truncated diagonalization method (TDM), in which bound $1 s^{2} n \ell$ and continuum $1 s^{2} \epsilon \ell$

TABLE IV. Comparison of parameters (positions and widths) for the lowest eight ${ }^{2} P^{o}$ and five ${ }^{2} D^{e}$ resonance states in Li obtained with our approach, other theoretical calculations, and experimental data. Our values are reported relative to the nonrelativistic variational energy of the $\mathrm{Li} 1 s^{2} 2 s^{2} S^{e}$ ground state (-7.478060323650 a.u.) from Yan et al. [48]. Energy values are given in eV and widths are reported in meV by using the conversion factor $1 \mathrm{a} . \mathrm{u} .=27.21138386 M /\left(M+m_{e}\right)=27.209233 \mathrm{eV}$. Numbers between parentheses mean experimental uncertainty.

$E_{s}(\mathrm{eV})$				$\Gamma_{s}(\mathrm{meV})$		
This work		Other works	Experiment			
\mathcal{E}_{s}	$\mathcal{E}_{s}+\Delta_{s}$			This work	Other works	Experiment
${ }^{2} P^{o}$						
58.9218	58.9415	$58.908^{\text {a }}$	58.911(6) ${ }^{\text {d }}$	3.68	$3.78{ }^{\text {a }}$	$2.6(1)^{\text {f }}$
		$58.910^{\text {b }}$	58.912(15) ${ }^{\text {h }}$		$3.33{ }^{\text {b }}$	$3.2(6)^{\text {g }}$
		$58.929^{\text {c }}$				
60.4529	60.4541	$60.407^{\text {a }}$	60.398(3) ${ }^{\text {d }}$	9.40	$9.97{ }^{\text {a }}$	
		$60.398^{\text {b }}$	60.405(15) ${ }^{\text {h }}$		$9.56{ }^{\text {b }}$	
		$60.420^{\text {c }}$				
62.4385	62.4390	$62.421^{\text {a }}$	62.420(3) ${ }^{\text {d }}$	0.182		
		$62.417^{\text {b }}$	62.422(10) ${ }^{\text {e }}$		$0.203{ }^{\text {b }}$	
		$62.424^{\text {c }}$	$62.421(15)^{\text {h }}$			
63.3713	63.3715	$63.356^{\text {a }}$	63.357(9) ${ }^{\text {d }}$	0.0348	$0.04{ }^{\text {a }}$	
		$63.351^{\text {b }}$	$63.353(10)^{\text {e }}$		$0.0445^{\text {b }}$	
		$62.356^{\text {c }}$	$63.35(1.5)^{\mathrm{h}}$			
63.7965	63.7966	$63.753^{\text {a }}$	63.755(3) ${ }^{\text {d }}$	0.0397	$0.05^{\text {a }}$	
		$63.750^{\text {b }}$	$63.752(10)^{\text {e }}$		$0.0445^{\text {b }}$	
		$63.755^{\text {c }}$	$63.755(15)^{\text {h }}$			
64.0363	64.0373	$63.953^{\text {a }}$	63.952(3) ${ }^{\text {d }}$	0.334	$0.15^{\text {a }}$	
		$63.950^{\text {b }}$	63.951(10) ${ }^{\text {e }}$		$0.140^{\text {b }}$	
		$63.962^{\text {c }}$	$63.955(15)^{\text {h }}$			
64.1178	64.1190	$64.062^{\text {a }}$	64.048(9) ${ }^{\text {d }}$	0.328	$0.50^{\text {a }}$	
		$64.050^{\text {b }}$	64.050(10) ${ }^{\text {e }}$		$0.391{ }^{\text {b }}$	
			$64.045(15)^{\text {h }}$			
64.3776	64.3793			0.602		
${ }^{2} D^{e}$						
61.0869	61.0906	$61.062^{\text {a }}$	61.060(6) ${ }^{\mathrm{k}}$	10.4	$11.01{ }^{\text {a }}$	$10.5(3)^{\text {f }}$
		$61.099^{\text {i }}$	61.065(15) ${ }^{\text {h }}$		$10.72{ }^{\text {i }}$	
		$61.060^{\text {j }}$			$10.63{ }^{\text {j }}$	
62.9164	62.9168	$62.901^{\text {a }}$	62.897(6) ${ }^{\mathrm{k}}$	0.972	$0.99^{\text {a }}$	$0.89(4)^{\mathrm{f}}$
		$62.933^{\text {i }}$	$62.93(1.5)^{\mathrm{h}}$		$1.03{ }^{\text {i }}$	
		$63.903^{\text {j }}$			$0.997^{\text {j }}$	
63.5748	63.5750	$63.560^{\text {a }}$	63.565(6) ${ }^{\mathrm{k}}$	0.292	$0.30^{\text {a }}$	
		$63.578^{\text {i }}$	$63.57(1.5)^{\mathrm{h}}$		$12.48{ }^{\text {i }}$	
		$63.562^{\text {j }}$			$0.313^{\text {j }}$	
63.9445	63.9446	$63.867^{\text {a }}$	63.865(6) ${ }^{\text {k }}$	0.235	$0.14{ }^{\text {a }}$	
		$63.869^{\text {j }}$			$0.132^{\text {j }}$	
64.3862	64.3864	$64.042^{\text {a }}$		0.131	$0.08{ }^{\text {a }}$	
		$64.037^{\text {j }}$			$0.0638^{\text {j }}$	

