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Spin-state transfer in laterally coupled quantum-dot chains with disorders
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Quantum dot arrays are a promising medium for transferring quantum information between two distant points
without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction
and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through
these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling
fluctuations. The average optimal time for communication is not affected by any disorder in the system and our
simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both
kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the
transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation
for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying
exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.
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I. INTRODUCTION

The transmission of quantum information between two
well-separated parties via quantum channels is a prerequisite
for quantum communication and scalable quantum computa-
tion. Spin chains are of great interest in quantum information
science since they are natural candidates for quantum channels
[1] in atomic scales. In the use of spin chains for quantum
communication a sender can send a quantum state or share
entanglement with another separated set of spins at a distant
point of the spin chain just through the natural evolution of the
system. In addition to controlling the sender and the receiver
spins, no extra controls are needed for communication so the
system can be shielded from the environment to minimize
decoherence. Based on the physical implementation of spin
chains several imperfections can affect the communication
process. Thermal fluctuations [2] and decoherence [3–5] have
been studied as external effects. Another important source of
imperfection is disorder, which is inevitable due to imperfect
fabrication processes. In any physical implementation, there
always exist some parameters which cannot be tuned perfectly.
For instance, in a spin chain one cannot guarantee that there
will be precise couplings without disorder and each spin can
have different energy splitting due to a fluctuating electric or
magnetic field. Influences of the static disorders on XX spin
chain model have been analyzed recently [6] and it was shown
that locally controlling the couplings is more susceptible to
disorders than permanently coupled chains. On-site energy
fluctuations in spin chains have been considered in Ref. [7] and
it was found that these fluctuations suppress the transmission
in a different way compared to the static disorders. Due to the
random nature of disorder, they also may cause localization
in long chains which restricts the communication length. This
localization and communication beyond that length have been
investigated in Ref. [8].

Chains of perpetually coupled spins or other qubits in
solid-state systems may be used to connect solid-state quantum
registers without resorting to optics. Thus, proposals with
chains of charge qubits [9], flux qubits [10], and quantum
dot–based excitonic qubits [11,12] have been put forward.

However, in this context spins in quantum dot arrays look
particulary promising, since electron spins in quantum dots
have relatively long relaxation time [13–16] and allow for
coherent manipulations [17–20]. They will be ideal as con-
nectors between quantum registers built with spin qubits in
quantum dots [21–23]. The other advantage of using quantum
dot arrays for realization of quantum channel is the easy
and flexible manipulation of the exchange couplings between
neighboring dots. Theoretical [22] works have shown that
the quantum dot chain might fairly easily transit from the
ferromagnetic (FM) to the antiferromagnetic (AFM) phase
by modulating the barrier of neighboring dot or external
magnetic field and typically the interaction is found to be
antiferromagnetic [18].

It has been shown that the perfect state transfer can be
achieved in a chain of spins interacting permanently through
engineered couplings [24] or controlling a single local actuator
which modulates one energy-level transition [25] in an XX
Hamiltonian. However, in the chain of quantum dots the
natural interaction between neighboring spins is Heisenberg
Hamiltonian [21] and there is no way to convert it to a XX
Hamiltonian for achieving perfect state transfer. On the other
hand, it was shown that in the Heisenberg Hamiltonian without
locally modulating the magnetic field one cannot achieve
perfect state transferring [26].

For electron spins in a mesoscopic open quantum system,
the most significant interactions are the spin-orbit and the
hyperfine interactions [27]. The first process can be efficiently
suppressed via reducing the temperature and its time scale
is so long such that for a fast coherent scheme, such as state
transferring, it does not have a significant effect. So, as the first
important effect in quantum dot spin chain communication we
focus on the hyperfine interaction which practically cannot be
suppressed due to the permanent interaction with the spins of
nuclei in the host material.

Moreover, having strong spin exchange coupling, for
a fast evolution, by means of external gates will intro-
duce background charge fluctuations in the system. This
charge fluctuation will induce variations of spin exchange

1050-2947/2010/82(2)/022336(10) 022336-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.022336


SONG YANG, ABOLFAZL BAYAT, AND SOUGATO BOSE PHYSICAL REVIEW A 82, 022336 (2010)

coupling, which also leads to qubit dephasing. Unlike the
hyperfine interaction the quasistatic approximation is not
valid for exchange coupling fluctuations and they suffer
from a time-dependent disorder which behaves like 1/f

noise [28].
In this article, we study the effect of hyperfine interaction

and exchange coupling fluctuation over the quality of quantum
communication through the quantum dot spin chains. We
consider linear lateral quantum dot arrays in both FM and
AFM regimes and compare the destructive effects of these
two source of imperfections on the quality of communication.
As hyperfine interactions lead to nonconservation of total
magnetization of the chain here we require a general formula
for the fidelity of quantum state transfer in an arbitrary
quantum channel. Accordingly, we present and use such a
formula, which to our knowledge, has not been used in the
spin chain literature.

