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Efficient generation of universal two-dimensional cluster states with hybrid systems
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We present a scheme to generate any two-dimensional cluster state efficiently. The number of the basic gate
(entangler) operations is on the order of the entanglement bonds of a cluster state. This deterministic scheme,
which demands few ancilla resources and no quantum memory, is suitable for large-scale quantum computation.
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I. INTRODUCTION

Measurement-based quantum computation (MBQC) or
one-way quantum computation, which was first introduced
by Briegel and Raussendorf [1] and Raussendorf et al. [2],
has recently been a hot topic in quantum information sci-
ence [3–12]. Different from the traditional circuit-based quan-
tum computation implemented by single-qubit and multiqubit
gates, the necessary operation in MBQC only is single-qubit
measurements. However, the efficient generation of the univer-
sal resources for MBQC, which are entangled states of large
numbers of qubits (conventionally called cluster states or graph
states), remains an obstacle for the realization of MBQC. Many
proposals have been put forward to create cluster states with
various physical systems. They include the optical systems
of discrete [3–6] and continuous variable [7] photonic states,
the condensed matter systems, such as charge qubits [8], flux
qubit [9], quantum dot [10], and atomic ensembles [11], etc.

Here, we focus on the optical approaches to generate cluster
states. In 2004, Nielsen proposed the method of adding photons
one by one with controlled-Z (CZ) gates to generate a cluster
state [3]. This scheme only uses linear optical elements, so
it is probabilistic, and the cost for creating a cluster state
of a large number of qubits could be very high. Later,
many works were developed to generate cluster states more
efficiently. One of them is the Browne-Rudolph protocol [4].
Two types of fusion gates are introduced in their protocol.
The type-I fusion gate is used to connect two cluster state
strings with a success probability of 1/2. After the operation
of this gate, an undetected photon will be connected to the
photon adjacent to a detected photon. The success of the
gate is heralded at the cost of one photon to be detected.
For a type-II fusion gate, on the other hand, two photons
should be detected to create an L-shape cluster. At least three
photons should be consumed (one photon for the σx operation
and two photons for the type-II fusion gate) in a complete
operation. An improved scheme without a type-II fusion gate
was later proposed by Gilbert et al. [5]. The Browne-Rudolph
protocol and its improvements only apply linear optics but are
nondeterministic and demand a large quantity of single-photon
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sources. Therefore, these schemes are not appropriate for
large-scale quantum computation.

More recently, another approach for generating cluster
states with weak nonlinearities was developed by Louis
et al. [13]. Its cluster state generation could be deterministic
with the X̂-quadrature measurements, but the amplitude |α| of
the quantum bus (qubus) or communication beams in coherent
state |α〉 should satisfy αθ2 � 1 (where θ is the cross-phase
shift). This would be possible with a very strong coherent
beam given the small cross-phase-modulation (XPM) phase θ

or with giant nonlinearity for a moderate beam amplitude |α|.
If one chooses the P̂ -quadrature measurements instead, the
amplitude-XPM phase scaling will be improved to αθ � 1,
but the operation will be nondeterministic with a success
probability of 1/2. Moreover, their schemes require a minus
XPM phase shift −θ , which is impractical to realize [14].

So far, MBQC has been experimentally demonstrated with
optical systems [15,16], but it is impossible to follow these
proof-of-principle experiments to perform the realistic MBQC,
which involves a large number of qubits. The main reason is
that quantum memories will be necessary in generating such
cluster states if given probabilistic gates (e.g., probabilistic
controlled-phase flip gate [17]). It would take a long time for a
repeat-until-success procedure with the probabilistic gates to
create a target cluster state, so the already generated part of the
cluster state should be stored in quantum memories. Obviously,
if the efficiency of the gate operation is not high enough, a large
number of photonic qubits in the cluster state should be stored
in quantum memory for a long time. Unfortunately, efficient
and high-quality quantum memories for photonic qubits are
still under development, thus far. Therefore, it is interesting
to study how to quickly create photonic cluster states without
quantum memory.