[^1]configurations associated with the lowest ionic limit $1 s^{2}{ }^{1} S^{e}$ in Li^{+}are removed from the Hamiltonian matrix before diagonalization. In other words, in the TDM, one avoids constructing three-electron CI configurations that include two $1 s$ orbitals. The number of configurations used in Ref. [46] to diagonalize $\mathcal{Q} H \mathcal{Q}$ is larger than ours, 20000 configurations compared to our ~ 10000. This is because they construct CI wave functions in terms of B-spline basis sets, which do not exhibit the problem of linear dependencies when the basis set is increased. However, they used a simple Hartree-Fock (HF) approximation to represent the two-electron target state and the \mathcal{P} projection operator (i.e., a single configuration), while in our method we use a fully correlated two-electron ${ }^{1} S^{e}$ state for Li^{+}. This serious limitation was recognized by Verbockhaven and Hansen [46], who suggested that their reported widths might be affected by an error of 10%. Another difference with the calculations reported in Ref. [46] is that we did not include relativistic corrections (however, the magnitude of these corrections was not reported in [46]).

In Tables III and IV we compare our results for Li with those of Ref. [46] and other representative theoretical results (we refer to [46] for a full list of references). A noticeable aspect in Table III for the ${ }^{2} S^{e}$ states is the discrepancy between our reported widths and those obtained by other authors [46,47]. The only available experimental value for the width of the lowest ${ }^{2} S^{e}$ resonance is 50 meV ; ours is $\sim 70 \mathrm{meV}$ and other theories report a value of $\sim 37 \mathrm{meV}$. Interestingly, the widths of the seven lowest ${ }^{2} S^{e}$ states that are obtained by only including one configuration in the Li^{+}target state (first column of Table I) are 33, $6.8,2.0,0.15,2.9,1.3$, and 0.62 meV , which are in good agreement with the values reported in previous theoretical works. This suggests that the errors of the widths reported in $[46,47]$ are mostly due to the use of a quasiprojector instead of the full projector $\mathcal{P}=\mathcal{P}^{0}+\Delta \mathcal{P}$. To settle this question, more precise experiments and additional theoretical calculations are required.

In the case of the ${ }^{2} P^{o}$ and ${ }^{2} D^{e}$ resonances (see Table IV), our calculated energy positions are slightly above those obtained with other theories and the experimental values. In this respect, it is worth noticing that our reported energies in eV are given relative to the best nonrelativistic value available for the Li ground state [48] using correlated STOs. A meaningful comparison with existing theoretical values should be made on absolute scale, but, unfortunately, absolute energies have not been reported in previous works. In contrast, our widths for the ${ }^{2} P^{o}$ and ${ }^{2} D^{e}$ resonances compare fairly well with those obtained by other authors and with experiment.

Tables V, VI, and VII present our calculated energies \mathcal{E}_{s}, energy shifts Δ_{s}, and Auger widths Γ_{s} (resonance positions are given by $\mathcal{E}_{s}+\Delta_{s}$) for Ne^{7+} resonances: 12 for the ${ }^{2} S^{e}$ symmetry, 12 for the ${ }^{2} P^{o}$ symmetry, and 13 for the ${ }^{2} D^{e}$ symmetry. At variance with Li , the convergence for Ne^{7+} is much faster and 7000 configurations (~ 8000 for ${ }^{2} S^{e}$) in the \mathcal{Q} subspace turn out to be enough to produce converged parameters for at least the first five or six resonances. As expected, the effect of $\Delta \mathcal{P}$ and the optical potential $V_{\mathrm{opt}}^{n \neq s}$ is even smaller than for Li , in particular for the lowest ${ }^{2} S^{e}$ resonance whose width is fairly well approximated by neglecting $\Delta \mathcal{P}$.

