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Using postmeasurement information in state discrimination
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We consider a special form of state discrimination in which after the measurement we are given additional
information that may help us identify the state. This task plays a central role in the analysis of quantum
cryptographic protocols in the noisy-storage model, where the identity of the state corresponds to a certain bit
string, and the additional information is typically a choice of encoding that is initially unknown to the cheating
party. We first provide simple optimality conditions for measurements for any such problem and show upper
and lower bounds on the success probability. For a certain class of problems, we furthermore provide tight
bounds on how useful postmeasurement information can be. In particular, we show that for this class finding the
optimal measurement for the task of state discrimination with postmeasurement information does in fact reduce
to solving a different problem of state discrimination without such information. However, we show that for the
corresponding classical state discrimination problems with postmeasurement information such a reduction is
impossible, by relating the success probability to the violation of Bell inequalities. This suggests the usefulness
of postmeasurement information as another feature that distinguishes the classical from a quantum world.
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I. INTRODUCTION

One of the characteristic traits of quantum mechanics is
that not all possible states of a physical system are perfectly
distinguishable. This is in stark contrast to the classical
world, but enables us to solve cryptographic problems such
as key distribution [1,2] or two-party computation in the
noisy-storage model [3,4]. Nevertheless, it is often possible
to gain partial knowledge about the state. Imagine that a
physical system is prepared in one out of several possible
states chosen with a certain probability. The set of possible
states as well as the distribution are thereby known to us.
The goal of state discrimination is to identify which state was
chosen by performing a measurement on the system, whereby
our aim is to choose measurements that maximize the average
probability of success. This fundamental problem has been
studied extensively for the past 30 years, starting with the
works of Helstrom [5], Holevo [6], and Belavkin [7] (see [8] for
a survey of known results), and has found many applications in
quantum information theory (see, e.g., [9]), cryptography [10],
and algorithms [11,12].

Here, we consider a special twist to the standard state
discrimination problem (Fig. 1) introduced in [13], in which
we obtain additional information after the measurement that
may help us to identify the state. This task is easily described
in terms of the following game depicted in Fig. 2: Imagine that
Alice chooses a state ρxb from a finite set E with probability
pxb, labeled by what we will call the string x ∈ X and the
encoding b ∈ B. Bob knows E as well as the distribution
P = {pxb}xb. Alice then sends the state to Bob. Bob may
now perform any measurement from which he obtains a
classical measurement outcome k. Afterward, Alice informs
him about the encoding b. The task of state discrimination with
postmeasurement information (and no memory) for Bob is to
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identify the string x, using the encoding b and his classical
measurement outcome k, where we are again interested in
maximizing Bob’s average probability of success over all
measurements he may perform.1 In [3] it was shown how
bounds on this success probability can be used to prove security
in the noisy-storage model.

Naturally, from a cryptographic standpoint it would be
useful to know how much the additional information b can
actually help Bob. Let pPI

succ(E,P ) and psucc(E,P ) be the
maximum average probabilities of success for the problem of
state discrimination with and without postmeasurement infor-
mation, respectively. Note that pPI

succ(E,P ) � psucc(E,P ), since
we can always choose to ignore any additional information.
We will measure how useful postmeasurement information is
for Bob in terms of the difference in his success probability

�(E,P ) := pPI
succ(E,P ) − psucc(E,P ). (1)

Of course, even in a classical setting postmeasurement infor-
mation can help Bob determine the string x. As a very simple
example, suppose that x ∈ {0,1} is a single classical bit, and we
have only one encoding b ∈ {0,1}. Imagine that Alice chooses
x and one of the two encodings uniformly at random and sends
Bob the bit x ⊕ b = x + b mod 2. The states corresponding
to this encoding are thus given by

ρxb = |x ⊕ b〉〈x ⊕ b|, (2)

where pxb = 1/4. Note that Bob now has a randomly
chosen bit in his possession and hence psucc(E,P ) = 1/2.
However, he can decode correctly once he receives the
additional information b and thus pPI

succ(E,P ) = 1, giving us

1Note that in [13] this problem was generalized to a setting where
Bob may store not only classical information, but also a (limited)
amount of quantum information. Here, however, we will only focus
on the case of no storage,. which was enough to relate security of the
noisy-storage model to a coding problem [3].
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FIG. 1. Standard state discrimination.

�(E,P ) = 1/2. As has been shown in [13] we always have
pPI

succ(E,P ) = 1 in the classical world where all states ρxb are
diagonal in the same basis and orthogonal for fixed b.