In this paper, we propose a scheme to generate a two-
dimensional (2D) cluster state with hybrid systems, which
involve both discrete qubits and continuous variable ancilla
states. This is a deterministic approach to generate a pho-
tonic cluster state of large size. Compared with the former
works (e.g., Refs. [13]), the deterministic approach is more
feasible for experimental realization. Moreover, with the high
efficiency of the scheme, only temporary storage such as delay
lines would be necessary for the already generated part in a
cluster state.

The rest of the paper is organized as follows. First, we
describe a hybrid system called an entangler as the tool for
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creating the entanglement links in a cluster state. Then, in
Secs. III and IV, we outline the procedures to generate a
string or chain cluster state and two types of box cluster
states, respectively. Next, we present the main results about
the generation of a 2D cluster state in Sec. V. Finally, we
conclude the paper with some discussions.

II. BASIC TOOL: ENTANGLER

Before we present the scheme for generating a cluster state,
we describe the tool to create the entanglement links in a cluster
state. Such a basic gate is called an entangler in short. It was
first introduced by Pittman et al., and is used to construct a
controlled-NOT (CNOT) gate [18]. Later, Nemoto and Munro
proposed a deterministic entangler based on XPM [19]. The
impractical minus XPM phase shift −θ in the scheme of
Ref. [19] can be avoided with a double XPM proposal by
using two qubus beams [20]. Based on the double XPM
method, we developed the entangler in Ref. [21], which was
adopted as the basic gate for creating 2D cluster states in this
paper.

In what follows, we present a brief review on the operation
of the entangler in Ref. [21]. Its schematic is shown in Fig. 1.
Here, we encode a qubit with the polarization modes of a
single photon (i.e., |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉). The input state
of two single-photon qubits |ψ〉 = a|H 〉 + b|V 〉 and |+〉 =

1√
2
(|H 〉 + |V 〉) together with two ancilla beams in the state

|α〉 are transformed by the system in Fig. 1 to

1√
2

(a|HH 〉 + b|V V 〉)|0〉|
√

2α〉 + 1√
2

(a|HV 〉| − β〉

+ b|V H 〉|β〉)|
√

2α cos θ〉, (1)

where |β〉 = |i√2α sin θ〉. Then, the projection |n〉〈n| on
the first output qubus beam will yield the proper output.
If n = 0, the target output state a|HH 〉 + b|V V 〉 will be

FIG. 1. (Color online) Schematic for the entangler. Two qubus
beams are coupled to the two single photons as indicated. The
XPM phases θ and two phase shifters −θ are applied to the qubus
beams. The quantum nondemolition (QND) module and the classical
feedforward are used to make this operation deterministic. This
operation entangles the polarization modes of two single photons.

projected out; if n �= 0, on the other hand, one will obtain
the state |ψ〉out = e−in(π/2)a|HV 〉 + ein(π/2)b|V H 〉, which can
be transformed to the target output state with the proper
operations on the second photon according to the classically
feedforwarded measurement results n. Therefore, the oper-
ation for the entangler is to deterministically entangle two
qubits:

|ψ〉|+〉 E→ a|0〉|0〉 + b|1〉|1〉, (2)

where E denotes the entangler operation. A deterministic CNOT

gate or CZ gate can be realized with two entanglers and one
ancilla photon [18,19]. Alternatively, one can also use a pair of
C-path and merging gates, together with a recyclable ancilla
photon, to realize these logic gates [21,22].

An important step in the preceding entangler operation
is the projection |n〉〈n| on the first output qubus beam,
which should be highly efficient for realizing the deterministic
entangler. It is implemented by the QND module shown inside
the dashed-dotted line in Fig. 1. In this module, one of the two
identical beams in the coherent state |γ 〉 is coupled to the first
output qubus beam through an XPM process, which outputs
the following state:

|±β〉|γ 〉|γ 〉

→ e−|β|2/2
∞∑

n=0

(±β)n√
n!

|n〉
∣∣∣∣γ einθ − γ√

2

〉 ∣∣∣∣γ einθ + γ√
2

〉

= |�out〉, (3)

The photon number which resolves measurement on the qubus
beam |±β〉 will be indirectly realized with a number non-
resolving detection described by the positive-operator-value-
measurement elements [23] 	0 = ∑∞

m=0(1 − η)m|m〉〈m|,
	1 = I − 	0 on the output states | γ einθ −γ√

2
〉 (n = 0,1, . . . ,∞).