TABLE V. Energies, widths and energy shifts for the lowest ${ }^{2} S^{e}$ resonances of Ne^{7+}, below the $\mathrm{Ne}^{8+} 1 s 2 s{ }^{3} S$ threshold located at ~-60.7446 a.u.. The different columns show results obtained with the quasiprojector, \mathcal{P}^{0}, the full projector, $\mathcal{P}^{0}+\Delta \mathcal{P}$, and the latter projector plus the polarization potential $V_{\text {opt }}^{n \neq s}$. Numbers between parentheses mean powers of 10 ; that is, $x(a)=x \times 10^{a}$.

	\mathcal{P}^{0}	$+\Delta \mathcal{P}$	$+\Delta \mathcal{P} \& V_{\text {opt }}$
${ }_{2}^{2}{ }^{e}$			
		Energy \mathcal{E}_{s}	
1	-69.924705	-69.910 649	-69.910649
2	-68.467983	-68.461 159	-68.461 159
3	-64.493814	-64.490 151	-64.490 151
4	-64.237966	-64.235 483	-64.235 483
5	-63.866757	-63.865 956	-63.865 956
6	-63.674726	-63.673218	-63.673218
7	-62.722 492	-62.719988	-62.719988
8	-62.419103	-62.417849	-62.417849
9	-62.314878	-62.314354	-62.314354
10	-62.090 691	-62.090 463	-62.090463
11	-61.892305	-61.889 907	-61.889907
12	-61.602050	-61.601778	-61.601778
		Width Γ_{s}	
1	4.894 609(-3)	$4.252310(-3)$	4.269312(-3)
2	1.019 109(-3)	1.128 854(-3)	$1.121754(-3)$
3	1.469 632(-3)	$1.297279(-3)$	$1.297878(-3)$
4	$8.153126(-4)$	$7.408758(-4)$	$7.428670(-4)$
5	$9.691857(-5)$	$1.090318(-4)$	$1.088390(-4)$
6	$1.108557(-4)$	1.351 661(-4)	$1.328509(-4)$
7	$6.043355(-4)$	$5.509588(-4)$	$5.507438(-4)$
8	$3.009324(-4)$	$2.706820(-4)$	$2.710401(-4)$
9	$2.412345(-5)$	$3.175870(-5)$	$3.113609(-5)$
10	$4.359345(-7)$	$1.692879(-6)$	$1.692457(-6)$
11	$3.326019(-4)$	$3.086182(-4)$	3.083 624(-4)
12	$6.322974(-5)$	5.689 576(-5)	$5.670167(-5)$
		Shift Δ_{s}	
1	$3.699802(-4)$	-3.501 276(-4)	-3.652 470(-4)
2	-4.755 620(-3)	-4.966 355(-3)	-4.963 349(-3)
3	$4.766093(-5)$	-1.054 702(-4)	-1.042 928(-4)
4	$2.339218(-4)$	$1.237723(-4)$	$1.208976(-4)$
5	-4.054414(-4)	-4.642 386(-4)	-4.668 882(-4)
6	-9.463 546(-4)	-1.000 716(-3)	-9.959 118(-4)
7	-1.056247(-4)	-1.608 655(-4)	-1.605 708(-4)
8	$8.760870(-5)$	$4.398725(-5)$	4.335 870(-5)
9	-2.929 645(-4)	-3.251 548(-4)	-3.244643(-4)
10	-8.000 863(-5)	-1.013 552(-4)	-1.010787(-4)
11	-1.199 550(-4)	-1.495 869(-4)	-1.491098(-4)
12	$1.321742(-6)$	-1.028 244(-5)	-1.089 415(-5)

The number of theoretical works on autoionizing states of Ne^{7+} is very scarce. To our knowledge, there are only three works available [60-62] based on the use of the saddle-point method. Kramida and Ivanov [63] have compiled experimental data for Ne^{7+} and performed some computations using Vainshtein's MZ codes [64] and Cowan's programs [65] to interpret the assignment of observed transition lines. In

TABLE VI. Energies, widths and energy shifts for the lowest 12 ${ }^{2} P^{o}$ resonances of Ne^{7+}, below the $\mathrm{Ne}^{8+} 1 s 2 s{ }^{3} S$ threshold located at ~-60.7446 a.u.. The different columns show results obtained with the quasiprojector, \mathcal{P}^{0}, the full projector, $\mathcal{P}^{0}+\Delta \mathcal{P}$, and the latter projector plus the polarization potential $V_{\mathrm{opt}}^{n \neq s}$. Numbers between parentheses mean powers of 10 ; that is, $x(a)=x \times 10^{a}$.