A. Results

We first provide a general condition for checking the
optimality of measurements for our task (see Sec. II B). It
was shown in [13] that the optimal measurements can be
found numerically using semidefinite programming solvers;
however, in higher dimensions this remains prohibitively
expensive. We then focus on the case which is particularly
interesting for cryptography, namely, when the string x is
chosen uniformly and independently from the encoding b.
First, we provide upper and lower bounds for the success
probability pPI

succ (Secs. II D and II C).
In Sec. III, we then show that for a large class of encodings

(so-called Clifford encodings) our lower bound is in fact
tight. We thereby explicitly provide the optimal measurements
for Clifford encodings. The class of encodings we consider
includes any encodings into two orthogonal pure states in
dimension d = 2 such as the well-known Bennett-Brassard
1984 (BB84) encodings [1], as well as the case where
we have two possible strings and encodings which can be
reduced to a problem in dimension d = 2 [13,14]. It was
previously observed that for BB84 encodings postmeasure-
ment information was useless [13]. Here, we see that this
is no mere accident and give a general condition for when
postmeasurement information is useless for Clifford encod-
ings. We continue by showing that for Clifford encodings, we
can always perform a relabeling of the strings x depending
on the encoding b such that we obtain a new problem for
which postmeasurement information is indeed useless. This
is particularly appealing from a cryptographic perspective as
it means the adversary cannot gain any additional knowledge
from the postmeasurement information. This means that for
Clifford encodings we no longer need to treat the problem with
postmeasurement information any differently and can instead
apply the well-studied machinery of state discrimination.

However, we will see that a relabeling that renders
postmeasurement information useless is impossible when
considering a classical ensemble.2 In particular, we will see
that as long as we are able to gain some information about the
encoded string x without waiting for the postmeasurement
information, then classically we cannot hope to find a
nontrivial relabeling that makes postmeasurement information
useless. We thereby focus on the case of encodings a single bit
into two possible encodings in detail. Curiously, we will show
this by relating the problem to Bell inequalities [15], such
as for example the well-known Clauser-Horne-Shimony-Holt
(CHSH) inequality [16]. This suggests that the usefulness of

2An ensemble is classical if the states ρxb all commute.

FIG. 2. Using postmeasurement information.

postmeasurement information forms another intriguing prop-
erty that distinguishes the quantum from the classical world.

II. GENERAL BOUNDS

Before investigating the use of postmeasurement infor-
mation, we derive general conditions for the optimality of
measurements for our task. We also provide a general bound on
the success probability when the distribution overX is uniform
(i.e., px = 1/|X |) and independent of the choice of encoding.

A. Semidefinite program formalism

When considering state discrimination with postmeasure-
ment information, we can without loss of generality assume
that Bob performs a measurement whose outcomes correspond
to vectors �x = (x(1), . . . ,x(L)) ∈ X×L where each entry
corresponds to the answer that Bob will give when he later
learns which one of the L = |B| possible encodings was used.
That is, when the encoding was b, Bob will output the guess
x(b) of the vector �x [13]. In [13] it was noted that the average
probability that Bob outputs the correct guess x(b) when
given the postmeasurement information b maximized over all
possible positive operator valued measurements (POVMs) can
be computed by solving the following semidefinite program
(SDP). The primal of this SDP is given by

maximize vprimal =
∑

�x
tr(M�xτ�x)

subject to ∀ �x ∈ X×L, M�x � 0,∑
�x

M�x = I,

where

τ�x =
L∑

b=1

px(b)b ρx(b)b. (3)

By forming the Lagrangian, we can easily compute the dual
of this SDP (see, e.g., [17], Appendix]) which is given by

minimize vdual = tr(Q)

subject to ∀ �x ∈ X×L, Q � τ�x.

SDPs can be solved in polynomial time (in the input size)
using standard algorithms [18], which also provide us with
the optimal measurement operators.

B. Optimality conditions

However, with the SDP formalism in mind, it is now also
easy to provide necessary and sufficient conditions for when a
set of measurement operators {M�x}�x is in fact optimal. Similar
conditions were derived for the case of state discrimination
without postmeasurement information [7,19–23]. A proof can
be found in the Appendix.

Lemma 1. A POVM with operators {M�x}�x is optimal for
state discrimination with postmeasurement information for
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the ensemble E = {pxb,ρxb} if and only if the following two
conditions hold:

1. Q := ∑
�x τ�xM�x is Hermitian.

2. Q � τ�x for all �x ∈ X×L.

C. Upper bound

We now derive a simple upper bound on the success
probability of state discrimination with postmeasurement
information when pxb = pxpb is a product distribution, and
the string x is chosen uniformly at random (i.e., px = 1/|X |).
We will use a trick employed by Ogawa and Nagaoka [9] in
the context of channel coding which was later rediscovered in
the context of state discrimination [24]. A proof can be found
in the Appendix.

Lemma 2. Let N = |X | be the number of possible strings,
and suppose that the joint distribution over strings and
encodings satisfies pxb = pb/N , where the distribution {pb}b
is arbitrary. Then

pPI
succ(E,P ) � 1

N
tr

[ (∑
�x

ρα
�x

)1/α ]
, (4)

for all α > 1, where E = {ρxb}xb, P = {pxb}xb, and ρ�x =∑L
b=1 pb ρx(b)b.
Note that the bound on the right-hand side (RHS) contains

very many terms, and yet our normalization factor is only 1/N .
Nevertheless, for many interesting examples we can obtain a
useful bound this way, by choosing α to be sufficiently large.

