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Emergence of robust gaps in two-dimensional antiferromagnets via additional spin-1/2 probes
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We study the capacity of antiferromagnetic lattices of varying geometries to entangle two additional spin-1/2
probes. Analytical modeling of the quantum Monte Carlo data shows the appearance of a robust gap, allowing a
description of entanglement in terms of probe-only states, even in cases where the coupling to the probes is larger
than the gap of the spin lattice and cannot be treated perturbatively. We find a considerable enhancement of the
temperature at which probe entanglement disappears as we vary the geometry of the bus and the coupling to the
probes. In particular, the square Heisenberg antiferromagnet exhibits the best thermal robustness of all systems,
whereas the three-leg ladder chain shows the best performance in the natural quantum ground state.
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I. INTRODUCTION

Solid-state systems have been exploited to integrate
quantum-information (QI) tasks and accomplish quantum
computation in a single processing core, but many questions re-
garding their robustness against temperature and decoherence
remain open. Among the requirements to achieve quantum
computation, the ability to generate rapid elementary gates
between well-characterized qubits is central [1]. In view of
the technical difficulties of switching on direct interactions
between qubits, various proposals have been put forward to use
a quantum subsystem, usually denominated as bus, to mediate
the fundamental universal gates [2,3]. A considerable body of
work has been devoted to chains of spins experiencing nearest-
neighbor interactions since they can be used as models for
universal quantum computation, meeting the aforementioned
requirements [4].

Spin chains are indeed a versatile laboratory for QI science
for they naturally embody the su(2) algebra of a qubit,
allowing quantum-information processing and manipulation
along the traditional lines of quantum computing, that is,
via the establishment of quantum gates [1]. In particular,
numerical simulations [5] showed that spin systems can
mediate entanglement between two spin probes separated
by large distances, the so-called long-distance entanglement
(LDE)—a quite remarkable phenomenon since, away from
critical points, bulk correlations are completely classical at
distances larger than a few sites [6]; gapless bosonic systems
do not display this long-distance entanglement capability [7].

The possibility of entangling spin systems via interaction
with a larger system of spins was first pointed out by Chiara
et al. in the proposal for entanglement extraction from solids
[8]. Entanglement extraction from a large system might seem
nonintuitive as generally the coupling to a system with many
degrees of freedom leads unavoidably to decoherence [9].
However, a few notable exceptions are known: If two qubits,
not interacting directly, are coupled in a symmetric way to a
bath of harmonic oscillators, their entanglement will partially
survive during their evolution when these qubits have degen-
erate energy eigenstates [10–12] or when the bath has a gap in
its spectrum [13]. This is reminiscent of quantum computing
using the so-called decoherence-free subspaces [14,15].

Promising advances in the engineering of atomic structures
and optical lattices, where finite spin systems are effectively
realized in the laboratory, encourage the consideration of

more general possibilities. In this article, we study the effect
of adding two spin-1/2 probes to various antiferromagnetic
spin-1/2 lattices, ranging from a one-dimensional chain to a
two-dimensional (2D) antiferromagnetic (AFM) lattice (the
bus in QI terminology), on the probes LDE and spectrum. We
confirm previous numerical results for the one-dimensional
scenario [16] and extend this analysis to two dimensions via
the first direct measure of probe correlation, with quantum
Monte Carlo (QMC) methods. Our main findings are (1) an
enhancement of LDE robustness regarding temperature in 2D
AFM Heisenberg systems, relative to the 1D chain; (2) the
observation of a significant entanglement of the distant probes,
even when the coupling to the bus is too strong to be described
as a weak perturbation of the bus; and (3) the possibility of
a complete description of the temperature dependence of the
entanglement of the probes in terms of a low-energy manifold
of singlet and triplet levels, with a large singlet-triplet gap,
protecting probe entanglement from the undesirable effects
of temperature—an unexpected phenomenon, especially for
the square AFM spin system, which per se has a vanishing
gap and a broken symmetry phase in the thermodynamic
limit [17]. This is a situation favorable to QI capabilities,
particularly in the case of a 2D spin bus, where a relatively large
singlet-triplet emerges with increasing probe-bus coupling, the
singlet retaining significant probe-probe entanglement despite
the stronger probe-bus coupling; we refer to this situation as
presenting a “robust gap.”