	\mathcal{P}^{0}	$+\Delta \mathcal{P}$	$+\Delta \mathcal{P} \& V_{\text {opt }}$
${ }^{2} P^{o}$			
		Energy \mathcal{E}_{s}	
1	-69.333 41	-69.33326	-69.33326
2	-69.11418	-69.114 17	-69.114 17
3	-64.445 69	-64.445 67	-64.445 67
4	-64.12108	-64.12092	-64.12092
5	-64.030 50	-64.030 18	-64.030 18
6	-63.901 96	-63.901 84	-63.901 84
7	-63.79626	-63.79623	-63.79623
8	-63.565 72	-63.565 70	-63.56570
9	-62.724 56	-62.724 55	-62.724 55
10	-62.39633	-62.395 46	-62.395 46
11	-62.35365	-62.35324	-62.35324
12	-62.27573	-62.27572	-62.27572
		Width Γ_{s}	
1	$1.691274(-4)$	$1.690092(-4)$	1.643 188(-4)
2	2.128 602(-3)	$2.128571(-3)$	$2.132957(-3)$
3	$3.157598(-5)$	$3.161926(-5)$	3.173 868(-5)
4	$5.316022(-7)$	$4.584772(-7)$	$6.251708(-7)$
5	$8.040476(-4)$	$8.065038(-4)$	8.079 433(-4)
6	$1.689050(-4)$	$1.673312(-4)$	1.658 195(-4)
7	$4.459518(-6)$	4.395 444(-6)	4.342 631(-6)
8	2.430830 (-6)	$2.457976(-6)$	$2.441934(-6)$
9	$3.658605(-5)$	$3.656545(-5)$	$3.658070(-5)$
10	$5.409124(-5)$	$5.147872(-5)$	$5.157439(-5)$
11	2.992349 (-4)	$3.044220(-4)$	3.045 857(-4)
12	$4.497584(-7)$	$4.873757(-7)$	$4.787996(-7)$
		Shift Δ_{s}	
1	$2.413462(-3)$	2.413 451(-3)	$2.411143(-3)$
2	$8.934335(-5)$	$8.889332(-5)$	9.080 107(-5)
3	$7.778932(-5)$	$7.779942(-5)$	$7.767047(-5)$
4	$1.870044(-4)$	$1.884983(-4)$	$1.870056(-4)$
5	$5.976183(-4)$	$5.952459(-4)$	$5.962961(-4)$
6	$6.521083(-5)$	6.622074(-5)	6.664 819(-5)
7	$1.489796(-5)$	$1.508387(-5)$	$1.514836(-5)$
8	$3.211098(-4)$	$3.209863(-4)$	$3.211344(-4)$
9	$2.911952(-5)$	$2.915550(-5)$	$2.916125(-5)$
10	-3.588 942(-6)	-3.540 663(-6)	-3.488 289(-6)
11	2.506461 (-4)	$2.499749(-4)$	$2.498536(-4)$
12	$2.001742(-6)$	$1.967549(-6)$	$1.973520(-6)$

Table VIII we compare our data in eV with other available theoretical results and with experimental results from NIST compiled by Kramida and Ivanov [63]. It can be seen that our results compare fairly well with the existing data. We have also included in Table VIII the predictions obtained by the saddle-point method $[61,62]$ when relativistic corrections are taken into account. We could not find in the literature a better value for the ground-state energy of Ne^{8+} (with relativistic corrections) than the one calculated by Chung [59] and this value was used with the resonance energies

TABLE VII. Energies, widths, and energy shifts for the lowest 12 ${ }^{2} D^{e}$ resonances of Ne^{7+}, below the $\mathrm{Ne}^{8+} 1 s 2 s{ }^{3} S$ threshold located at ~-60.7446 a.u.. The different columns show results obtained with the quasiprojector, \mathcal{P}^{0}, the full projector, $\mathcal{P}^{0}+\Delta \mathcal{P}$, and the latter projector plus the polarization potential $V_{\mathrm{opt}}^{n \neq s}$. Numbers between parentheses mean powers of 10 ; that is, $x(a)=x \times 10^{a}$.