Here, 	0 and 	1 correspond to the detection of no photon
and any number of photons, respectively, and η < 1 is the
efficiency of the detector. Since each of the states | γ einθ−γ√

2
〉

has a certain distribution of photon numbers (Poisson peak),
the action of 	1 actually functions as the operators 	1,k =∑n′

k

m=nk
[1 − (1 − η)m]|m〉〈m| on each of them, if the dominant

distribution for the kth Poisson peak is from nk to n′
k . We can

use a sufficiently large |γ | so that the distributions of | γ einθ−γ√
2

〉
will be mutually separated. The number nonresolving detector
for the detection of the beam in these coherent states can be
a sensor, which is unable to resolve an exact Fock state |n〉
but could output the distinct signals proportional to the total
photon detection probability 〈 γ einθ −γ√

2
|	1,k| γ einθ −γ√

2
〉. Based on

this indirect photon number resolving detection strategy, the
error probability of our entangler is

PE = 〈�out|	0|�out〉 ∼ exp[−2(1 − e−(1/2)ηγ 2θ2
)α2 sin2 θ ],

(4)

by considering θ � 1 from a weak cross-Kerr nonlinearity.
The possibly low efficiency of a realistic photon detector can
be compensated by the large intensity |γ |2 of the ancilla beams,
and the entangler operation could be deterministic given that
2α2 sin2 θ � 1 and 1

2ηγ 2θ2 � 1 [21]. This greatly improves
on the efficiency of the entanglers in Refs. [13,19].
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This type of entangler is suitable for performing very
large numbers of repeated entangling operations without
accumulating considerable error to the system. There is the
following relation between the success probability Psucc of
implementing N repeated entangling operations and the error
probability PE of a single operation (PE � 1 with the proper
parameters):

Psucc = (1 − PE)N ∼ 1 − NPE. (5)

The allowed operation number N for a fixed Psucc scales
exponentially with the parameter α2 sin2 θ :

N ∼ (1 − Psucc) exp[2(1 − e−(1/2)ηγ 2θ2
)α2 sin2 θ ]. (6)

For example, given the phase θ on the order of 10−2, the
detector with the efficiency η = 0.6 and the coherent beams
of the moderate average photon numbers |γ |2 ∼ 106 and
|α|2 = 8 × 104, the entangler could perform at least 8.8 × 104

operations without the accumulated error probability going
beyond 10−2 (i.e., Psucc = 0.99). The scaling shown in Eq. (6)
is especially meaningful to the tasks such as entangling a large
number of qubits to a cluster state.

III. GENERATION OF STRING CLUSTER
STATE BY ENTANGLER

As we know, a cluster string or a chain cluster state can
be generated by using CZ gate operations one after another
[1,3,24]. Such a procedure can actually be simplified by using
only one entangler in the operation. We begin with the initial
product state |+〉|+〉. If a CZ gate is applied to this input, one
will get 1√

2
(|0〉|+〉 + |1〉|−〉), a two-qubit cluster state. This

process can be simplified by using one entangler operation
described by Eq. (2), that is,

|+〉|+〉 E→ 1√
2

(|0〉|0〉 + |1〉|1〉). (7)

Then, one single-qubit rotation called a Hadamard gate on
the second photon will transform the preceding output to the
target 1√

2
(|0〉|+〉 + |1〉|−〉). This method can be used to add

one photon to an already generated cluster state, as shown
in part (3) of Fig. 2. In general, an already created cluster
state can be expressed in the form |�1〉|0〉p + |�2〉|1〉p, where
|�1(2)〉 is a proper unnormalized pure state, which involves all
qubits except the pth such that the whole state should be the
eigenstates of the stabilizers [2]. Now, the process of adding
one photon q in the state |+〉 to the already prepared cluster
state is as follows:

(|�1〉|0〉p + |�2〉|1〉p)|+〉q
Epq→ |�1〉|0〉p|0〉q + |�2〉|1〉p|1〉q

Hq→ |�1〉|0〉p|+〉q + |�2〉|1〉p|−〉q, (8)

where Epq denotes the entangler operation between the pth
and qth qubits, and Hq is the Hadamard gate operation on the
qth qubit.