D. Lower bound

Similarly, if x is chosen uniformly at random and in-
dependent of the encoding, we can find a lower bound to
pPI

succ. The idea behind this lower bound is to subdivide the
problem into a set of smaller problems which we can solve
using standard techniques from state discrimination. Note
that, without loss of generality, we can label the elements
of X that we wish to encode from 0, . . . ,N − 1, where we
let N = |X |. The vector �x can thus be written analogously as
a vector �x ∈ {0, . . . ,N − 1}×L. We now partition the set of
all possible such vectors as follows. Consider a shorter vector
of length L − 1, that is, �y ∈ {0, . . . ,N − 1}×(L−1). With every
such vector, we associate the partition

T�y = {�x = (y(1) + j mod N, . . . ,y(L−1) + j mod N,

0 + j mod N ) | j ∈ {0, . . . ,N − 1}}. (5)

Note that |T�y | = N and if �y �= �̂y we have T�y ∩ T�̂y = ∅. The
union of all such partitions gives us the set of all possible
vectors �x, that is,⋃

�y
T�y = {�x | �x ∈ {0, . . . ,N − 1}×L}. (6)

With every partition T�y we can now associate a standard state
discrimination problem without postmeasurement information
in which we try to discriminate states

ρ�x :=
L∑

b=1

pbρx(b)b, (7)

such that �x ∈ T�y . That is, the set of states is given by
ET�y = {ρ�x | �x ∈ T�y} and p�x = 1/N is the uniform distribution.
Note that the original problem of state discrimination where we
do not receive any postmeasurement information corresponds
to the partition given by �y = (0, . . . ,0), where we always
give the same answer no matter what the postmeasurement
information is going to be. We prove the following lemma in
the Appendix.

Lemma 3. The success probability with postmeasurement
information is at least as large as the success probability of a
derived problem without postmeasurement information, i.e.,

pPI
succ(E,P ) � max

�y
psucc(ET�y ,P ).

In particular, this allows us to apply any known lower
bounds for the standard task of state discrimination [25]
to this problem. Curiously, we will see that there exists a
large class of problems for which this bound is tight, even
though �(E,P ) > 0, that is, even though postmeasurement
information is useful.

III. TIGHT BOUNDS FOR SPECIAL ENCODINGS

We now consider a very special class of problems called
Clifford encodings, for which we can determine the optimal
measurement explicitly. In this problem, we will only ever
encode a single bit x ∈ {0,1} chosen uniformly at random
independent of the choice of encoding, and take (d = 2n)-
dimensional states of the form

ρxb = 1

d

⎛
⎝I +

2n+1∑
j=1

γ
(j )
xb �j

⎞
⎠ , (8)

where �1, . . . ,�2n+1 are generators of the Clifford algebra,
that is, anticommuting operators3 satisfying (�j )2 = I for all
j . We also assume that the vector γxb = (γ (1)

xb , . . . ,γ
(2n+1)
xb )

satisfies γxb = −γ(1−x)b and ‖γxb‖2 � 1. The distribution over
encodings can be arbitrary. Using the fact that the operators
anticommute, it is not hard to see that tr(�j�k) = 0 for j �= k

and the latter condition then ensures that ρxb is a valid quantum
state [26], that is, ρxb is positive semidefinite satisfying
tr(ρxb) = 1. The Clifford algebra has a unique representation
by Hermitian matrices on n qubits (up to unitary equivalence)
which we fix henceforth. This representation can be obtained
via the famous Jordan-Wigner transformation [27]:

�2j−1 = Y⊗(j−1) ⊗ Z ⊗ I⊗(n−j ),

�2j = Y⊗(j−1) ⊗ X ⊗ I⊗(n−j ),

for j = 1, . . . ,n, where we use X, Y , and Z to denote the Pauli
matrices. We also use �2n+1 = i�1 · · ·�2n.

Note that in dimension d = 2, these operators are simply
the Pauli matrices �1 = Z, �2 = X, and �2n+1) = Y and any
encoding of the bit x into two orthogonal pure states is of
the above form. A simple example is the BB84 encoding [1]
where we encode the bit x into the computational basis labeled
by b = 0 and into the Hadamard basis labeled by b = 1.

3That is, {�j ,�k} = �j�k + �k�j = 0 for j �= k.
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Furthermore, if we have only two possible strings and encod-
ings, we can always reduce the problem to dimension d = 2
[13,14]. In higher dimensions, encodings of the above form
were suggested for the use in cryptographic protocols [26].

A. Without postmeasurement information

We now first examine the setting of state discrimination
without postmeasurement information, which will provide
us with the necessary intuition. Again, we use L = |B| to
denote the number of possible encodings. Recall the average
state ρ�x from (7) for the vector �x = (x(1), . . . ,x(L)), which
tells us for every possible encoding which bit appears in the
sum. We furthermore define the complementary vector �x =
((1 − x(1)), . . . ,(1 − x(L))), that is, �x + �x = �0. As a warmup,
suppose we are given ρ�x and ρ�x chosen uniformly at random
and wish to determine which one. Clearly, this is an example
of state discrimination without postmeasurement information,
which can also be written as an SDP [23,28]. The primal is of
the form

maximize 1
2 [tr(M�xρ�x) + tr(M�xρ�x)]

subject to M�x � 0

M�x � 0

M�x + M�x = I.

Its dual is easily found to be

minimize tr(Q)

subject to Q � 1
2ρ�x

Q � 1
2ρ�x .