	\mathcal{P}^{0}	$+\Delta \mathcal{P}$	$+\Delta \mathcal{P} \& V_{\text {opt }}$
${ }^{2} D^{e}$			
		Energy \mathcal{E}_{s}	
1	-68.89189	-68.89189	-68.89189
2	-64.26078	-64.26078	-64.26078
3	-63.95402	-63.95402	-63.95402
4	-63.92031	-63.92030	-63.92030
5	-63.72906	-63.72906	-63.72906
6	-62.67542	-62.675 42	-62.675 42
7	-62.31063	-62.31063	-62.31063
8	-62.30242	-62.30241	-62.30241
9	-62.17239	-62.17239	-62.17239
10	-62.068 82	-62.068 82	-62.068 82
11	-61.94086	-61.940 85	-61.94085
12	-61.55967	-61.55966	-61.55966
	Width Γ_{s}		
1	$3.194127(-3)$	$3.194142(-3)$	$3.192746(-3)$
2	1.123 234(-4)	$1.123333(-4)$	$1.119912(-4)$
3	$2.804081(-5)$	$2.804081(-5)$	$2.743577(-5)$
4	$4.149861(-4)$	$4.149813(-4)$	$4.144623(-4)$
5	$8.747417(-4)$	$8.747355(-4)$	8.758 858(-4)
6	2.394 918(-5)	$2.395017(-5)$	$2.393616(-5)$
7	$3.325807(-4)$	$3.325761(-4)$	$3.320086(-4)$
8	$7.332321(-6)$	$7.329808(-6)$	$7.866038(-6)$
9	$1.901330(-9)$	1.899 660(-9)	$2.094176(-9)$
10	$2.429795(-4)$	$2.429773(-4)$	$2.430964(-4)$
11	$4.984582(-6)$	$4.984551(-6)$	4.999 672(-6)
12	$1.840667(-4)$	1.842 297(-4)	$1.841458(-4)$
	Shift Δ_{s}		
1	$1.122062(-3)$	$1.122080(-3)$	$1.122414(-3)$
2	$7.326813(-5)$	$7.326550(-5)$	$7.329864(-5)$
3	$1.037055(-4)$	$1.037058(-4)$	$1.036631(-4)$
4	$1.442213(-4)$	$1.442228(-4)$	$1.446739(-4)$
5	$1.985504(-4)$	$1.985531(-4)$	$1.982598(-4)$
6	$1.895758(-5)$	1.895 943(-5)	1.895 916(-5)
7	$1.217880(-4)$	$1.217872(-4)$	1.217 630(-4)
8	$3.216047(-5)$	$3.216818(-5)$	$3.224025(-5)$
9	$6.999764(-6)$	$6.999801(-6)$	$7.000429(-6)$
10	4.987 502(-5)	$4.987596(-5)$	$4.982772(-5)$
11	8.637 081(-6)	$8.640592(-6)$	$8.636653(-6)$
12	8.292 269(-5)	$8.294523(-5)$	$8.305816(-5)$

given in Refs. [61,62] to compose the relativistic values quoted in Table VIII. These relativistic positions clearly overestimate the experimental values, but the reason remains unclear to us, unless a better correct value for the ground state is available. However, nonrelativistic values seem to provide good precisions for positions and widths to compare with experimental data. We cannot judge the quality of the theoretical results given in Ref. [63] since there are no specific details on the computational procedure and a further analysis would be only a guess.

TABLE VIII. Comparison of the lowest ${ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e} \mathrm{Ne}^{7+}$ resonance parameters obtained with our approach, other theoretical calculations, and experimental values. Our values are reported relative to the nonrelativistic variational energy for the $\mathrm{Ne}^{7+} 1 s^{2} 2 s^{2} S^{e}$ ground state (-102.682231482398 a.u.) from Yan et al. [48]. For relativistic values of energy positions denoted with (r) we make use of the relativistic ground-state energy (-102.804800322 a.u.) given by Chung [59]. Energy values are given in eV and widths are reported in meV by using the conversion factor 1 a.u. $=27.21138386 M /\left(M+m_{e}\right)=27.210644 \mathrm{eV}$. Experimental values are taken from NIST [66] as compiled by Kramida and Ivanov [63].