The article is organized as follows. We start by making
precise the conditions for a robust gap and set up the analytical
theory which will allow us to conclude about the nature
of the spectrum from the numerical simulations. The basic
notions on LDE will also be reviewed (Sec. II). In Sec. III,
the numerical results will be presented; in particular, (1)
the singlet-triplet gap and LDE for all measured systems,
(2) the robustness of thermal LDE in 2D, and (3) a surprisingly
efficient entangler bus at T = 0, the three-leg ladder. We
finish with conclusions and a discussion of consequences of
the present work for LDE (Sec. IV). Details of derivations are
presented in the appendices.

II. ANALYTICAL MODEL

In this section, we introduce the analytical tools with which
we modeled the Monte Carlo data. A few analytical results will
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be derived under the assumption of emergence of a robust gap.
By this we mean the possibility of completely describing the
probe’s entanglement, and its temperature variation, in terms of
a low-lying singlet-triplet manifold which is isomorphic to the
probe’s space of states. An analytical function, containing three
parameters which are, in principle, calculable perturbatively,
was found to fit the Monte Carlo data for probe entanglement
almost perfectly.

A. Adiabatic continuity

We admit global SU(2) symmetry of the couplings; more
general types of interactions could be easily considered within
this framework, but we focus on Heisenberg interactions,
which not only allow universal quantum computation [3] but
are also commonly realized in nature (e.g., in the parent com-
pounds of copper-oxide high-temperature superconductors
such as the undoped insulator La2CuO4 [17]; in electronically
coupled quasi-1D chains such as the CuGeO3 [18]; in the
Mott-insulating one-dimensional perovskite KCuF3 [19]; and
in linear chains of ∼10 manganese atoms in engineered atomic
structures [20]). We start by considering many-body systems of
spins (which we will designate by bus) with rotational invariant
Hamiltonian, H0, and a singlet, nondegenerate ground state.
Two probes, τ a and τ b (τ being the Pauli matrices), are coupled
to the bus by Heisenberg exchange interaction with strength
Jp := Jα, through sites A and B, respectively:

V = αJ (�SA · �τ a + �SB · �τ b), (1)

where J denotes an energy scale of the bus (typically
its exchange interaction), SA(B) = (1/2)τA(B), and α is a
dimensionless parameter. We make the simple but crucial
assumption that there is a one-to-one map of eigenstates of
the uncoupled system (α = 0) to the eigenstates of the full
Hamiltonian; that is, we invoke adiabatic continuity [21].
Hence we define a canonical transformation between the two
bases:

|ψm〉 ⊗ ∣∣χab
σ

〉 = e−iŜ |�m,σ 〉, (2)

where |ψm〉 is a bus-only eigenstate, |χab
σ 〉 a probe state, and

|�m,σ 〉 an eigenstate for finite α. Note that the generator Ŝ

is an operator acting on both probe and bus space. This map
has important consequences: The transformed Hamiltonian
must have the form of a sum of a probe-only term (Hp)
with a bus-only term (H ′

b), that is, H → Hp + H ′
b, since the

corresponding eigenstates are product states. We now add the
assumption that the lowest lying states which map to a probe
singlet and probe triplet,

|�0,s〉 = eiŜ |ψ0〉 ⊗ |χs〉, (3)

|�0,m〉 = eiŜ |ψ0〉 ⊗ ∣∣χt
m

〉
, m = 0, ± 1, (4)

respectively, are well-separated from states which map to
excited states of the bus by a finite gap, �(α). In the
scenario we have in mind—and which is confirmed by the
simulations—entanglement between the probes disappears
well before significant thermal occupation of states above �(α)
occurs. But an important remark is in order: While the probes
are obviously entangled in the state |χs〉, it is the entanglement
in the state |�0,s〉 which matters. In other words, the canonical

transformation changes operators as well as states; if we are
to use the transformed uncoupled basis in the calculation, the
probe entanglement is not the entanglement of τ a and τ b but
rather the entanglement of the renormalized spins:

τR
a(b) := e−iŜτ a(b)e

iŜ . (5)

We now proceed to use this concept of adiabatic continuity to
develop a description of the probe-reduced density matrix.

