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Quantum teleportation of four-dimensional qudits
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A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit
to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender’s
side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation
protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which
are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome,
the qudit state is fully transferred to the receiver. Other detection events lead to partial teleportation or failed
teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the
full teleportation probability are discussed.
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I. INTRODUCTION

Quantum teleportation is a basic ingredient in quantum-
information architectures [1,2]. It makes it possible to transfer
faithfully an unknown quantum state of one quantum system to
another quantum system, independent of the spatial separation
between the two quantum systems. Teleportation relies on the
establishment of entanglement between the two communica-
tion sites and on a classical communication channel that makes
it possible to compare measurement outcomes of sender and
receiver. It was discovered in 1993 [3], and since then, several
teleportation schemes have been suggested [4–7]. Experiments
have been performed, such as between photonic qubits [8–14],
photons and a single atomic qubit [15,16], and two atomic
qubits [17–19].

So far, however, teleportation schemes have focused on the
transfer of qubits, that is, information carriers of the type

|�2〉 = α|0〉 + β|1〉, (1)

encoded as a superposition of two basis states |0〉 and |1〉.
An extension of this is the teleportation of Dicke-type states
encoded in two atoms [20,21]. These three-dimensional Dicke
states are of the form

|�3〉 = α|00〉 + β
|01〉 + |10〉√

2
+ γ |11〉. (2)

Here we go one step further and focus on the teleportation of
four-dimensional qudits,

|�4〉 = α|0〉 + β|1〉 + γ |2〉 + δ|3〉. (3)

It is important to note that |�4〉 cannot merely be represented
by a combination of two qubit states |�2〉. The four coeffi-
cients in |�4〉 contain eight real degrees of freedom (DOF),
constrained by the normalization and the overall phase, which
leaves six DOF. Two qubit states also have four coefficients
with eight DOF, but each qubit is constrained by an overall
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phase and an overall normalization, such that the number of
DOF is lower. Since higher-order qudits are an important re-
source in quantum-information processing [22], a teleportation
scheme for such more complex information carriers is certainly
desirable. Teleportation of higher-dimensional quantum states
have been considered before in a cavity-QED setting [23] and
in a solid-state setup [24]. The teleportation of a subset of
four-dimensional photonic two-qubit states has been reported
in [25].

In the present scheme, the initial unknown qudit state is
encoded in two ensembles of atoms which are placed in a cavity
at the sender’s (Alice’s) side [20,21] (see Fig. 1). Coherent
light fields can be used to entangle atomic ensembles [26,27].
Bob, the receiver, has a similar setup and prepares his
ensembles in a specific initial state. The atomic excitation
is then coherently mapped onto photonic DOF, for example,
by means of adiabatic passage [15,16,28–31]. The produced
photons are combined in a specific detection setup, leading
to three classes of detection events. We find that one class of
detection events, which occurs with 25% probability, leads to
a full teleportation of the qudit state from Alice to Bob. The
second class leads to a partial transfer of the initial state. The
third class contains failed teleportation events. We interpret
the different detection outcomes and analyze possibilities of
improving the probability for full teleportation events. One
interesting feature of our setup is that the intermediate photonic
entangled state is a superposition of different energy states.
This, on the one hand, leads to a restriction on the acceptable
path-length difference for photons coming from sender and
receiver, respectively, but at the same time distinguishes our
approach from most other entanglement setups.

The article is organized as follows. In Sec. II, the teleporta-
tion scheme is presented. The initial preparation is discussed
in Sec. II A, the detection setup in Sec. II B, and the different
detection outcomes in Sec. II C. Finally, Sec. III discusses and
summarizes our results.

II. TELEPORTATION SCHEME

Our goal is to teleport a quantum state encoded in two
separate ensembles of atoms (see Fig. 1). The two ensembles
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M. AL-AMRI, JÖRG EVERS, AND M. SUHAIL ZUBAIRY PHYSICAL REVIEW A 82, 022329 (2010)