The structure of the article is as follows. We first introduce
the theoretical model to realize the state transfer based on
quantum dot arrays in Sec. II. Then the effects of hyperfine in-
teraction and exchange interaction fluctuation are investigated
in Sec. III A and Sec. III B. Moreover, in Sec. IV we investigate
the quantum state transfer in practical situations, including
hyperfine interaction, exchange interaction fluctuations, as
well as thermal fluctuations. A possible improving strategy
via quantum control theory is discussed in Sec. V. Finally, our
conclusion follows in Sec. VI.

II. QUANTUM STATE TRANSFERRING IN AN IDEAL
CHAIN WITHOUT DISORDER

We consider a linear array of lateral GaAs quantum dots,
electrostatically defined in a two-dimensional electron gas via
metallic gates on the top of a semiconductor heterostructures
(GaAs/AlGaAs) [18,27]. Here each dot is doped with a single
excess electron, and the qubit is encoded on the electron
spin. When the tunneling barrier is “high,” the interactions
between neighboring dots are forbidden, and if the tunneling
barrier is “low,” the spins will experience an exchange
interaction which can be described by the Heisenberg model
[21]. An external magnetic field hz can be applied in
the z direction to break the degeneracy between two spin
levels, i.e., |0〉 = |↓〉 and |1〉 = |↑〉 with a Zeeman splitting
�z = gµBhz.

In Fig. 1(a) we show the schematic of the system. Spin 0 is
initially decoupled from the others while the rest of the system
are interacting through the following Hamiltonian

Hch =
N−1∑
k=1

JkŜk · Ŝk+1, (1)

where Ŝk is the spin-1/2 operator for dot k. Jk denotes the
exchange interaction between the kth and (k + 1)th dots which
is controlled using external gates. The exchange couplings
Jk decrease exponentially with the distance between quantum
dots [22], so only nearest-neighbor interactions have been con-
sidered in Hamiltonian (1). Here Jk > 0 (∀ k ∈ [1,N − 1]) is
for antiferromagnetic chains, while Jk < 0 (∀ k ∈ [1,N − 1])
denotes the ferromagnetic chains.

FIG. 1. (Color online) (a) Scheme for transferring an arbitrary
pure state through the quantum dot chain. Spin 0 is the sender
qubit and initially is decoupled from the channel qubits (spins
1,2, . . . ,N ) which are prepared in their ground state. The sender
places the quantum information on the 0th qubit and switches on
the interaction between the 0th and the 1st qubit of the channel
in order to send the information to the N th qubit. (b) Scheme for
entanglement distribution. At the beginning, the channel is initialized
to its ground state, and a singlet state is prepared between spin
0 and spin 0′. The sharing entangled information propagates from
the 0th spin to the N th one by switching on the coupling between the
0th spin and the 1st spin while spin 0′ remains decoupled from the
rest of the system during the evolution.

Just as the initial proposal for the state transferring [1] we
consider an arbitrary state in the sender qubit (here spin 0)

|ψin〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉, (2)

where 0 � θ � π and 0 � φ < 2π determine the location of
the quantum state on the surface of the Bloch sphere. The
other spins are initialized in |ψch〉, the ground state of the
Hamiltonian (1). The initial state of the system is thus

|ψ(0)〉 = |ψin〉 ⊗ |ψch〉. (3)

In the FM and also AFM chains with odd N the ground state
of the system is degenerate and to choose a single state we add
a small global magnetic field in the z direction to break the
symmetry and choose one of the ground states. To send the
state |ψin〉 through the chain one can switch on the interaction
between the 0th and the 1st spin of the channel at t = 0 as
shown in Fig. 1(a). The interaction Hamiltonian takes the form

HI = J0Ŝ0 · Ŝ1. (4)

So, the overall Hamiltonian is

H = Hch + HI . (5)
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Since, the initial state (3) is not an eigenvector of the
Hamiltonian H , the whole system evolves as

|ψ(t)〉 = T e−i
∫ t

0 H (τ )dτ |ψ(0)〉, (6)

where T denotes the time ordering operator and h̄ has set to
be 1. The time dependence of H (τ ) may stem from random
time-dependent fluctuations. State of the receiver qubit ρN (t)
can be computed by tracing out the other spins. So that we
can define the channel ξ as ρN (t) = ξ [ρ0(0)], where ρ0(0) =
|ψin〉〈ψin| is the density matrix of the input state at t = 0.
To quantify the quality of the state transferring we compute
the fidelity between the sent and the received state F (θ,φ; t) =
〈ψin|ρN (t)|ψin〉. For a general quantum channel, including spin
chains, we get

F (θ,φ; t)

= cos4

(
θ

2

)
〈0|ξ (|0〉〈0|)|0〉 + sin4

(
θ

2

)
〈1|ξ (|1〉〈1|)|1〉

+ 1

4
sin2(θ )(〈1|ξ (|0〉〈0|)|1〉 + 〈0|ξ (|1〉〈1|)|0〉)