$E_{s}(\mathrm{eV})$				$\Gamma_{s}(\mathrm{meV})$		
This work		Other works	Experiment			
\mathcal{E}_{s}	$\mathcal{E}_{s}+\Delta_{s}$			This work	Other works	Experiment
${ }^{2} S^{e}$						
891.736	891.726	$891.078^{\text {c }}$	891.5207	116.2	$81.1^{\text {c }}$	
931.177	931.042	$930.778^{\text {c }}$	932.1875	30.52	$11.3{ }^{\text {c }}$	
1039.231	1039.228		1039.112	35.32		
1046.161	1046.164		1045.063	20.21		
1056.216	1056.203		1057.337	2.962		
1061.460	1061.433			3.615		
1087.398	1087.394			14.99		
1095.620	1095.621			7.375		
1098.436	1098.427			0.847		
1104.528	1104.526			0.0461		
1109.985	1109.981			8.391		
${ }^{2} P^{\circ}$						
907.447	907.513	$907.376^{\text {a }}$	907.899	4.47	$6.12^{\text {a }}$	
		907.295; 908.292(r) ${ }^{\text {b }}$			$4.0{ }^{\text {b }}$	
		907.273; 908.243(r) ${ }^{\text {c }}$			$3.9{ }^{\text {c }}$	
		$908.023^{\text {d }}$				
913.409	913.411	913.148; 914.164(r) ${ }^{\text {b }}$	913.912	58.0	$52.94{ }^{\text {a }}$	
		913.147; 914.134(r) ${ }^{\text {c }}$			$51.3{ }^{\text {b }}$	
		$913.946^{\text {d }}$			$53.5^{\text {c }}$	
1040.44	1040.44	$1040.648^{\text {d }}$	1041.59	0.864		
1049.28	1049.28	$1049.906^{\text {d }}$	1050.15	0.0170		
1051.74	1051.76	$1051.163{ }^{\text {d }}$	1052.13	21.9		
1055.24	1055.24			4.51		
1058.11	1058.11		1057.09	0.118		
1064.39	1064.39			0.0664		
1087.27	1087.27			0.995		
1096.23	1096.23			1.40		
1097.38	1097.38			8.29		
1099.49	1099.49			0.0130		
${ }^{2} D^{e}$						
919.457	919.487	919.324;920.568(r) ${ }^{\text {b }}$	920.384	86.9	$77.8{ }^{\text {b }}$	
		919.323;920.530(r) ${ }^{\text {c }}$			$77.5^{\text {c }}$	
		$920.451^{\text {d }}$				
1045.47	1045.47	$1045.77^{\text {d }}$	1046.01	3.06		
1053.82	1053.82		1054.11	0.763		
1054.74	1054.74	$1054.87^{\text {d }}$	1054.86	11.3		
1059.94	1059.95	$1059.76^{\text {d }}$	1060.07	23.8		
1088.61	1088.61	$1089.15^{\text {d }}$	1089.08	0.652		
1098.54	1098.54			9.03		
1098.76	1098.76			0.200		
1102.30	1102.30			5.17×10^{-5}		
1105.12	1105.12			6.61		
1108.60	1108.60			0.136		
1118.97	1118.97			5.01		
1119.09	1119.09			0.355		

[^2]
IV. CONCLUSION

We have presented a method for computing resonant states of three-electron atomic systems, which is based on the Feshbach projection formalism and includes ingredients that are usually neglected in implementations of this formalism: (i) the term that guarantees idempotency of the projection operators, (ii) the nonresonant optical potential and (iii) a proper converged description of the target state. The method has been used to compute energy positions and autoionization widths of the lowest ${ }^{2} S^{e},{ }^{2} P^{o}$, and ${ }^{2} D^{e}$ autoionizing states of Li and Ne^{7+}, for which electron correlation is expected to play a quite different role. We have shown that inclusion of these extra terms play a minor role in the evaluation of the resonant positions. In contrast, for the ${ }^{2} S^{e}$ states of Li , the neglect of (iii) can lead to errors in the autoionization widths as large as 100%. A similar conclusion was anticipated in 1986 by Berk et al. [33] for the ${ }^{2} S^{e}$ resonances of He^{-}, but the limited capacity of the computer resources available in those days prevented these
authors from performing an accurate evaluation of the different terms. At variance with Li , our results for Ne^{7+} show that the contribution of the extra terms (i) and (ii) is almost irrelevant. Implementation of the present approach with other basis sets, such as B splines, and inclusion of relativistic corrections is in progress.