D
L1

D
L2

D
R1

R2
D

g
R

g
L

g
R

g
L

g
R

c
b

gΩ

a

ΩL

ΩR

Ω R

Ω L

g
L

g
L

L

g
R

BS

PBSBS

L

L

b

a

a

b

B

A

B

A

PBS

R

R

L

BD

λ/4

λ/2

λ/4

BD

R

L

λ/4 λ/4

BD BDλ/2

R L

R

R

R

L

L

R

Alice

Bob

FIG. 1. (Color online) Schematic representation of the teleportation setup. On Alice’s side, two ensembles of atoms encode the state to be
teleported, and on Bob’s side, the ensembles are prepared in a particular initial state in a similar setup. The inset shows the level configuration
of each atom in the ensembles. Using adiabatic state transfer, both parties then map the ensemble states coherently to photonic DOF, which
enter the beam splitter setup. The setup for the mapping between ensembles and light is similar to the experiment reported in [28]. The initial
state prepared by Alice enters in the top-left corner. Bob’s state enters in the bottom-right corner. The detectors are placed in the two other
corners. The input photon states are passed through polarization beam splitters (PBS) to separate the two photon modes, and the outputs of the
PBSs are recombined on beam splitters (BS). The output modes of the beam splitters are detected by four photon detectors DL1 , DL2 , DR1 ,
and DR2 .

are labeled L and R, respectively, and consist of three-level
atoms in �-type configuration, with excited state |a〉 and
degenerate ground states |b〉 and |c〉. The two ensembles
are spatially separated within the same cavity, such that
they can be addressed individually by laser fields. Each
cavity is such that inside, the ensembles experience the
same field polarization, whereas outside the cavity, the two
light fields interacting with the ensembles have different
polarizations and thus are distinguishable [28]. The state to be
teleported is encoded in the atomic ground states and can be
written as

|ψ〉in
A = CA

0 |cLcR〉A + CA
1 |bLcR〉A + CA

2 |cLbR〉A
+CA

3 |bLbR〉A, (4)

with normalization
∑

i

∣∣CA
i

∣∣2 = 1. A state of this type
could be prepared by first generating four-dimensional
entangled photon states [32–35] and then mapping this
state into the ensemble using adiabatic passage. Alter-
natively, a direct preparation in the atomic ensembles
could be assisted, for example, by the Rydberg blockade
mechanism [36–38].

A. Initial preparation

The first step is to coherently map the atomic state Eq. (4)
onto photonic DOF. For this, we make use of the well-known
technique of adiabatic passage [28,39] (Note that there are
also non-adiabatic methods to prepare atom entanglement
across cavities [40], and to teleport photonic entanglement onto
atomic ensembles [41]). By applying suitable control fields to
the ensembles, the following mapping can be achieved:

|cLcR〉A|0L0R〉A −→ |cLcR〉A|0L0R〉A, (5a)

|bLcR〉A|0L0R〉A −→ |cLcR〉A|1L0R〉A, (5b)

|cLbR〉A|0L0R〉A −→ |cLcR〉A|0L1R〉A, (5c)

|bLbR〉A|0L0R〉A −→ |cLcR〉A|1L1R〉A. (5d)

In this way, the ensemble state is mapped onto the cavity field
state:

|ψ〉A = (
CA

0 |0L0R〉A + CA
1 |1L0R〉A + CA

2 |0L1R〉A
+CA

3 |1L1R〉)|cLcR〉A. (6)

Note that by making use of a setup suggested in [28], the two
photonic DOF leaving the cavity have different polarization
and spatially overlap, even though inside the cavity both
ensembles are in separate locations and experience cavity
fields with the same polarization. This is crucial, as otherwise
the ensemble state after the mapping to the photonic DOF
does not factorize out. Furthermore, the intermediate photonic
state in Eq. (6) is a superposition of different energy states.
This means that due to the free time evolution throughout the
propagation of the photons, the state amplitudes will acquire
different, time-dependent relative phases. In the following,
we, for simplicity, assume that the path lengths for photons
from Alice and Bob to the detectors coincide and neglect
overall phase factors to simplify the notation. In Sec. III, the
path-length difference is discussed in more detail.

On the receiver side, we assume that Bob prepares his
ensembles in the state |bLbR〉, which is possible since the
distant preparation of the ensembles allows for individual
addressing by laser fields. Then, similar to Alice, Bob uses the
coherent mapping between the ensemble state and his output
light field modes in Eqs. (5) to obtain the state

|ψ〉B = DB
0 |bLbR〉B |0L0R〉B + DB

1 |cLbR〉B |1L0R〉B
+DB

2 |bLcR〉B |0L1R〉B + DB
3 |cLcR〉B |1L1R〉B. (7)
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The joint state of Alice’s and Bob’s systems after the mapping
onto the photonic modes is given by

|ψ〉AB = |ψ〉A ⊗ |ψ〉B, (8)

and the explicit form is given in Appendix A.