Analogous to Lemma 1 with τ�x = 1
2ρ�x one can derive

optimality conditions which for the case of state discrimination
were previously obtained in [7,19–23]. In our case they tell us
that Q = 1

2 (ρ�xM�x + ρ�xM�x) must be Hermitian, and Q is a
feasible dual solution. All we have to do is thus to guess an
optimal measurement, and use these conditions to prove its
optimality. Consider the operators

M�x = 1

2

(
I +

∑
j

a
(j )
�x �j

)
,

(9)

M�x = 1

2

(
I −

∑
j

a
(j )
�x �j

)
,

where �a�x = �v�x/‖�v�x‖2 is the normalized average vector

�v�x =
L∑

b=1

pbγx(b)b. (10)

Note that, since the generators of the Clifford algebra anticom-
mute, we have that M�x,M�x � 0 and M�x + M�x = I. Hence,
these operators do form a valid measurement. In the Appendix,
we derive two lemmas which show that Q = 1

2 (ρ�xM�x +
ρ�xM�x) is Hermitian (Lemma 9) and satisfies Q � 1

2ρ�x for
all �x (Lemmas 9 and 10),4 which are the conditions we needed
for optimality. All proofs can be found in the Appendix.

4Recall that for any Hermitian operator we have λmax(A)I � A,
where λmax(A) is the largest eigenvalue of A.

Theorem 1. The measurements given in (9) are optimal to
discriminate ρ�x from ρ�x chosen with equal probability.

B. With postmeasurement information

We are now ready to determine the optimal measurements
for the case with postmeasurement information. First of all,
recall from Lemma 3 that we can subdivide our problem into
smaller parts by partitioning the set of strings �x. Applied to
the present case, these partitions are simply given by

T̃�x = {�x,�x}, (11)

where for simplicity we here use the vector �x itself to label the
partition. Note that by Lemma 3 we thus have that

pPI
succ(E,P ) � max

�x
psucc

(
ET̃�x

)
. (12)

We show in the Appendix that this bound is in fact tight.
Lemma 4. For Clifford encodings

pPI
succ(E,P ) = max

�x
psucc

(
ET̃�x

)
, (13)

and postmeasurement information is useless if and only if the
maximum on the RHS is attained by �x = (0, . . . ,0).

Note that the optimal measurement is thus given by (9)
for the vector �x maximizing the RHS of (12), and letting all
other M�̃x = 0. This shows that for our class of problems the
problem of finding the optimal measurement can be simplified
considerably and is easily evaluated.

It is a very useful consequence of our analysis that for any
cryptographic application that makes use of such encodings,
we can always perform a relabeling of states ρxb such
that postmeasurement information becomes useless. More
precisely, we will associate �x with the new all (0, . . . ,0) vector
and �x with the new (1, . . . ,1) vector. That is, for the optimal
vector �x we let

ρnew
0b := ρx(b)b, (14)

ρnew
1b := ρ(1−x(b))b. (15)

Clearly, by Lemma 4 we then have for Enew = {ρnew
xb }xb that

�(Enew,P ) = 0, (16)

as desired.

C. Example

We now consider a small example that illustrates how
our statement applies to the case where we have only two
possible encodings B = {0,1} into two orthogonal pure states
in dimension d = 2, and we choose the encoding uniformly
at random (pb = 1/2). A simple example is encoding into the
BB84 bases [1], where we pick the computational basis for
b = 0 and the Hadamard basis for b = 1. We now show that
in two dimensions, postmeasurement information is useless if
and only if the angle between the Bloch vectors for the states
ρ00 and ρ01 obeys θ � π

2 as illustrated in Figs. 3 and 4.
Note that in this example the average states are given by

ρ(0,0) = 1
2 (ρ00 + ρ01), (17)

ρ(1,1) = 1
2 (ρ10 + ρ11), (18)
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ρ00

ρ11 ρ10

ρ01

θ

FIG. 3. Postmeasurement information is useless if and only if
θ � π/2. The dashed line corresponds to the Bloch vector of the
optimal measurement using postmeasurement information consisting
of two rank-1 projectors M00 and M11, which is the same measurement
one would make for standard state discrimination. We output the same
bit, no matter what encoding information b we receive.

ρ(0,1) = 1
2 (ρ00 + ρ11), (19)

ρ(1,0) = 1
2 (ρ10 + ρ01). (20)

The two partitions we are considering are T̃(0,0) = {(0,0),(1,1)}
and T̃(0,1) = {(0,1),(1,0)}. Let �v0 and �v1 be the Bloch vectors
corresponding to the states ρ00 and ρ01 respectively. We have
from Lemma 10 that

λmax(ρ�x) = λmax(ρ�x) (21)

=
{

1
2 (I + ‖v0 + v1‖2) for �x = (0,0),
1
2 (I + ‖v0 − v1‖2) for �x = (0,1).

(22)

Hence, by Lemma 4 postmeasurement information is useless
if and only if

‖v0 + v1‖2 � ‖v0 − v1‖2. (23)

Since ‖v0‖2 = ‖v1‖2 = 1 for pure states, we have
‖v0 + v1‖2 = 2 + 2 cos θ and ‖v0 − v1‖2 = 2 − 2 cos θ and
thus (23) holds if and only if θ � π

2 . The optimal measurement
is again given by (9). Note that this is rather intuitive, since
for partition T̃(0,0) we always give the same answer, no matter
what postmeasurement information we receive.