By using this technique, one can easily generate any cluster
state string as shown in part (1) of Fig. 2 and the star cluster
state shown in part (2) of Fig. 2. In addition, it is feasible
to use only entanglers to generate an alveolate graph shape
deterministically (the projector of the PBS in Ref. [25] is

FIG. 2. (Color online) The generation of a cluster state string
with entanglers. (1) Use of entanglers and Hadamard operations
to generate a cluster state string. (2) Use of four entanglers and
Hadamard operations to create a star cluster state. (3) Use of one
entangler and a Hadamard operation to add one photon to the already
created cluster state.

actually an entangler) and a cluster state string simultaneously
such as the scheme in [26]. Another advantage of the approach
is that no ancilla single photon is necessary in the operation.
By the way, it should be noted that, if one wants to connect
two photons in two already different created cluster states,
one CZ gate, or two entanglers plus one ancilla single photon
equivalently, will be needed.

IV. GENERATION OF 2D BOX CLUSTER
STATE BY ENTANGLER

The cluster states for practical MBQC are 2D ones. One
could use CZ gates to connect cluster state strings to obtain a 2D
cluster state. However, higher efficiency and fewer resources
could be possible for this purpose if applying the improved
strategies. In what follows, we will first show how to generate
a box cluster state with entanglers, and then use the box cluster
states as the basic elements to construct a general 2D cluster
state in an efficient way.

A. Type-I box

The first scheme to generate a box cluster state is shown in
part (1) of Fig. 3. At first, we use two entanglers to generate a
cluster string of three photons in the following state:

1
2 (|0〉|+〉|0〉 + |0〉|−〉|1〉 + |1〉|−〉|0〉 + |1〉|+〉|1〉)123. (9)

Then, a Hadamard gate operation on the second photon will
transform the previous state to

1
2 (|0〉|0〉|0〉 + |0〉|1〉|1〉 + |1〉|1〉|0〉 + |1〉|0〉|1〉)123. (10)
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FIG. 3. (Color online) Schematic for generating a type-I box.
(1) One entangler plus three Hadamard operations are performed on
photons 2 and 4 in order to connect two links 1–4, 3–4. Then, a box
cluster state could be generated by only three entangler operations
without an ancilla photon. (2) The generalization of adding a box
structure to an already generated cluster state.

Next, by applying an entangler operation on photons 2 and 4
(initially, in state |+〉) yields the state

1
2 (|0〉|0〉|0〉|0〉 + |0〉|1〉|1〉|1〉 + |1〉|1〉|0〉|1〉 + |1〉|0〉|1〉|0〉)1234.

(11)

Finally, a Hadamard operation is performed on the second and
fourth photons, respectively, so that one will obtain the state

1
2 (|0〉|+〉|0〉|+〉 + |0〉|−〉|1〉|−〉

+|1〉|−〉|0〉|−〉 + |1〉|+〉|1〉|+〉)1234, (12)

which is a box cluster state [15]. In this process, we generate
two bonds (4 → 1,4 → 3) simply by one entangler operation
and three Hadamard operations. Thus, the reason why the
operation could be simplified with the entangler operation is
that the box cluster state has a perfect symmetry. Seen from
photon 1 or 3, photons 2 and 4 are symmetric, so the states
of them are equivalent, and one entangler operation will be
sufficient for connecting both bonds. In total, three entangler
operations, not four CZ gates, will be necessary to generate a
box cluster state. No ancilla photon is needed for the entangler
operations here.