B. Photon detection setup

We now turn to the beam splitter setup shown in Fig. 1.
Alice’s photonic state enters the setup on the top-left corner,
and a polarizing beam splitter (PBS) is used to separate the
two field modes aL and aR . Similarly, Bob’s state enters in
the bottom-right corner and is separated using a PBS into bL

and bR . The resulting modes are recombined on two beam
splitters (BS) in the top right and bottom left corner, which
together have four output modes AL, BL, AR , and BR that
are detected by the detectors D. To analyze the operation of
this setup, we now calculate the wave functions after a certain
detection event has taken place. For this, we make use of the
beam-splitter relations [42],

ÂR = tR âR + rR b̂R, (9a)

B̂R = rR âR − tR b̂R, (9b)

ÂL = tL âL + rL b̂L, (9c)

B̂L = rL âL − tL b̂L, (9d)

where âR and b̂R are the destruction operators for right input
modes, ÂR and B̂R the destruction operators for the right output
modes (and analogously for the L modes). The beam splitter
reflectivities ri and transmittivities ti (i ∈ {L,R}) are real and
positive and satisfy r2

R + t2
R = 1 and r2

L + t2
L = 1.

As an example for the calculation, we demonstrate how
one possible photonic input state is transformed by the beam
splitters:

|0L1R〉A|1L0R〉B = a
†
Rb

†
L|vac〉

= (tRAR + rRBR)(rLAL − tLBL)|vac〉
= tRrL|10,10〉 − tRtL|01,10〉

+ rRrL|10,01〉 − rRtL|01,01〉, (10)

where |ALBL,ARBR〉 denotes the number of photons in the
four output modes AL, BL, AR , and BR after the beam splitters,
and |vac〉 is the vacuum state.

C. Detection events

We now analyze the possible detection events. After each
detection event, the total system wave function collapses to
the state |ψALBL,ARBR

〉 given by
∣∣ψALBL,ARBR

〉 = 〈ALBL,ARBR|ψ〉AB. (11)

A list of all possible detection events is provided in
Appendix B. A careful analysis of these events reveals that
the events can be classified into three categories. The first
category encompasses events which lead to a teleportation of
the full initial state from Alice to Bob and in this sense are
the most favorable for teleportation. We denote these events
as full teleportation events. The second class leads to a partial
teleportation in the sense that only two of the four amplitudes
of the initial state at Alice’s side are transferred to Bob. The

third class contains failed teleportation events which do not
transfer useful information to Bob.

1. Full teleportation

It turns out that for the purpose of teleportation, the
detection events with one photon detected in either of the two
left detectors and one photon in either of the two right detectors
are the most favorable. Their collapsed wave functions receive
contributions from the following parts of Eq. (8) [see also
Eq. (A1)]:

CA
0 DB

3 |cLcR〉B |0L0R〉A|1L1R〉B
= CA

0 DB
3 |cLcR〉{rLrR|10,10〉 − rLtR|10,01〉

− tLrR|01,10〉 + tLtR|01,01〉}, (12a)

CA
1 DB

2 |bLcR〉B |1L0R〉A|0L1R〉B
= CA

1 DB
2 |bLcR〉{tLrR|10,10〉 − tLtR|10,01〉

+ rLrR|01,10〉 − rLtR|01,01〉}, (12b)

CA
2 DB

1 |cLbR〉B |0L1R〉A|1L0R〉B
= CA

2 DB
1 |cLbR〉{rLtR|10,10〉 + rLrR|10,01〉

− tLtR|01,10〉 − tLrR|01,01〉}, (12c)

CA
3 DB

0 |bLbR〉B |1L1R〉A|0L0R〉B
= CA

3 DB
0 |bLbR〉{tLtR|10,10〉 + tLrR|10,01〉

+ rLtR|01,10〉 + rLrR|01,01〉}, (12d)

where we have transformed the input photon modes into the
output modes as in Eq. (10). Grouping these results according
to the different detection events, we obtain

|ψ10,10〉 = CA
3 DB

0 tLtR|bLbR〉B + CA
1 DB

2 rRtL|bLcR〉B
+CA

2 DB
1 rLtR|cLbR〉B + CA

0 DB
3 rLrR|cLcR〉B,

(13a)