+ 1

4
sin2(θ )(〈1|ξ (|1〉〈0|)|0〉 + 〈0|ξ (|0〉〈1|)|1〉). (7)

As it is clear from Eq. (7) this quantity is dependent on
the initial state and we average over all possible input states,
i.e., over the surface of the Bloch sphere, to get an input
independent quantity

Fav(t) = 1

4π

∫ φ=2π

φ=0

∫ θ=π

θ=0
F (θ,φ; t)sin(θ )dθdφ. (8)

For an arbitrary channel we can write the average fidelity,
Fav, in a simple general way

Fav = 1
3 (〈0|ξ (|0〉〈0|)|0〉 + 〈1|ξ (|1〉〈1|)|1〉)
+ 1

6 (〈1|ξ (|0〉〈0|)|1〉 + 〈0|ξ (|1〉〈1|)|0〉)
+ 1

6 (〈1|ξ (|1〉〈0|)|0〉 + 〈0|ξ (|0〉〈1|)|1〉). (9)

Note that in our case Fav is a function of time t and it takes its
maximal value at a certain time t = topt. The general form of
fidelity (9) can be sensibly simplified by choosing a particular
state for |ψch〉. For instance, in the FM regime (Jk < 0),
the initial state of the channel is |ψch(0)〉 = ∏N

k=1 |0〉k and
since the operator Sz = ∑N

k=0 Sz
k commutes with the total

Hamiltonian H the number of excitation is conserved at
all times. Thus, evolution can be fully explained in the
subspace including the ground state |0〉 = ∏N

k=0 |0〉 and all
single excitation states |1j 〉 = σ̂

†
j |0〉 (j = 0,1, . . . ,N ). The

average fidelity of the ferromagnetic chain has been computed
in Ref. [1] as

F FM
av = 1

2
+ |fN0|2

6
+ |fN0| cos(γ − γ0)

3
, (10)

where fN0(t) = 〈1N |U (t)|10〉 is the transition amplitude from
spin 0 to the last one and the phase of the transmission
amplitude is fixed and defined as γ (t) = arg(fN0). With a
local unitary rotation to the N th spin or, equivalently, applying
a global magnetic field with a particular strength, one can
correct this phase. So we have subtracted the phase γ0 in the

Eq. (10) and ideally if all parameters of the Hamiltonian are
known we can tune γ0 such that cos(γ − γ0) = 1 at optimal
time t = topt. But as our target here is to consider the effect of
noise, the above condition cannot be met for arbitrary unknown
disorder.

For AFM exchange interaction (Jk > 0), when N is even
(channel has a unique ground state) the effect of the channel
is a fully symmetric depolarizing channel and all states are
transmitted with equal fidelity [5]. So transmission of any
arbitrary state and its final fidelity specifies the average fidelity
of even AFM chain

F AFM
av = 〈0|ξ (|0〉〈0|)|0〉, (11)

where we have considered the transmission of state |0〉.
Unfortunately, such compact results do not exist for AFM
chains with odd N ; however, Hamiltonians still have the
symmetry of conserving the number of excitations.

In addition to the quantum state transfer, one can consider
entanglement distribution as well. In this scheme, instead of
sending a pure state through the spin chain we prepare a singlet
state between spin 0 and and extra spin 0′, shown in Fig. 1(b).
The rest of the system is again initialized in |ψch〉, the ground
state of Hch. At t = 0, spin 0 is coupled to the chain (as it
was in the state transferring strategy) while spin 0′ remains
decoupled during the evolution. As the result when the state
of the 0th spin goes through the chain and reaches the last site
we end up with an entangled state between spin 0′ and spin N .
For a general channel ξ the output state is:

ρ0′,N (t) = 1
2 {|0〉〈0| ⊗ ξ (|1〉〈1|) + |1〉〈1| ⊗ ξ (|0〉〈0|)
− |1〉〈0| ⊗ ξ (|0〉〈1|) − |0〉〈1| ⊗ ξ (|1〉〈0|)}, (12)

where in each element the first part is the state of spin 0′ and the
second part represents the state of spin N . The entanglement
between 0

′
and N is usually measured by the concurrence

C [29]. For the FM case, the concurrence has a very simple
form

CFM = |fN0(t)|. (13)

In the case of AFM chains with even N again we have a
simple form for the concurrence as

CAFM = 3〈0|ξ (|0〉〈0|)|0〉 − 2. (14)

In compare to Eq. (11) we find a simple relationship between
the average fidelity and the concurrence CAFM = 3F AFM

av − 2.

III. DISORDERED CHAINS

In the previous section, we have considered an ideal
situation in which there is no disorder in the quantum dot chain.
Experimental [30,31] and theoretical results [14,28,32–34]
show that the hyperfine interaction and the exchange inter-
action fluctuations are the most significant deleterious effects
on quantum dot chains. Thus, it is very important to give
a comparison of state transferring performance between FM
and AFM spin chains in the presence of these two practically
important disorders.
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A. Hyperfine interaction

For electron spins in quantum dots, the most important
destructive phenomenon is interaction with the spin of nuclei
in the bulk, i.e., hyperfine interaction. In this part we study this
effect on the quality of state transferring in both FM and AFM
chains.