The generalization of the scheme to add a box cluster state
to an already generated cluster state is straightforward. The
schematic is shown in part (2) of Fig. 3. Generally, an already
created cluster state is in the form |�1〉|0〉p + |�2〉|1〉p. First,
we add one photon (|+〉q) to an already created cluster state to
get state |�1〉|0〉p|+〉q + |�2〉|1〉p|−〉q . Second, by continuing

to add one more photon in state |+〉r , we obtain

1√
2

[|�1〉|0〉p(|0〉q |+〉r + |1〉q |−〉r )

+ |�2〉|1〉p(|0〉q |+〉r − |1〉q |−〉r )]

= 1√
2

[|�1〉|0〉p(|+〉q |0〉r + |−〉q |1〉r )

+ |�2〉|1〉p(|−〉q |0〉r + |+〉q |1〉r )]. (13)

Finally, by a similar process shown from Eqs. (9) to (12), we
can achieve the state

1√
2
|�1〉(|0〉|+〉|0〉|+〉 + |0〉|−〉|1〉|−〉)pqrs

+ 1√
2
|�2〉(|1〉|−〉|0〉|−〉 + |1〉|+〉|1〉|+〉)pqrs, (14)

which is our target cluster state. By using only three entanglers,
we can add a box structure to an already created cluster state.
Here, one photon in the added box belongs to the already
created cluster state (i.e., the added box must include three
photons, which are not in the already generated cluster states).
We call this type of box a cluster state type-I box.

B. Type-II box

Since the type-I box can only be used to add three photons to
an already generated cluster state, its application in generating
an arbitrary 2D cluster state is limited. Here, we introduce
another type of box cluster state called the type-II box (Fig. 4).
This box could be used to connect two photons in an already
created cluster state (or two different cluster states) to two
independent photons. Suppose the already generated cluster
state is initially prepared as (unnormalized):

|�1〉|0〉p|0〉s + |�2〉|0〉p|1〉s + |�3〉|1〉p|0〉s + |�4〉|1〉p|1〉s .
(15)

FIG. 4. (Color online) Schematic for generating a type-II box.
Two entanglers are used to add two single photons to the already
generated cluster state. Then, one CZ gate is performed on photons q

and s for creating two links s–r, s–p. A total of four entanglers with
one ancilla photon are required to add a type-II box to an already
created cluster state or between two already created cluster states.
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At first, we use two entanglers and some Hadamard operations
to add two photons, respectively, in states |+〉q,|+〉r to the
preceding cluster state to get the following:

1√
2

[|�1〉|0〉p|0〉s(|+〉q |0〉r + |−〉q |1〉r )

+ |�2〉|0〉p|1〉s(|+〉q |0〉r + |−〉q |1〉r )

+ |�3〉|1〉p|0〉s(|−〉q |0〉r + |+〉q |1〉r )

+ |�4〉|1〉p|1〉s(|−〉q |0〉r + |+〉q |1〉r )]. (16)

Next, after a Hadamard operation is performed on photon q,
we perform a CZ operation on photons q and s, respectively.
Finally, a Hadamard operation on photon q will realize the
state

1√
2

[|�1〉|0〉p|0〉s(|+〉q |0〉r + |−〉q |1〉r )

+ |�2〉|0〉p|1〉s(|+〉q |0〉r − |−〉q |1〉r )

+ |�3〉|1〉p|0〉s(|−〉q |0〉r + |+〉q |1〉r )

+ |�4〉|1〉p|1〉s(−|−〉q |0〉r + |+〉q |1〉r )], (17)

which is the target cluster state with the box structure of
photons p, q, r , and s. Two entangler operations and one CZ

gate are necessary for generating this type-II box. Since a CZ

gate could be implemented by two entanglers, four entanglers
will totally be necessary to create this type of box. On average,
one entanglement bond requires one entangler operation by
this method.

V. CREATING GENERAL 2D CLUSTER STATE WITH
ENTANGLERS AND CZ GATES

In a classical computer, a simple computation task could
involve thousands of bits. Although numerous experiments in
MBQC have shown the power of quantum computation, all of
them are proof of principle in nature [15,16]. The numbers of
the qubits in these experiments are very limited, and only
simple operations could be demonstrated. Highly efficient
schemes for generating cluster states must be developed before
large-scale computation in MBQC could materialize. As the
main topic of this paper, we will show, in the following, how to
generate an arbitrary 2D cluster state by using the previously
discussed string box cluster states as the basic elements.