|ψ01,10〉 = CA
3 DB

0 rLtR|bLbR〉B + CA
1 DB

2 rLrR|bLcR〉B
−CA

2 DB
1 tLtR|cLbR〉B − CA

0 DB
3 tLrR|cLcR〉B,

(13b)

|ψ10,01〉 = CA
3 DB

0 rRtL|bLbR〉B − CA
1 DB

2 tLtR|bLcR〉B
+CA

2 DB
1 rLrR|cLbR〉B − CA

0 DB
3 rLtR|cLcR〉B,

(13c)

|ψ01,01〉 = CA
3 DB

0 rLrR|bLbR〉B − CA
1 DB

2 rLtR|bLcR〉B
−CA

2 DB
1 rRtL|cLbR〉B + CA

0 DB
3 tLtR|cLcR〉B.

(13d)

To simplify these expressions and to allow for a straightfor-
ward interpretation, we specialize to the case of balanced beam
splitters tL = tR = rL = rR = 1/

√
2 and balanced preparation

of the initial state on Bob’ side, DB
i = 1/

√
4. Then

|ψ10,10〉 = 1
4

(
CA

3 |bLbR〉B + CA
1 |bLcR〉B

+CA
2 |cLbR〉B + CA

0 |cLcR〉B)
, (14a)

|ψ01,10〉 = 1
4

(
CA

3 |bLbR〉B + CA
1 |bLcR〉B

−CA
2 |cLbR〉B − CA

0 |cLcR〉B)
, (14b)

|ψ10,01〉 = 1
4

(
CA

3 |bLbR〉B − CA
1 |bLcR〉B

+CA
2 |cLbR〉B − CA

0 |cLcR〉B)
, (14c)
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|ψ01,01〉 = 1
4

(
CA

3 |bLbR〉B − CA
1 |bLcR〉B

−CA
2 |cLbR〉B + CA

0 |cLcR〉B)
. (14d)

It can be seen that up to a local unitary transformation (by
which we mean operations acting on both ensembles at Bob’s
side only) changing the relative sign of the different addends,
all four detection events lead to a complete teleportation of the
original input state [Eq. (4)] from Alice to Bob. This telepor-
tation of the full quantum state is possible since the collapsed
wave functions in Eqs. (14) are coherent superpositions of all
four possible atomic states at Bob’s side.

Overall, the probability for a full teleportation is 25%, as
long as the initial state on Bob’s side is prepared balanced,
that is, DB

i = 1/
√

4 for i ∈ {1, . . . ,4}, but independent of the
choice of the beam-splitter parameters. That means that in one
quarter of the teleportation attempts, the full four-level state is
transferred with certainty to Bob.

2. Partial teleportation

In a second class of detection events, the wave function
collapses to a superposition of two atomic states on Bob’s side
upon detection. These are the events with only one photon in
either of the four detectors and the events with two photons
in one mode of the left detector and one photon in a mode of
the right detector or vice versa. In total, there are 12 detection
events leading to partial teleportation for the case of balanced
beam splitters. Two examples of these events are

|ψ10,00〉 = 1

2
√

2

(
CA

0 |cLbR〉B + CA
1 |bLbR〉B)

, (15a)

|ψ10,02〉 = −1

4

(
CA

2 |cLcR〉B + CA
3 |bLcR〉B)

, (15b)

and the remaining cases are enlisted in Appendix B. It can be
seen that in these events, only two out of the four amplitudes
in the original input state [Eq. (4)] are teleported, such that the
teleportation is partially successful. For example, in Eq. (15a),
the left ensemble at Bob’s side is projected onto the state
(CA

0 |c〉 + CA
1 |b〉)/(2

√
2), whereas in Eq. (15b), Bob’s left

ensemble assumes the final state −(CA
2 |c〉 + CA

3 |b〉)/4.
The usefulness of these teleportation events depends on

the desired application. In terms of a teleportation of the full
initial state Eq. (4), they are of little help since two partial
teleportations cannot be combined to give a full teleportation.
For example, even though the two partial teleportation events
in Eq. (15) together contain all four amplitudes, the two events
cannot be combined to the original state Eq. (4), since the
phase between the two partially teleported states is unknown.

However, for other applications, knowledge of two of the
amplitudes could be sufficient, or it could be possible to
combine the outcomes of several partial teleportations to form
a new state different from Eq. (4), but nevertheless useful. If
full teleportation of the initial state is desired, then it might
be possible to apply the intermittent partial teleportations to
correct for inevitable errors using a postprocessing scheme at
Bob’s side.