In the mesoscopic quantum dot systems, the electron spin
interacts with many nuclear spins of its host material, and it
can be described by the Hamiltonian of the Fermi contact
hyperfine interaction [14,27,35] as HHF = ∑M

j=1 aj Îj .Ŝ, in

which Îj denotes the spin of the j th nucleus, Ŝ is the electron
spin operator, and aj represents the coupling strength between
the j th nucleus and the electron spin. An alternative way
to describe the average effect of nuclear spins is to treat
them as an effective magnetic field B̂, which is also called
as the Overhauser field: (

∑M
j=1 aj Îj ) · Ŝ = B̂ · Ŝ. Introducing

the hyperfine interaction into the spin chain system, the
channel Hamiltonian Hch and total Hamiltonian H are changed
accordingly to

HB
ch = Hch +

N∑
k=1

B̂k · Ŝk,

(15)

HB = H +
N∑

k=0

B̂k · Ŝk,

where the nuclear field B̂k is a three-dimensional random
vector and Jk = J is assumed to be constant for all quantum
dots. Under the quasistatic approximation [14] the spin of
nuclei do not change in the state transferring time scale and
B̂k is supposed to be time independent. In the large M limit,
the random vectors B̂k have a Gaussian distribution [14]

P (B̂) = 1(
2πB2

nuc

)3/2 exp

(
− B̂ · B̂

2B2
nuc

)
, (16)

with expectation value 〈B̂〉 = 0 and standard deviation Bnuc.
Since, the hyperfine interaction term does not commute with

Sz it breaks the conservation of spin excitations so we have
to consider the total Hilbert space for the evolution which
restricts our simulation to rather short chains. We fix a random
vector B̂k for each quantum dot according to the distribution
(16) at t = 0. Spin 0 is initialized to |ψin〉 and the channel
is set to be in �N

k=1|0〉 for FM chains and |ψB
ch〉, the real

ground state of HB
ch, for AFM chains. So, the initial state of the

system is

|ψ(0)〉 = |ψin〉 ⊗ ∣∣ψB
ch

〉
. (17)

Then, we switch on the interaction between spin 0 and
spin 1 and accordingly system evolves under action of the
Hamiltonian HB . So, the average fidelity is computed for a
fixed set of {B̂k} and since these are some random vectors we
have to average over hundreds of different realizations (we
choose 500 times in our simulations) of random vectors {B̂k}
to get 〈Fav〉B and 〈C〉B .

In Fig. 2 we show the evolutions of average fidelity 〈Fav〉B
and concurrence 〈C〉B , which exhibit the performance of
quantum information transferring, for FM and AFM quantum
dot chains of length N = 10. As is clear from Fig. 2, the effect

FIG. 2. (Color online) Time evolutions of the average fidelity
〈Fav〉B as well as the concurrence 〈C〉B in a chain of length N = 10
in the presence of hyperfine interaction for FM [(a) and (c)] and AFM
quantum dot chains [(b) and (d)]. Here J is absolute value of the
exchange coupling between two dots.

of the hyperfine interaction is always destructive and decreases
the quality of classical transmission such that the stronger the
hyperfine interaction, the lower the quality of transmission.
The average optimal time, where the peak of 〈Fav〉B and 〈C〉B
locate, is the same and does not change with increasing the
strength of the hyperfine interaction. Note that the optimal time
for each realization of the chain might differ due to the random
nature of disorder, but since we do not know how disorder
changes the Hamiltonian, we cannot modify it according to
the disorder, and we only can consider its average value which
our simulations show that it is not affected by disorder after
many trials. Another feature of Fig. 2 is the fact that in the
presence of disorder the first peak becomes the dominant peak
in the evolution. However, the subsequent peaks may be higher
for an ideal situation without disorder but in the presence of
disorder one can concentrate just on the first peak, as we will
do in the rest of the article. The most significant results of
the Fig. 2 come from the comparison between FM and AFM
chains. According to all quantities shown in Fig. 2 the quality
of transmission in AFM chains is always higher and they give
a higher value in their peak and a lower optimal time which
peak occurs. Having a faster dynamics in the AFM regime
is very important because disorder and all other decoherence
sources have less opportunity to interfere with the evolution.

In Fig. 3 we have plotted 〈Fav〉B and 〈C〉B in terms of
hyperfine interaction strengths Bnuc in FM and AFM chains
of length N = 8 and N = 10. As discussed above we just
consider t = topt, where topt is the time in which the first peak
occurs. As shown in Fig. 3(a) for FM chains the average fidelity
decreases very slowly for small values of Bnuc and becomes
less than the average fidelity of classical teleportation, which is
equal to 2/3, when Bnuc = 0.08J (Bnuc = 0.06J ) for the chain
of length N = 8 (N = 10). For AFM chains even for Bnuc =
0.1J (which is a very pessimistic estimation) average fidelity
is still above the classical threshold limit for the same length.
Again, Fig. 3 shows that the quality of communication in AFM
chains are better than FM ones according to both 〈Fav〉B and
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FIG. 3. (Color online) Comparison of average fidelity 〈Fav〉B and
concurrence 〈C〉B between FM [(a) and (c)] and AFM [(b) and (d)]
quantum dot chains in terms of standard deviation Bnuc for different
lengths. The red straight solid line represents the highest average
fidelity accessible to the classical teleportation scheme.