ρ00 ρ01

ρ11 ρ10

θ

FIG. 4. Postmeasurement information is useful for θ > π/2.
The dashed line corresponds to the Bloch vector of the optimal
measurement using postmeasurement information consisting of two
rank-1 projectors M01 and M10, which is the measurement one would
make in standard state discrimination, if we were to distinguish
(ρ00 + ρ11)/2 from (ρ01 + ρ10)/2. Which bit we output depends on
the postmeasurement information we receive.

IV. CLASSICAL ENSEMBLES

We saw above that for the case of Clifford encodings even
if postmeasurement information was useful for the original
problem, that is, psucc(E,P ) < pPI

succ(E,P ), we could always
perform a relabeling to obtain a new problem for which
postmeasurement information is useless. We now show that
this is a unique quantum feature and is not present in analogous
classical problems as long as we are able to gain some
information even without postmeasurement information, i.e.,
psucc(E,P ) > 1/|X |. We thereby call a problem classical if
and only if all states ρxb commute.

We again focus on the case where we wish to encode a
single bit x ∈ {0,1}. Let 
xb be a projector onto the support of
ρxb. For simplicity, we will assume in the following that 
0b +

1b = I for all encodings b, and that the projectors are of equal
rank r = rank(
0b) = rank(
1b). We also assume that ρxb =

xb/r . It is straightforward to extend our argument to a more
general case, but makes it more difficult to follow our idea.

In [[13], Lemma 5.1] it was shown that if [Pxb,Px ′b′ ] = 0
for all bits x,x ′ and encodings b,b′ of this form

pPI
succ(E,P ) = 1. (24)

Recall that we are interested in the case where psucc(E,P ) <

pPI
succ(E,P ). Hence, our goal will be to show that there exists no

relabeling as in the previous section that allows us to create a
new problem Enew for which psucc(Enew,P ) = pPI

succ(E,P ) = 1.

A. Nonlocal games

To show our result, we will need the notion of nonlocal
games which are a different way of looking at Bell inequalities
[15]. For example, the well-known CHSH inequality [16] takes
the following form when converted to a game. Imagine two
spacelike separated parties, Alice and Bob. We choose two
questions s,t ∈ {0,1} uniformly at random and send them
to Alice and Bob, respectively. The rules are that they win
the game if and only if they manage to return answers
a,b ∈ {0,1} such that st = a + b mod 2. Without loss of
generality, we may thereby assume that Alice and Bob perform
a measurement depending on the question they receive, and
simply return the outcome of that measurement. To help them
win the game, Alice and Bob may thereby agree on any shared
state and measurements ahead of time, but are no longer able
to communicate once the game starts. The average probability
that they win the game is thus

pwin = max
1

4

∑
s,t

∑
a,b

a+b mod 2=st

Pr[a,b | s,t], (25)

where Pr[a,b | s,t] is the probability that they return answers
a and b given questions s and t , and the maximization is over
all states and measurements allowed in a particular theory.
Classically, we have

pclassical
win = 3

4 . (26)

In a quantum world, however, Alice and Bob can achieve

pquantum
win = 1

2
+ 1

2
√

2
≈ 0.853. (27)
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More general nonlocal games are of course possible, where
we may have a larger number of questions and answers, and
the rules of the game may be more complicated.

Of central importance to us will be the fact that if Alice’s (or
Bob’s) measurements commute, then there exists a classical
strategy that achieves the same winning probability (see, e.g.,
[17]). We now use this fact to prove our result.

B. A classical-quantum gap

To explain the main idea behind our construction, we focus
on the case where we only have two possible encoding L = 2.
That is, B = {0,1} and X = {0,1}. We also assume that the
bit x, as well as the encoding b is chosen uniformly and
independently at random. The states defining our problem are
thus ρ00, ρ01, ρ10, and ρ11. We again consider the two partitions
labeled by �x ∈ {0,1}2 given by

T̃(0,0) = {(0,0),(1,1)}, (28)

T̃(0,1) = {(0,1),(1,0)}. (29)

As before, we can associate a standard state discrimination
problem with each of these partitions. For the first partition
T̃(0,0) as wish to discriminate between the states ρ(0,0) and
ρ(1,1) specified by (17) and (18) where we are given one
of the two states with equal probability. Let p1 denote the
success probability of solving this problem, maximized over all
possible measurements. Note that our condition of being able
to gain some information in the state discrimination problem
corresponds to having

1
2 < p1. (30)

For the second partition T̃(0,1), we wish to discriminate
between ρ(0,1) and ρ(1,0) from (19) and (20), again given with
equal probability. Let p2 denote the corresponding success
probability for the second partition. Note that since we have
only two possible partitions here constructed in the way
outlined in Sec. III, our goal of showing that there exists no
relabeling that makes postmeasurement information useless
can be rephrased as showing that p2 < 1.

We now show that these two state discrimination problems
arise naturally in the CHSH game. In particular, we prove the
following lemma in the Appendix.

Lemma 5. There exists a strategy for Alice and Bob to
succeed at the CHSH game with probability (p1 + p2)/2,
where Alice’s measurements are given by the projectors
{P00,P10} and {P01,P11}.