In total, partial teleportations occur with half probability
for balanced input state at Bob’s side.

3. Failed teleportation

The third class of detection events leads to collapsed wave
functions which contain a single state of Bob’s atoms. Two
examples for these events are

|ψ00,00〉 = 1√
4
CA

0 |bLbR〉B, (16a)

|ψ20,20〉 = 1

4
CA

3 |cLcR〉B. (16b)

Failed teleportations occur in 25% of the teleportation attempts
for balanced input state at Bob’s side, independent of the beam-
splitter parameters.

III. DISCUSSION AND SUMMARY

In summary, we have presented a teleportation scheme to
transfer an arbitrary quantum state of the form

|ψ〉in
A = CA

0 |cLcR〉A + CA
1 |bLcR〉A

+CA
2 |cLbR〉A + CA

3 |bLbR〉A (17)

from the sender to a receiver. Full teleportation of the initial
state is achieved in 25% of the teleportation attempts. The
reason for this limited success probability is the fact that due
to the specific mapping of the ensemble states onto photonic
DOF, the number of photons in the system can be any value
from zero to four. Full transfer, however, only occurs if
exactly one photon is detected in one of the left detectors
and one in either of the right detectors. The probability for
full teleportations can be improved if additional constraints
apply to the initial state to be teleported at Alice’s side. The
probability, in general, evaluates to

pfull = ∣∣CA
3

∣∣2∣∣DB
0

∣∣2 + ∣∣CA
2

∣∣2∣∣DB
1

∣∣2

+ ∣∣CA
1

∣∣2∣∣DB
2

∣∣2 + ∣∣CA
0

∣∣2∣∣DB
3

∣∣2
, (18)

subject to the normalization constraints
∑

i |CA
i |2 = 1 =∑

i |DB
i |2. If it is known that on average some of the four

state amplitudes CA
i differ from others, then a suitable choice

of imbalance of the parameters DB
i can lead to pfull >

25%. For example, assume that on average |CA
0 |2 = 1/4 + x,

|CA
1 |2 = |CA

2 |2 = 1/4, and |CA
3 |2 = 1/4 − x. Then choosing

|DB
0 |2 = 1/4 + y, |DB

1 |2 = |DB
2 |2 = 1/4, and |DB

3 |2 = 1/4 − y

leads to pfull = 1/4 − 2xy. Thus, the probability for a full
teleportation event can be increased, however, at the cost
that the final state at Bob’s side needs postprocessing of the
state amplitudes. For example, for the preceding nonbalanced
parameter choices, the state in Eq. (14a) becomes

|ψ10,10〉 = 1
4

(
CA

3

√
1 + 4y|bLbR〉B + CA

1 |bLcR〉B
+CA

2 |cLbR〉B + CA
0

√
1 − 4y|cLcR〉B)

. (19)

The partial teleportation events which occur with 50%
probability, however, can also be of use, depending on the
specific desired application. Straightforward recombining of
two partial teleportations to give the full initial state, however,
is not possible.

The variable number of photons produced in the transfer
from the ensemble to photonic DOF inevitably also leads to
failed teleportation attempts. For example, if no photon is
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detected, then the wave function collapses to a state propor-
tional to |bLbR〉, since the detection event uniquely defines the
possible atomic state to a single possibility. Apart from this
trivial case, there are other combinations with, for example,
three detected photons that uniquely define the atomic states
at Bob’s side and therefore do not lead to a transfer of useful
superposition states from Alice. At the same time, this variable
photon number corresponds to a superposition of different
energy states. This leads to time-dependent relative phases
acquired by the different addends in the superposition states,
thereby modifying the encoded state. This is in part remedied
by the fact that, for example, the full teleportation events
correspond to a collapse of the total wave functions to states
with exactly two photonic excitations. If the respective path
length of photons from Alice and Bob to the detectors are
equal, then the free time evolution leads only to an overall
phase modification of the collapsed wave function. However,
if the path lengths of Alice and Bob differ by P , then relative
phases of order � = ωP/c with h̄ω the photon energy and c

the speed of light between the addends arise. The requirement
of a negligible phase change � � 2π then leads to the condi-
tions ω � 2πc/P or P � 2πc/ω on the photon frequency
and the maximum path-length difference to ensure a high
fidelity of the teleported state.