〈C〉B . Particularly, a small amount of disorder (Bnuc < 0.01J )
almost does not change the quality of communication.

In Fig. 4 we show the performance of 〈Fav〉B and 〈C〉B in
terms of length for some fixed Bnuc in both FM and AFM
chains. For FM chains, the average fidelity decreases by
increasing the length and when Bnuc = 0.1J (which is quite a
pessimistic estimation) for chains up to N = 6 we can transfer
our information better than 2/3, the highest average fidelity
of classical communication. For Bnuc < 0.05 we are above the
classical threshold of 2/3 even for a chain of N = 11 spins.
For AFM chains, as it has been shown in Fig. 4(b) even when
Bnuc is very strong we are above the classical threshold for a
chain of N = 11 and for more reasonable values of Bnuc we
are far beyond the fidelity of 2/3. Here, due to the different
symmetry in the ground state of the even and odd chains we

FIG. 4. (Color online) Comparison of average fidelity 〈Fav〉B and
concurrence 〈C〉B in FM [(a) and (c)] and AFM [(b) and (d)] quantum
dot chains as a function of length N for different values of Bnuc. The
red straight solid line represents the highest average fidelity accessible
to the classical teleportation scheme.

have an even-odd effect and even chains give a higher quality
in their transmission. This even-odd effect can be seen through
the zigzag behavior of the average fidelity and entanglement
in AFM chains. We also have considered the concurrence as a
function of length N for chains of different Bnuc in Figs. 4(c)
and 4(d). As expected we found a higher entanglement in
AFM chains with the same length than the FM ones and
similar to the average fidelity we have even-odd effect for
concurrence in AFM chains. This is an extension of the results
for nondisordered chains presented in Refs. [4,5].

B. Exchange coupling fluctuations

In order to successfully accomplish state transferring
before the relaxation time of electron spins, the information
propagation speed should be fast and exchange interaction
need to be strong. Exchange interaction in a chain of quantum
dots can be easily controlled by gate voltages. However,
using external gates to control exchange interactions would
inevitably introduce background charge fluctuation in the
environment. The deleterious effect of charge fluctuations on
the quantum dot chains mainly has two aspects: (i) generating
variations in the barrier heights and (ii) causing a random
bias potential between the neighboring dots. Consequently,
exchange couplings Jk in gated quantum dots unavoidably
fluctuates with background charge fluctuation such that spin
qubits in quantum dot chain suffer dephasing [22,33,34].

To simulate the effect of these fluctuations on the quality of
transmission we consider the couplings between neighboring
dots as Jk = J (1 + δk(t)). The dimensionless parameters δk(t)
are time-dependent random variables and have two main
properties: (i) disorder in each site is independent from the
other sites and (ii) in each site k, the disorder parameter δk(t)
is correlated in time such that the frequency spectrum behaves
as S(f ) = σJ /f α , where σJ denotes the standard deviation and
α defines the type of the noise. For instance, α = 0 represents
the white noise, α = 1 denotes the 1/f noise (pink noise),
α = 2 is known as the Brownian noise, and finally α = ∞ is
the static noise. In the appendix we have given a method to
generate δk(t) such that their frequency spectrum behaves as
S(f ) = σJ /f α . In Ref. [28] it was shown that the fluctuations
of the coupling in a quantum dot chain mainly behaves like 1/f

noise (pink noise). In our simulation we consider the following
Hamiltonians for initializing the system

HJ
ch = Hch,

(18)

HJ (t) =
N−1∑
k=0

J (1 + δk(t))Ŝk · Ŝk+1.

We do not consider any noise effect in the channel Hamilto-
nian, which simply means that for both FM and AFM chains
we always consider an ideal state for the channel. It means
that we take the state given in Eq. (3) as the initial state of the
system. The reason that we ignore fluctuations in the initial
state comes from the fact that in FM chains these fluctuations
do not change the ground state and in the AFM chains when we
consider an static random fluctuations even up to σJ = 0.1J

the fidelity between the real ground state and the ideal (without
disorder) ground state is always above 0.99 for all lengths that
we have considered in this article.
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FIG. 5. (Color online) Comparison of average fidelity 〈Fav〉J and
concurrence 〈C〉J between FM [(a) and (c)] and AFM [(b) and (d)]
chains of length N = 10 as a function of time for σJ = 0.1J and
different sort of noises such as α = 0 (white noise), α = 1 (1/f

noise), and α = ∞ (static noise). Here J is absolute value of the
exchange coupling between two dots.