However, recall that if the ensemble of states is classical the
projectors Pxb all commute, and hence there exists a classical
strategy for Alice and Bob that also achieves a winning
probability of (p1 + p2)/2. Hence, by (26) we must have

p1 + p2

2
� 3

4
. (31)

Using (30) this implies p2 � 3/2 − p1 < 1 = pPI
succ, and hence

the relabeling corresponding to the second partition cannot
make postmeasurement information useless. To summarize
we obtain the following theorem.5

5Any relabeling that relabels at least one ρxb is called nontrivial.

Theorem 2. For the case of two encodings of a single bit
chosen uniformly at random (i.e., pxb = 1/4), which do allow
us to gain some information even without postmeasurement
information (psucc > 1/2), there exists no nontrivial relabeling
that renders postmeasurement information useless.

Note that if we are able to gain some information in
both state discrimination problems, i.e., p1,p2 > 1/2, the
preceding discussion also implies that p1,p2 < 1, that is,
postmeasurement information is never useless. Bounds on
Bell inequalities corresponding to bounds on the maximum
winning probability that can be achieved in a classical world
can thus allow us to place bounds on how well we can
solve state discrimination problems without postmeasurement
information.

This is in stark contrast to the quantum setting. For example,
for the BB84 encodings it is not hard to see that p1 = p2 =
pPI

succ ≈ 0.853 [13], and hence postmeasurement information
is always useless. Yet there exist classical encodings [13] for
which p1 = p2 = 3/4 but pPI

succ = 1.
To analyze the case of multiple encodings, we have to

consider more complicated games than the one obtained from
the CHSH inequality. A natural choice is to consider games in
which Bob has to solve different state discrimination problems
corresponding to different partitions of the vectors �x depending
on his question t in the game. To make a fully general
statement we would like to include all possible partitions.
Clearly, however the above approach can also be used to
place bounds on the average of success probabilities for a
subset of partitions by defining a game with less questions,
and evaluating it’s maximum classical winning probability.

V. CONCLUSIONS

Our work raises several immediate open questions. First
of all, can we obtain sharper bounds? Since solving an SDP
numerically is still very expensive in higher dimensions,
it would also be interesting to prove bounds on how well
generic measurements such as the square-root measurement
(also known as the pretty good measurement [29]) perform.
The pretty good measurement is a special case of Belavkin’s
weighted measurements [7,30,31], which was already used
in its cube weighted form in [13] to provide bounds on the
state discrimination with postmeasurement information. Such
bounds have most recently been shown by Tyson [32] for
standard state discrimination. Yet no good bounds are known
on how well such measurements perform for our task. More
generally, it would be very interesting to see whether one
can adapt the iterative procedures investigated in [33–36]
to find optimal measurements for the case of standard state
discrimination without postmeasurement information to this
setting. Concerning such iterative procedures, we would like
to draw special attention to the recent work by Tyson [25]
generalizing monotonicity results for such iterates [37], which
could be applied here.

Naturally, it would be very interesting to know if our results
for Clifford encodings can be extended to a more general
setting. Our discussion of classical ensembles shows that
there exist problems for which psucc < pPI

succ no matter what
relabeling we perform [13], and hence we cannot hope that
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a similar statement holds in general. Nevertheless, it would
be interesting to obtain necessary and sufficient conditions for
when postmeasurement is already useless, or otherwise can be
made useless by performing a relabeling.
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APPENDIX

In this appendix, we provide the technical details of our
claims. For ease of reading, we thereby provide the proofs
together with the statement of the lemmas.

1 Proofs of Sec. II

A. Optimality conditions

Lemma 6. A POVM with operators {M�x}�x is optimal for
state discrimination with postmeasurement information for
the ensemble E = {pxb,ρxb} if and only if the following two
conditions hold:

1. Q := ∑
�x τ�xM�x is Hermitian.

2. Q � τ�x for all �x ∈ X×L.
Proof. Suppose first that the two conditions hold. Note that

condition (2) tells us that Q is a feasible solution, that is, it
satisfies all constraints for the dual SDP. By weak duality of
SDPs we thus have vprimal � vdual � tr(Q), and from condition
(1) we also have that tr(Q) = ∑

�x tr(M�xτ�x) � vprimal. Hence
the POVM forms an optimal solution for the SDP.

Conversely, suppose that {M�x}�x is an optimal solution for
the primal SDP. Let Q be the optimal solution for the dual SDP.
Note that this means that Q already satisfies condition (2), and
all that remains is to show that Q has the desired form given
by condition (1). Since M�x = I/|X×L| is a feasible solution
for the primal SDP, we have by Slater’s condition [18] that the
optimal values v∗

primal and v∗
dual are equal, i.e., v∗

primal = v∗
dual.