Our scheme therefore allows to teleport a more general
state than conventional single qubit teleportation schemes, at
the price of a lower success probability. Improvement of the
success probability could be achieved by a better mapping of
the ensemble DOF to photonic states, for example, such that
always a pair of photons enters the detection scheme.
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APPENDIX A: INITIAL STATE

The explicit form of the initial state Eq. (8) can be written
as

|ψ〉AB = CA
0 DB

0 |bLbR〉B |0L0R〉A|0L0R〉B
+CA

0 DB
1 |cLbR〉B |0L0R〉A|1L0R〉B

+CA
0 DB

2 |bLcR〉B |0L0R〉A|0L1R〉B
+CA

0 DB
3 |cLcR〉B |0L0R〉A|1L1R〉B

+CA
1 DB

0 |bLbR〉B |1L0R〉A|0L0R〉B
+CA

1 DB
1 |cLbR〉B |1L0R〉A|1L0R〉B

+CA
1 DB

2 |bLcR〉B |1L0R〉A|0L1R〉B
+CA

1 DB
3 |cLcR〉B |1L0R〉A|1L1R〉B

+CA
2 DB

0 |bLbR〉B |0L1R〉A|0L0R〉B
+CA

2 DB
1 |cLbR〉B |0L1R〉A|1L0R〉B

+CA
2 DB

2 |bLcR〉B |0L1R〉A|0L1R〉B

+CA
2 DB

3 |cLcR〉B |0L1R〉A|1L1R〉B
+CA

3 DB
0 |bLbR〉B |1L1R〉A|0L0R〉B

+CA
3 DB

1 |cLbR〉B |1L1R〉A|1L0R〉B
+CA

3 DB
2 |bLcR〉B |1L1R〉A|0L1R〉B

+CA
3 DB

3 |cLcR〉B |1L1R〉A|1L1R〉B. (A1)

APPENDIX B: SUMMARY OF ALL DETECTION EVENTS

In the following, all possible detection events are listed.
Note that for balanced beam splitters, part of the detection
events since in this case r2

L = t2
L and r2

R = t2
R .