ACKNOWLEDGMENTS

We thank Cresca-UdeA, MareNostrum-BSC, and CCCUAM for generous allocation of computer time. J. L. SanzVicario and J. C. Cardona acknowledge financial support by Vicerrectoría de Investigación at Universidad de Antioquia and Colciencias (Colombia). This work was performed under the auspices of an international Convenio Marco between UdeA and UAM. F. Martín acknowledges support from MICINN Projects No. FIS2007-60064, No. ACI2008-0777, and No. CSD2007-00010 and from the European COST Action CM0702.
[1] M. Drescher et al., Nature (London) 419, 803 (2002).
[2] R. Kienberger et al., Nature (London) 427, 817 (2004).
[3] M. Wickenhauser, J. Burgdörfer, F. Krausz, and M. Drescher, Phys. Rev. Lett. 94, 023002 (2005).
[4] M. S. Schöffler et al., Science 320, 920 (2008).
[5] H. Feshbach, Ann. Phys. (NY) 19, 287 (1962).
[6] A. Temkin and A. K. Bhatia, in Autoionization: Recent Developments and Applications, edited by A. Temkin (Plenum Press, New York, 1985), p. 1.
[7] I. Sánchez and F. Martín, Phys. Rev. A 44, 7318 (1991).
[8] A. Temkin, A. K. Bhatia, and J. N. Bardsley, Phys. Rev. A 5, 1663 (1972).
[9] A. K. Bhatia and A. Temkin, Phys. Rev. A 13, 2322 (1976).
[10] A. Temkin and A. K. Bhatia, Phys. Rev. A 18, 792 (1978).
[11] A. K. Bhatia, Phys. Rev. A 18, 2523 (1978).
[12] S. Wakid, A. K. Bhatia, and A. Temkin, Phys. Rev. A 21, 496 (1980).
[13] A. K. Bhatia and A. Temkin, Phys. Rev. A 23, 3361 (1981).
[14] M. Bylicki, Phys. Rev. A 40, 1748 (1989).
[15] L. Rosenberg, Phys. Rev. A 53, 4151 (1996).
[16] M. Bylicki, Phys. Rev. A 41, 2386 (1990).
[17] K. T. Chung, Phys. Rev. A 20, 1743 (1979).
[18] K. T. Chung and B. F. Davis, in Autoionization: Recent Developments and Applications, edited by A. Temkin (Plenum Press, New York, 1985), p. 73.
[19] M. Bylicki, Phys. Rev. A 39, 3316 (1989).
[20] K. T. Chung, Phys. Rev. A 41, 4090 (1990).
[21] M. Bylicki, Phys. Rev. A 41, 4093 (1990).
[22] C. A. Nicolaides, Phys. Rev. A 46, 690 (1992).
[23] W. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).
[24] B. Junker, Adv. At. Mol. Phys. 18, 208 (1982).
[25] N. Moiseyev, Phys. Rep. 302, 212 (1998).
[26] J. L. Sanz-Vicario and E. Lindroth, Phys. Rev. A 65, 060703(R) (2002); J. L. Sanz-Vicario, E. Lindroth, and N. Brandefelt, ibid. 66, 052713 (2002).
[27] J. L. Sanz-Vicario and E. Lindroth, Phys. Rev. A 68, 012702 (2003).
[28] J. L. Sanz-Vicario, J. C. Cardona, and E. Lindroth, Phys. Rev. A 78, 053411 (2008).
[29] P. Lambropoulos, P. Maragakis, and J. Zhang, Phys. Rep. 305, 203 (1998).
[30] M. A. Lysaght, H. W. van der Hart, and P. G. Burke, Phys. Rev. A 79, 053411 (2009).
[31] J. L. Sanz-Vicario, H. Bachau, and F. Martín, Phys. Rev. A 73, 033410 (2006).
[32] A. Temkin and A. K. Bhatia, Phys. Rev. A 31, 1259 (1985).
[33] A. Berk, A. K. Bhatia, B. R. Junker, and A. Temkin, Phys. Rev. A 34, 4591 (1986).
[34] P. Galan, Ph.D. thesis, Université de Bordeaux I, 1990.
[35] F. Martín, O. Mó, A. Riera, and M. Yáñez, Europhys. Lett. 4, 799 (1987).
[36] F. Martín, O. Mó, A. Riera, and M. Yáñez, J. Chem. Phys. 87, 6635 (1987).
[37] A. Macías, F. Martín, A. Riera, and M. Yáñez, J. Chem. Phys. 91, 376 (1989).
[38] J. C. Cardona and J. L. Sanz-Vicario, J. Phys. B 41, 055003 (2008).
[39] J. C. Cardona, Ph.D. thesis, Universidad de Antioquia, Medellín, Colombia, 2008.
[40] Z.-C. Yan and G. W. F. Drake, J. Phys. B 30, 4723 (1997).
[41] S. Larsson, Phys. Rev. 169, 49 (1968).
[42] I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1982).
[43] R. J. Tweed, J. Phys. B 5, 810 (1972).
[44] A. Macías, F. Martín, A. Riera, and M. Yáñez, Int. J. Quantum Chem. 33, 279 (1988).
[45] A. Macías, F. Martín, A. Riera, and M. Yáñez, Phys. Rev. A 36, 4179 (1987).
[46] G. Verbockhaven and J. E. Hansen, J. Phys. B 34, 2337 (2001).
[47] K. T. Chung, Phys. Rev. A 56, R3330 (1997).
[48] Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).
[49] D. Rassi, V. Pejcev, and K. J. Ross, J. Phys. B 10, 3535 (1977).
[50] T. J. McIlrath and T. B. Lucatorto, Phys. Rev. Lett. 38, 1390 (1977).
[51] P. Ziem, R. Bruch, and N. Stolterfoht, J. Phys. B 8, L480 (1975).
[52] B. Jaskòlska and W. Woźnicki, Phys. Scr. 39, 230 (1989).
[53] D. L. Ederer, T. Lucatorto, and R. P. Madden, Phys. Rev. Lett. 25, 1537 (1970).
[54] L. M. Kiernan et al., J. Phys. B 29, L181 (1996).
[55] H. Cederquist and S. Mannervik, Phys. Rev. A 31, 171 (1985).
[56] K. D. Pedrotti, Opt. Commun. 62, 250 (1987).
[57] T. Brage, C. F. Fischer, and N. Vaeck, J. Phys. B 26, 621 (1993).
[58] K. T. Chung, Phys. Rev. A 57, 3518 (1998).
[59] K. T. Chung, Phys. Rev. A 44, 5421 (1991).
[60] L. Wu and J. Xi, J. Phys. B 24, 3351 (1991).
[61] B. Gou and W. Deng, Phys. Rev. A 62, 032705 (2000).
[62] J. J. Zhu, B. C. Gou, and Y. D. Wang, J. Phys. B 41, 065702 (2008).
[63] A. E. Kramida and I. A. Ivanov, Phys. Scr. 56, 264 (1997).
[64] L. A. Vainshtein and U. I. Safronova, At. Data Nucl. Data Tables 25, 311 (1980).
[65] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981).
[66] National Institute of Standards and Technology (NIST), Atomic Spectra DataBase [http://physics.nist.gov/].