Using the fact that
∑

�x M�x = I and that the trace is cyclic we
thus have

tr(Q) −
∑

�x
tr(M�xτ�x) =

∑
�x

tr[(Q − τ�x)M�x] = 0. (A1)

Since Q � τ�x (equivalently Q − τ�x � 0), and M�x � 0 for
all �x we have that all the terms tr[(Q − τ�x)M�x] in the sum
are positive and hence we must have for all �x that tr[(Q −
τ�x)M�x] = 0. Again using the fact that the two operators are
positive semidefinite, and the cyclicity of the trace, we thus
have for the optimal solution that

(Q − τ�x)M�x = M�x(Q − τ�x) = 0. (A2)

Summing the LHS over all �x and noting that
∑

�x M�x = I then
gives us condition (1). �

B. Upper bound

Lemma 7. Let N = |X | be the number of possible strings,
and suppose that the joint distribution over strings and
encodings satisfies pxb = pb/N , where the distribution {pb}b
is arbitrary. Then

pPI
succ(E,P ) � 1

N
tr

[ (∑
�x

ρα
�x

)1/α ]
, (A3)

for all α > 1, where E = {ρxb}xb, P = {pxb}xb and ρ�x =∑L
b=1 pbρxbb.
Proof. Note that since y1/α is operator monotone for α > 1

[[38], Theorem V.1.9] we have

ρ�x = (
ρα

�x
)1/α �

(∑
�x

ρα
�x

)1/α

. (A4)

Using the fact that
∑

�x M�x = I we hence obtain

pPI
succ(E,P ) = 1

N

∑
�x

tr(M�xρ�x) (A5)

� 1

N

∑
�x

tr

[
M�x

(∑
�x

ρα
�x

)1/α ]
(A6)

= 1

N
tr

[ (∑
�x

ρα
�x

)1/α ]
, (A7)

as promised. �

C. Lower bound

Lemma 8. The success probability with postmeasurement
information is at least as large as the success probability of a
derived problem without postmeasurement information, i.e.,

pPI
succ(E,P ) � max

�y
psucc(ET�y ,P ).

Proof. This follows immediately from the discussion by
noting that ∑

�x
tr(M�xρ�x) =

∑
�y

∑
�x∈P�y

tr(M�xρ�x). (A8)

�

2 Proofs of Sec. III

A. Without postmeasurement information

Lemma 9. For the measurement defined by (9) we have

Q = 1

2
(ρ�xM�x + ρ�xM�x) = 1

2d
(1 + ‖�v�x‖2)I, (A9)

and hence Q is Hermitian.
Proof. We use the shorthand �a�x · �� = ∑

j a
(j )
�x �j . We have

ρ�xM�x = 1

2d
[I + (�v�x + �a�x) · �� + (�v�x · �a�x)I], (A10)

ρ�xM�x = 1

2d
[I − (�v�x + �a�x) · �� + (�v�x · �a�x)I], (A11)
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where the equality follows from the fact that

(�v�x · ��)(�a�x · ��) = 1

2

∑
jk

v
(j )
�x a

(k)
�x {�j ,�k} (A12)

= (�v�x · �a�x)I. (A13)

Using that �v�x · �v�x = ‖�v�x‖2
2 gives our claim. �

Lemma 10. The largest eigenvalue of ρ�x and ρ�x is given by

λmax(ρ�x) = λmax(ρ�x) = 1

d
(1 + ‖�v�x‖2) . (A14)

Proof. We now prove our claim for ρ�x . Our goal is to
evaluate

λmax(ρ�x) = max
σ

tr(σρ�x), (A15)

where the maximization is taken over all states σ . Using
the fact that the set of operators {I,�j ,i�j�k, . . .}jk··· forms
an orthonormal (with respect to the Hilbert-Schmidt inner
product) basis for the d × d Hermitian matrices we can write

σ = 1

d

(
I +

∑
j

s(j )�j + · · ·
)
. (A16)

Since tr(�j�k) = 0 for j �= k, and we can rewrite ρ�x = 1
d

(I +∑
j a

(j )
�x �j ), this gives us

tr(σρ�x) = 1

d
(1 + �s · �v�x), (A17)

where �s = (s(1), . . . ,s(2n+1)) and · denotes the Euclidean inner
product. Since σ � 0 if and only if ‖�s‖2 � 1 [13], we have that
the maximum in (A17) is attained for σ = (I + ∑

j s(j )�j )/d
with

�s = �v�x
‖�v�x‖2

, (A18)

which gives our claim. The argument for ρ�x = 1
d

(I −∑
j a

(j )
�x �j ) is analogous. �

B. With postmeasurement information

Lemma 11. For our class of problems

pPI
succ(E,P ) = max

�x
psucc(ET̃�x ), (A19)

and postmeasurement information is useless if and only if the
maximum on the RHS is attained by �x = (0, . . . ,0).

Proof. Let �x be the string that achieves the optimum on
the RHS of (12). We now claim that Q = 1

2 (ρ�xM�x + ρ�xM�x)
is an optimal solution to the SDP for the problem of state
discrimination with postmeasurement information. First of all,
note that Lemma 9 gives us that Q is Hermitian. We then
have by Lemma 10 that Q � 1

2ρ�̃x for all possible �̃x. Our
claim now follows from Lemma 1, and by noting that for the
partition �x = (0, . . . ,0) we will always give the same answer,
no matter what postmeasurement information we receive
later on. �

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and Signal
Processing (IEEE, New York, 1984), pp. 175–179.