1. Full teleportation

|ψ10,10〉 = CA
3 DB

0 tLtR|bLbR〉B + CA
1 DB

2 rRtL|bLcR〉B
+CA

2 DB
1 rLtR|cLbR〉B + CA

0 DB
3 rLrR|cLcR〉B,

|ψ01,10〉 = CA
3 DB

0 rLtR|bLbR〉B + CA
1 DB

2 rLrR|bLcR〉B
−CA

2 DB
1 tLtR|cLbR〉B − CA

0 DB
3 tLrR|cLcR〉B,

|ψ10,01〉 = CA
3 DB

0 rRtL|bLbR〉B − CA
1 DB

2 tLtR|bLcR〉B
+CA

2 DB
1 rLrR|cLbR〉B − CA

0 DB
3 rLtR|cLcR〉B,

|ψ01,01〉 = CA
3 DB

0 rLrR|bLbR〉B − CA
1 DB

2 rLtR|bLcR〉B
−CA

2 DB
1 rRtL|cLbR〉B + CA

0 DB
3 tLtR|cLcR〉B.

2. Partial teleportation

|ψ00,10〉 = CA
2 DB

0 tR|bLbR〉B + CA
0 DB

2 rR|bLcR〉B,

|ψ00,01〉 = CA
2 DB

0 rR|bLbR〉B − CA
0 DB

2 tR|bLcR〉B,

|ψ10,00〉 = CA
1 DB

0 tL|bLbR〉B + CA
0 DB

1 rL|cLbR〉B,

|ψ01,00〉 = CA
1 DB

0 rL|bLbR〉B − CA
0 DB

1 tL|cLbR〉B,

|ψ10,20〉 =
√

2 rRtR
(
CA

3 DB
2 tL|bLcR〉B

+CA
2 DB

3 rL|cLcR〉B)
,

|ψ10,02〉 = −
√

2 rRtR
(
CA

3 DB
2 tL|bLcR〉B

+CA
2 DB

3 rL|cLcR〉B)
,

|ψ01,20〉 =
√

2 rRtR
(
CA

3 DB
2 rL|bLcR〉B

−CA
2 DB

3 tL|cLcR〉B)
,

|ψ01,02〉 =
√

2 rRtR
(−CA

3 DB
2 rL|bLcR〉B

+CA
2 DB

3 tL|cLcR〉B)
,

|ψ01,11〉 = (
r2
R − t2

R

)(
CA

3 DB
2 rL|bLcR〉B

−CA
2 DB

3 tL|cLcR〉B)
,

|ψ10,11〉 = (
r2
R − t2

R

)(
CA

3 DB
2 tL|bLcR〉B

+CA
2 DB

3 rL|cLcR〉B)
,

|ψ20,10〉 =
√

2 rLtL
(
CA

3 DB
1 tR|cLbR〉B

+CA
1 DB

3 rR|cLcR〉B)
,

|ψ02,10〉 = −
√

2 rLtL
(
CA

3 DB
1 tR|cLbR〉B

+CA
1 DB

3 rR|cLcR〉B)
,
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|ψ20,01〉 =
√

2 rLtL
(
CA

3 DB
1 rR|cLbR〉B

−CA
1 DB

3 tR|cLcR〉B)
,

|ψ02,01〉 =
√

2 rLtL
( − CA

3 DB
1 rR|cLbR〉B

+CA
1 DB

3 tR|cLcR〉B)
,

|ψ11,10〉 = (
r2
L − t2

L

)(
CA

3 DB
1 tR|cLbR〉B

+CA
1 DB

3 rR|cLcR〉B)
,

|ψ11,01〉 = (
r2
L − t2

L

)(
CA

3 DB
1 rR|cLbR〉B

−CA
1 DB

3 tR|cLcR〉B)
.

3. Failed teleportation

|ψ00,00〉 = CA
0 DB

0 |bLbR〉B,

|ψ00,20〉 =
√

2 CA
2 DB

2 rRtR|bLcR〉B,

|ψ00,02〉 = −
√

2 CA
2 DB

2 rRtR|bLcR〉B,

|ψ20,00〉 =
√

2 CA
1 DB

1 rLtL|cLbR〉B,

|ψ02,00〉 = −
√

2 CA
1 DB

1 rLtL|cLbR〉B,

|ψ20,20〉 = 2CA
3 DB

3 rLrRtLtR|cLcR〉B,

|ψ20,02〉 = −2CA
3 DB

3 rLrRtLtR|cLcR〉B,

|ψ02,02〉 = 2CA
3 DB

3 rLrRtLtR|cLcR〉B,

|ψ02,20〉 = −2CA
3 DB

3 rLrRtLtR|cLcR〉B,

|ψ00,11〉 = CA
2 DB

2

(
r2
R − t2

R

)|bLcR〉B,

|ψ11,00〉 = CA
1 DB

1

(
r2
L − t2

L

)|cLbR〉B,

|ψ20,11〉 =
√

2 CA
3 DB

3 rLtL
(
r2
R − t2

R

)|cLcR〉B,

|ψ02,11〉 =
√

2 CA
3 DB

3 rLtL
(
t2
R − r2

R

)|cLcR〉B,

|ψ11,20〉 =
√

2 CA
3 DB

3 rRtR
(
r2
L − t2

L

)|cLcR〉B,

|ψ11,02〉 =
√

2 CA
3 DB

3 rRtR
(
t2
L − r2

L

)|cLcR〉B,

|ψ11,11〉 = CA
3 DB

3 rRtR
(
r2
L − t2

L

)(
r2
R − t2

R

)|cLcR〉B.
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[37] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau,
D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys.
5, 115 (2009).

[38] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Nat. Phys. 5, 110 (2009).

[39] M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd,
P. R. Hemmer, and A. E. Craig, Opt. Commun. 195, 411 (2001).

[40] L. M. Duan and H. J. Kimble, Phys. Rev. Lett. 90, 253601
(2003).

[41] K. Hammerer, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 72,
052313 (2005).

[42] R. Loudon, The Quantum Theory of Light, 3rd Ed. (Oxford
University Press, Oxford, 2000).

022329-7

http://dx.doi.org/10.1103/PhysRevA.73.063810
http://dx.doi.org/10.1103/PhysRevA.78.042321
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1038/nphys1183
http://dx.doi.org/10.1038/nphys1183
http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1016/S0030-4018(01)01354-2
http://dx.doi.org/10.1103/PhysRevLett.90.253601
http://dx.doi.org/10.1103/PhysRevLett.90.253601
http://dx.doi.org/10.1103/PhysRevA.72.052313
http://dx.doi.org/10.1103/PhysRevA.72.052313