[^0]: ${ }^{\text {a }}$ Verbockhaven and Hansen [46], CI truncated diagonalization method with relativistic corrections.
 ${ }^{\mathrm{b}}$ Chung [47], saddle-point CI method with relativistic corrections.
 ${ }^{\text {c }}$ Rassi et al. [49], ejected electron spectroscopy, detection of electrons.
 ${ }^{\mathrm{d}}$ McIlrath and Lucatorto [50], VUV absorption spectrum from $1 s^{2} 2 p^{2} P^{o}$, detection of photons.
 ${ }^{\mathrm{e}}$ Bhatia [11], CI calculation.
 ${ }^{\mathrm{f}}$ Ziem et al. [51], collision experiment, detection of electrons.

[^1]: ${ }^{\text {a }}$ Verbockhaven and Hansen [46], CI truncated diagonalization method with relativistic corrections.
 ${ }^{\mathrm{b}}$ Chung [47], saddle-point CI method with relativistic corrections.
 ${ }^{\text {c Jaskòlska and Woźnicki [52], saddle-point correlated CI method, here recalculated with the ground-state energy from Yan et al. [48]. }}$
 ${ }^{\text {d }}$ Ederer et al. [53], absorption spectroscopy from the ground state, detection of photons.
 ${ }^{\mathrm{e}}$ Kiernan et al. [54], synchrotron radiation, photoion detection.
 ${ }^{\mathrm{f}}$ Cederquist and Mannervik [55], beam foil spectroscopy, detection of photons
 ${ }^{\text {g Pedrotti [56], extinction spectroscopy. }}$
 ${ }^{\text {h}}$ Rassi et al. [49], ejected electron spectroscopy, detection of electrons.
 ${ }^{\text {i }}$ Brage et al. [57], nonrelativistic MCHF.
 ${ }^{\mathrm{j}}$ Chung [58], saddle-point CI method with relativistic corrections.
 ${ }^{\mathrm{k}}$ McIlrath and Lucatorto [50], VUV absorption spectrum from $1 s^{2} 2 p^{2} P^{o}$, detection of photons.

[^2]: ${ }^{2} \mathrm{Wu}$ and Xi [60], nonrelativistic saddle-point with R-matrix method.
 ${ }^{\mathrm{b}}$ Gou and Deng [61], saddle-point with complex rotation method (nonrelativistic and with relativistic corrections).
 ${ }^{\text {c }}$ Zhu et al. [62], saddle-point with complex rotation method (nonrelativistic and with relativistic corrections).
 ${ }^{\mathrm{d}}$ Kramida and Ivanov [63], compilation and fitting of experimental data, and theoretical predictions using MZ and Cowan's codes.