For evolving the system, at each time step we generate
δk(t) according to their frequency spectrum S(f ) and system
evolves according to Hamiltonian HJ (t). The important issue
about this particular Hamiltonian is that it does not break the
symmetry of the system and Hamiltonian still commutes with
Sz. Consequently, the average fidelity preserves its form of
Eq. (10) for FM chains and Eq. (11) for even AFM chains,
just like the other quantities, i.e., entanglement and excitation
transmission amplitudes. The only difference is the fact that
the parameters in those formula are not deterministic anymore
and they are random. So, similar to hyperfine interaction we
average over many realizations of coupling disorders to get
average fidelity 〈Fav〉J and entanglement 〈C〉J .

In Fig. 5, we have plotted the average fidelity 〈Fav〉J and
concurrence 〈C〉J for FM and AFM chains of length N = 10
in terms of time t in the presence of exchange coupling fluc-
tuations. Here we consider three kinds of exchange coupling
noises with 〈δk〉 = 0 and standard deviation σJ = 0.1J : white
noise with Gaussian distribution, 1/f noise, and the static
noise, again with Gaussian distribution. We find that 〈Fav〉J and
〈C〉J do not change under the action of white noise. This can
be explained in the way that δk(t) is a random variable which
is independent at different times so its effect is compensated
at different time steps such that, in average, it does not affect
the communication scheme at all. As it is clear from Fig. 5
that the effect of 1/f noise on FM chains is quite similar to the
static noise. These results show that the faster the exchange
coupling changes, the higher the fidelity and concurrence of
state transfer through the quantum dot chain. It is worthwhile
to say that the optimal time for 〈Fav〉J and 〈C〉J , also does not
change for exchange coupling fluctuations. However, for each
realization the optimal time might be different but since those
changes are random we do not have any prior knowledge about
them and we have to take the average optimal time which is

FIG. 6. (Color online) Average fidelity 〈Fav〉J and concurrence
〈C〉J in terms of disorder strength σJ in both FM [(a) and (c)] and
AFM chains [(b) and (d)] for different lengths. The red straight line at
2/3 shows the fidelity accessible to the classical teleportation scheme.

fully independent of disorder in the limit of large number of
trials.

In Fig. 6, we have shown the average fidelity 〈Fav〉J and
concurrence 〈C〉J versus the standard deviation σJ in the
presence of 1/f noise. 〈Fav〉J and 〈C〉J decrease as the strength
σJ increases. For both FM and AFM chains, the average
fidelity 〈Fav〉J is always beyond the classical threshold 2/3
for the length N = 10 even a disorder as strong as σJ = 0.2J .
In comparison to FM chains, AFM chains have higher average
fidelity and concurrence. For instance, in the case of AFM
chains, 〈Fav〉J = 0.8 while for FM chain it is 〈Fav〉J = 0.66 in
a chain of length N = 10 and σJ = 0.2J .

In Fig. 7, we give the simulation results for 〈FJ
av〉 and 〈C〉J in

terms of length N when considering 1/f noise. The even-odd
effect of AFM chain also create the nonmonotony evolutions
of 〈Fav〉J and 〈C〉J with respect to N . As Fig. 7 shows, for very

FIG. 7. (Color online) Average fidelity 〈Fav〉J and concurrence
〈C〉J versus the length N in both FM [(a) and (c)] and AFM [(b)
and (d)] chains for different values of σJ . The red straight line at 2/3
shows the fidelity accessible to the classical teleportation scheme.
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FIG. 8. (Color online) Average fidelity 〈Fav〉 and concurrence 〈C〉
in FM [(a) and (c)] and AFM [(b) and (d)] noisy chains versus both
Bnuc and σJ in a chain of length N = 8.

pessimistic situation σJ = 0.2J , the average fidelity 〈Fav〉J in
FM chains of N = 10 is equal to the classical average fidelity
2/3, while 〈Fav〉J in AFM chains of N = 11 can achieve 0.75.

IV. REALISTIC SCENARIO FOR QUANTUM
STATE TRANSFERRING

In a practical case we suffer from both main sources of
noise simultaneously, i.e., hyperfine interactions and exchange
coupling fluctuations. We have considered both of these noises
together in Fig. 8. As it can be seen from Fig. 8, both the
hyperfine interaction and exchange coupling fluctuations give
a destructive impact on quantum information transmission.
Comparing the influence of hyperfine interaction and exchange
coupling fluctuation on average fidelity 〈Fav〉 and concurrence
〈C〉, we find that the hyperfine interaction is more destructive to
state transfer than exchange coupling noise and AFM chains
is more robust against disorders than FM ones. The reason
that the hyperfine interaction is more destructive is due to the
fact that it breaks the symmetry of the system and changes
the number of excitations during the evolution. This put the
system out of the subspace of the initial state and gives more
destructive result. Another important point to note is the fact
that for the even AFM channels the output state ρ0′N remains
a Werner state (a mixed state in which the singlet is mixed
with identity) even in the presence of the hyperfine noise as
it is in a random direction. For example, by averaging over
500 different noise profiles we found that the deviation from
the Werner state at optimal time is less than 0.1% according
to the matrix elements. As these states allow entanglement
distillation according to known protocols [36] using even AFM
quantum dot chains should be highly desirable.