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] R. König, S. Wehner, and J. Wullschleger, e-print

arXiv:0906.1030.
[4] S. Wehner, C. Schaffner, and B. M. Terhal, Phys. Rev. Lett. 100,

220502 (2008).
[5] C. W. Helstrom, Inf. Control 10, 254 (1967).
[6] A. S. Holevo, Prob. Peredachi Inf. 9, 3 (1973) [Probl. Inf. Trans.

9, 177 (1973)].
[7] V. P. Belavkin, Stochastics 1, 315 (1975).
[8] S. M. Barnett and S. Croke, Adv. Opt. Photon. 1, 238

(2009).
[9] T. Ogawa and H. Nagaoka, IEEE Trans. Inf. Theory 45, 2486

(1999).
[10] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[11] D. Bacon and T. Decker, Phys. Rev. A 77, 032335

(2008).
[12] C. Moore and A. Russell, Quantum Inf. Comput. 7, 752 (2007).
[13] M. Ballester, S. Wehner, and A. Winter, IEEE Trans. Inf. Theory

54, 4183 (2008).
[14] P. Halmos, Trans. Am. Math. Soc. 144, 381 (1969).
[15] J. S. Bell, Physics (Long Island City, NY) 1, 195 (1965).
[16] J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys. Rev. Lett.

23, 880 (1969).
[17] S. Wehner, Ph.D. thesis, University of Amsterdam, 2008, e-print

arXiv:0806.3483.

[18] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge
University Press, Cambridge, 2004).

[19] S. M. Barnett and S. Croke, J. Phys. A 42, 062001 (2009).
[20] V. P. Belavkin and A. G. Vancjan, Radio Eng. Electron. Phys.

19, 1397 (1974).
[21] A. S. Holevo, J. Multivariate Anal. 3, 337 (1973).
[22] A. S. Holevo, Prob. Peredachi Inf. 10, 51 (1974) [Probl. Inf.

Trans. 10, 317 (1974)].
[23] H. P. Yuen, R. S. Kennedy, and M. Lax, IEEE Trans. Inf. Theory

21, 125 (1975).
[24] J. Tyson, J. Math. Phys. 50, 032106 (2009).
[25] J. Tyson, e-print arXiv:0907.3386.
[26] S. Wehner and A. Winter, J. Math. Phys. 49, 062105 (2008).
[27] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[28] Y. Eldar, IEEE Trans. Inf. Theory 49, 446 (2003).
[29] P. Hausladen and W. Wootters, J. Mod. Opt. 41, 2385 (1994).
[30] V. P. Belavkin, Radio Eng. Electron. Phys. 20, 39 (1975).
[31] C. Mochon, Phys. Rev. A 75, 042313 (2007).
[32] J. Tyson, Phys. Rev. A 79, 032343 (2009).
[33] M. Jezek, J. Fiurasek, and Z. Hradil, Phys. Rev. A 68, 012305

(2003).
[34] M. Jezek, J. Rehacek, and J. Fiurasek, Phys. Rev. A 65, 060301

(2002).
[35] M. Reimpell and R. F. Werner, Phys. Rev. Lett. 94, 080501

(2005).
[36] J. Tyson, e-print arXiv:0902.0395.
[37] M. Reimpell, Ph.D. thesis, Technische Universität

Braunschweig, 2007.
[38] R. Bhatia, Matrix Analysis (Springer, Berlin, 1996).

022326-8

http://dx.doi.org/10.1103/PhysRevLett.67.661
http://arXiv.org/abs/arXiv:0906.1030
http://dx.doi.org/10.1103/PhysRevLett.100.220502
http://dx.doi.org/10.1103/PhysRevLett.100.220502
http://dx.doi.org/10.1016/S0019-9958(67)90302-6
http://dx.doi.org/10.1364/AOP.1.000238
http://dx.doi.org/10.1364/AOP.1.000238
http://dx.doi.org/10.1109/18.796386
http://dx.doi.org/10.1109/18.796386
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/PhysRevA.77.032335
http://dx.doi.org/10.1103/PhysRevA.77.032335
http://dx.doi.org/10.1109/TIT.2008.928276
http://dx.doi.org/10.1109/TIT.2008.928276
http://dx.doi.org/10.2307/1995288
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://arXiv.org/abs/arXiv:0806.3483
http://dx.doi.org/10.1088/1751-8113/42/6/062001
http://dx.doi.org/10.1016/0047-259X(73)90028-6
http://dx.doi.org/10.1109/TIT.1975.1055351
http://dx.doi.org/10.1109/TIT.1975.1055351
http://dx.doi.org/10.1063/1.3094322
http://arXiv.org/abs/arXiv:0907.3386
http://dx.doi.org/10.1063/1.2943685
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1109/TIT.2002.807291
http://dx.doi.org/10.1080/09500349414552221
http://dx.doi.org/10.1103/PhysRevA.75.042313
http://dx.doi.org/10.1103/PhysRevA.79.032343
http://dx.doi.org/10.1103/PhysRevA.68.012305
http://dx.doi.org/10.1103/PhysRevA.68.012305
http://dx.doi.org/10.1103/PhysRevA.65.060301
http://dx.doi.org/10.1103/PhysRevA.65.060301
http://dx.doi.org/10.1103/PhysRevLett.94.080501
http://dx.doi.org/10.1103/PhysRevLett.94.080501
http://arXiv.org/abs/arXiv:0902.0395