We illustrate the procedure with an example of a 5 × 5
cluster state, which is shown in Fig. 5. Six steps will complete
the generation of this cluster state:

(1) Generating a cluster state string of nine qubits with eight
entangler operations;

(2) creating a cluster state of four boxes by repeating the
procedure of creating a type-I box for four times;

(3) adding two cluster state strings of four qubits to the
second box and then, with two entanglers, two type-I boxes to
the four-box cluster state;

(4) continuing to add two type-II boxes to the six-box cluster
state with two cluster state strings and two CZ gates;

(5) adding two independent photons to the eight-box cluster
state with two entanglers;

(6) connecting the indicated bonds to the target 5 × 5 cluster
state by six CZ gates.

FIG. 5. (Color online) The generation of a 5 × 5 cluster state
from a string and two types of box structures. A nine-photon cluster
string and four entanglers are used to create four type-I box cluster
states, and then two type-I boxes are added by six entanglers. Next,
two type-II boxes are generated by four entanglers and two CZ gates.
After that, with two entanglers, two independent photons will be
added to the eight-box cluster state. At the last step, six CZ gates are
applied to complete the connection of entanglement bonds. There is
a total of 40 necessary entanglers. The number of entanglers is equal
to that of the bonds of the cluster state.

Here, we neglect the use of Hadamard operations for a
simpler illustration. Now, we calculate the resources required
in this scheme. In addition to some single-qubit operations, 24
entanglers are required in the generation of a string, two types
of box structures; eight CZ gates are required in the generation
of a type-II box and in the final step. By considering the fact
that one CZ gate could be realized by two entanglers, a total
of 40 entanglers should be used in this scheme. The number
of entanglers is exactly equal to the bonds of the 5 × 5 cluster
state.

It is straightforward to generalize this method to create
an n × n cluster state. If n is odd, n2 − 1 entanglers and
(n − 1)2/2 CZ gates, or a total of 2n(n − 1) entanglers will
be required in the generation of an n × n cluster state. If n is
even, n2 − 1 entanglers and n(n − 2)/2 CZ gates, or a total of
2n(n − 1) − 1 entanglers will be necessary to generate the 2D
cluster state. Evidently, the number of the entanglers is less
than or equal to the number of the bonds [a total of 2n(n − 1)
bonds]. In other words, we could generate a universal 2D
cluster state with one entangler operation per bond, so the
scheme is highly efficient.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a deterministic scheme to
generate 2D cluster states with entanglers plus CZ gates. The
entangler operations need no ancilla single photon, and a CZ

gate operation demands one ancilla photon, which could be
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recycled [21]. In principle, only one ancilla single photon is
necessary for creating a 2D cluster state, which involves a
large number of qubits. Compared with the previous works
(e.g., Refs. [4,5,13]), the overhead for single photons could be
greatly reduced.

With regard to the number of basic gates for creating a
cluster state, the scheme in Ref. [13] could also generate the
cluster strings or chain cluster states by one entangler per
bond. The main advantage of our scheme is in generating the
universal 2D cluster states, where we manage to reduce the
number of CZ gates and effectively generate a 2D cluster state
by one entangler per bond. In practice, like the operations
in a classical computer, only the simultaneous operations
require the different circuit resources, so the number of the
necessary entanglers could be much smaller than the number
of bonds in a cluster state. We indicate the operation time
order with the arrows in the figures, where the different
steps could be performed by the same entangler, CZ gate,
etc. With fewer resources and greatly increased efficiency
from the deterministic entangler operation, the scheme is
more suitable for large-scale quantum computation than the
previously proposed ones.

As mentioned in Sec. I, quantum memory is required in
the schemes by using probabilistic gates, which repeat the
operation until success. The already generated parts should

be stored in the memory. However, the realization of high-
quality quantum memory is still technically challenging. In our
scheme, the entangler operation based on XPM is deterministic
and very fast (the operation time is on the order of that for
the signals, which go through the nonlinear medium). So, the
storage time for the already generated parts need not be long,
and one could use some temporary storage, such as delay lines,
for the already created parts. In this sense, the scheme could
be feasible with the current experimental technology.

The scheme improves on the previous ones by replacing the
one-by-one fashion of generating the entanglement links with
the strategies of string by string and box by box, thus, greatly
increasing the efficiency. In particular, this approach to MBQC
is deterministic, uses fewer resources, and uses no quantum
memory. It could be a promising candidate for large-scale
quantum computation.
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