Another challenging problem for implementing quantum
state transfer in the laboratory is initializing the system to its
ground state. It has been shown that in the limit of large N

cooling the system to its ground state takes an exponentially
long time [37,38]. This is truly an important problem for
gapless systems, such as ours, which the energy separation
between the ground state and the excited states vanishes for
long chains and approaching the ground state adiabatically
becomes challenged. However, in our scheme we consider

FIG. 9. (Color online) Average fidelity 〈Fav〉 (a) and concurrence
〈C〉 (b) in AFM chains versus temperature T in a chain of length
N = 6 in the presence of disorder.

only finite chains and there is always an energy gap between
the ground state and the excited states manifold. If we can
prepare the system in a temperature T such that its thermal
energy kBT , where kB is the Boltzmann constant, is less than
its energy gap then, system is well explained by its ground
state. Otherwise, in thermal equilibrium at temperature T the
initial state of the channel is described by

ρch = exp[−Hch/(kBT )]

Tr{exp[−Hch/(kBT )]} . (19)

We note that Hch should be replaced by HB
ch in the case

of having hyperfine interaction. In Fig. 9, we have plotted
the average fidelity 〈Fav〉 and concurrence 〈C〉 as functions
of temperature T in noiseless and different disordered AFM
chains for length N = 6. It is shown that hyperfine interaction,
exchange interaction fluctuations, and increasing temperature
are always the deleterious effects on quantum state transfer,
and the hyperfine interaction is more destructive to the
system than exchange interaction fluctuations. Moreover, the
evolutions of 〈Fav〉 and 〈C〉 versus thermal energy kBT show
a plateau in the regime of kBT � 0.1J , before going down
for kBT > 0.1J . This width of this plateau shows the energy
gap between the ground state and first excited state for the
finite spin chain. If the thermal energy kBT is much smaller
than the energy gap, it is unlikely to populate excited states so
that the system remains in its ground state. For AFM chain of
length N = 6, when both hyperfine interaction Bnuc = 0.1J

and exchange coupling σJ = 0.1J are taken into account,
the average fidelity 〈Fav〉 is beyond the classical fidelity 2/3
for kBT < 0.7J , and 〈Fav〉 and 〈C〉 is beyond 0.79 and 0.49
respectively at kBT = 0.1J . Here we consider only the thermal
effect in AFM chains, since it has been reported that AFM
chains performs better than FM ones in quantum state transfer
under the thermal fluctuations [5].

V. EXPLOITING OPTIMAL CONTROL THEORY
FOR IMPROVING THE RESULTS

An important question at this stage is whether the
couplings in the chain can be tuned to certain values for
maximizing the fidelity of state transfer. To a certain extent, it
should be possible to tune the barriers between the dots using
electrostatic gates and thereby tune the Heisenberg interactions
between spins. It is, however, known that the engineering
of static couplings cannot be used in a Heisenberg chain for
taking the fidelity to unity even in the absence of disorder [26].
Thus, one may modulate one coupling in time and think of
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using optimal control theory to achieve the maximal fidelity.
Optimal control theory uses a time-dependent pulse optimized
to drive a system from a certain initial state to the target state.
In this section we use the optimal control theory to improve
the output while the initialization process is the same as
before. We simply modulate the coupling J0(t) between spin
0 and spin 1, just as used in Refs. [25,39], such that the perfect
quantum state transfer can be achieved in quantum dot chain
at a target time tf . We numerically search for the minimal
value of tf to have a fast dynamics and give less opportunity
to disorder and external noise for their destructive effect. In an
ideal situation, in the absence of disorder, we choose J0 as the
piecewise constant controls that can be simply approximated
by square pulses which are preferable in practical situation.
We divide the time interval [0,tf ] into k equal parts, and let
J0 be a constant value in each subinterval. Given a sequence
of control pulses, the Hamiltonian of the system becomes as
H = HI + Hch, where the control Hamiltonian is

HI = J0(t)Ŝ0 · Ŝ1, (20)

and J0(t) takes a constant value in each time subinterval. Here,
we adopt optimization based on quasi-Newtonian method to
numerically generate the sequence of control pulses for FM
and AFM chains of length N = 6. We set the time steps to k =
50 and attempt to find the optimal set of J0(t) to maximize the
average fidelity and concurrence at a minimum target time tf .
We have plotted the results in Fig. 10. We find that in noiseless
FM (AFM) chains of length N = 6, it is indeed possible to
implement state transfer with almost unit (above 0.99) average
fidelity and concurrence. The minimal required time is found
to be very different in FM (tf = 24) and AFM (tf = 8) chains.

Comparing the required time tf for FM and AFM chains
shows a big advantage for AFM chains due to their fast
dynamics. This advantage will be clear when we consider
disorder in our setup. Figure 10 shows the time evolution of
average fidelity 〈Fav〉 and concurrence 〈C〉 under different
hyperfine interactions for FM and AFM chains when J0(t)
varies according to its optimized pulse for the ideal situation.
It is shown that AFM chain is more robust in the presence

FIG. 10. (Color online) Time evolution of average fidelity 〈Fav〉B

and concurrence 〈C〉B in FM [(a) and (c)] and AFM [(b) and (d)]
quantum dot chains with optimal control for different values of Bnuc.

FIG. 11. (Color online) Time evolution of average fidelity 〈Fav〉J

and concurrence 〈C〉J in FM [(a) and (c)] and AFM [(b) and (d)]
quantum dot chains with optimal control for different values of σJ .

of hyperfine interaction. Comparing the results of Fig. 4
and Fig. 10 for a FM chain when Bnuc = 0.1 shows that
without optimizing any coupling we have 〈Fav〉B = 0.67 and
〈C〉B = 0.46 while, using optimal pulse gives 〈Fav〉B = 0.55
and 〈C〉B = 0.25. This means that in the presence of a strong
hyperfine interaction the optimal control is not effective for
FM chains and even gives lower values of 〈Fav〉B and 〈C〉B in
compare to the simple methodology used in previous sections.
This is because dynamics is so slow (tf is large) that disorder
has enough opportunity to deteriorate the output quality and
effectively there is no gain in using optimization. In contrast,
in AFM chains even when Bnuc is very strong optimization
improves the results. This is because the target time tf , needed
for optimization process, is comparable with the time needed
for ordinary transmission without optimization.

We can also consider the effect of exchange coupling
fluctuations in the optimized coupling strategy. In Fig. 11
we have plotted the time evolution of 〈Fav〉 and 〈C〉 in the
presence of exchange coupling fluctuations. As we expect,
AFM chains behave better than FM chains against exchange
coupling fluctuations, and the deteriorative effect of exchange
coupling fluctuations is not as serious as hyperfine interaction.
For this kind of disorder comparing our results for optimized
coupling and nonoptimized one shows that even for a strong
disorder, σJ = 0.2, the optimization can improve the output
quite significantly for both FM and AFM chains.

VI. CONCLUSION

In summary, we have considered two inevitable types of dis-
orders in quantum dot arrays for quantum communication, i.e.
hyperfine interactions and exchange coupling fluctuations. We
have considered quantum information transmission through
the chain in both FM and AFM phases. Our results show
that disorder always has a destructive effect on the quality
of transmission; however, the AFM chains are much more
resistive against disorder in the array of quantum dots than
the FM ones. In addition, AFM chains remain depolarizing
channels in the presence of disorders which makes them useful
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for entanglement distillation. The rough verdict of the article
is that it is possible to use chains up to 10 quantum dots for
quantum communication with fidelity exceeding 0.9 for AFM
even in the presence of realistic noises. The average optimal
communication time does not change with disorder and also
it was shown that hyperfine interaction is more destructive
than the exchange coupling fluctuations. This is due to the fact
that hyperfine interaction breaks the symmetry of conserving
the number of excitations and consequently decoheres the
quantum information more. Furthermore, we have shown that
quantum communication can be done robustly for thermal
energies below the energy gap in a finite spin chain.

Finally, we showed that it is possible to improve the results
with modulating the first coupling in time by the means of
optimal control theory. However, because of more time needed
for optimization, this strategy is not practically effective in FM
chains when hyperfine interaction is strong.
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APPENDIX: 1/ f α NOISE GENERATION

Here we apply inverse discrete Fourier transform (IDFT)
method to generate 1/f α noise [40]. The frequency spectrum

FIG. 12. (Color online) The spectral density S(f ) over 1000
realizations for white noise (α = 0, red dashed line) and 1/f noise
(α = 1, blue solid line). We have set fmax = 1000 and M = 214.

is S(f ) = σJ /f α , where σJ is the variance and α denotes the
type of the noise. For instance, α = 0 represents the white noise
while α = 1 is for 1/f noise. The IDFT of S(f ) is defined as

s(t) = 1

M

M−1∑
k=0

S(fk)ei2π(fk−ηk)t , (A1)

where ηk’s are independent random variables with mean 0
and variance 1 and fk = k

M
fmax is the discrete frequency

between 0 and some numerical upper bound fmax. To show
that Eq. (A1) produces 1/f α noise we can generate s(t)
and then compute its Fourier transform according to de-
terministic frequencies. Since we have random variables ηk

in the Eq. (A1) one can repeat the process over hundreds
of times (here we have done it for 1000 times) and make
the average. The results have been shown in Fig. 12 for
α = 0 (white noise) and α = 1 (1/f noise) in the logarithmic
scale. Figure 12 clearly shows that the signal s(t), given in
Eq. (A1), generates the desirable frequency spectrum S(f ).
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