B. Robust gap and canonical corrections

The exact density matrix of the qubits (the partial state of
the probes, ρab) encodes the full capabilities of a generic lattice
as a quantum bus (in particular, the possibility of LDE) and is
given by the Gibbs canonical state

ρab = Z−1
ab Tri∈L[e−β(H0+V )]. (6)

The trace is made with respect to the degrees of freedom of
the bus, L, and Zab = Tr[exp(−βH0 − βV )] is the system’s
partition function. In our case, global SU(2) symmetry implies
a very simple form for ρab:

ρab ∝ exp [−βJab(β)τ a · τ b] , (7)

where Jab(β) is the actual effective coupling of the probes and
depends on the temperature as a consequence of tracing out the
degrees of freedom of L. If this function is known, bipartite
entanglement can be computed using the negativity [22], the
concurrence [23], or any other entanglement monotone. For
systems with full rotational symmetry entanglement, bipartite
entanglement [E(ρab)] is a function of the probe correlation:

〈τ a · τ b〉 = Tr [ρabτ a · τ b] = e−4βJab(β) − 1

e−4βJab(β) + 1/3
. (8)

The concurrence EC is of particular simplicity for rotational
2 ⊗ 2 systems:

EC(ρab) = max

[
0,

∣∣∣∣ 〈τ a · τ b〉
3

∣∣∣∣ − 〈τ a · τ b〉 + 3

6

]
∈ [0,1].

(9)

The probes will be entangled whenever EC(ρab) > 0, which
happens for strong AFM correlations, more precisely, when
〈τ a · τ b〉 < −1. One straightforwardly derives the critical
temperature, Tc ≡ 1/βc, above which entanglement vanishes
for the state (7). It reads as follows:

βcJab(βc) � 0.27. (10)

One speaks about long-distance entanglement whenever
E(ρab) > 0 for probe distances of the order of the system
size. In the remainder of this section, we present the analytical
form of Jab(β) under the assumption of a robust gap.

In [24], the authors derived the effective probe interaction
Heff for probes weakly coupled to a large system with a
gap to the first excited state, �0 ≡ �(α = 0) > 0. For SU(2)
symmetric couplings, it reads as follows:

Heff = α2J 2χ̃r (0)τ a · τ b, (11)

where χ̃r (0) is the Fourier transform at zero frequency
of the adiabatic spin susceptibility defined as χr (t) =
−i〈[Sz

0(t),Sz
r ]〉θ (t), with θ (t) being the Heaviside function
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and r the distance between spins A and B in the lattice. The
effective Hamiltonian (11) holds strictly when

Jeff := α2J 2χ̃r (0) � �0 (12)

and correctly describes the low-lying spectrum in that limit.
However, as remarked previously, one should be careful in
using this Hamiltonian to calculate probe correlations [24].
Consider, for instance, the zero-temperature limit. Assuming
a system with AFM correlations [χ̃r (0) > 0], according to
Eq. (11), we have

〈τ a · τ b〉 = 1

Zab

Tr
[
τ a · τ be

−βα2J 2χ̃r (0)τ a ·τ b
]−−→

β→∞
− 3, (13)

in which case the probe partial state is a perfect singlet
with zero linear entropy: SL(ρab) := 1 − Tr[ρ2

ab] = 0. This
result does not depend on the accuracy of the perturbative
estimate of Jeff , for we would obtain the same value provided
that Jeff > 0 is temperature independent. On the other hand,
the probes are also correlated (albeit weakly) with the bus
since the effective probe coupling is a result of perturbative
admixture of virtual excited bus states in the ground-state
manifold; the probe entanglement, even at zero temperature,
is not complete.

This issue is clarified by computing the connected cor-
relation between the probes under the adiabatic assumption
and comparing it with (13) [obtained from the approximation
Jab(β) ≈ Jeff]. This is achieved by recasting the correlation
[Eq. (8)] into a form involving the nonperturbative effective
Hamiltonian HS = H ′

b + Hp. To this end, we make use of the
canonical transformation [Eq. (2)] to get

〈τ a · τ b〉 = Tr[e−βHS (e−iŜτ a · τ be
iŜ)]

Tr[e−βHS ]
. (14)

From the adiabatic continuity assumption [Eqs. (3)–(4)], we
get

〈τ a · τ b〉 = Trp[e−βHp (Trbe−βHbe−iŜτ a · τ be
iŜ)]

Trp[e−βHp ]Trb[e−βHb ]
(15)

= Trp[e−βHp 〈e−iŜτ a · τ be
iŜ〉bus]

Trp[e−βHp ]
. (16)

It is clear that the canonical transformed Hamiltonian must be
a scalar in the probe’s operators, that is, Hp ∼ τ a · τ b, and
hence with the same form as found in perturbation theory
[Heff ∼ τ a · τ b]. However, the operator being averaged with
respect to the bus is not simply τ a · τ b:

e−iŜτ a · τ be
iŜ := τR

a · τR
b = τ a · τ b − i[Ŝ,τ a · τ b] + · · · .

(17)

Physical states constructed from the effective Hamiltonian
(11) yield the correct averages for the “renormalized” spins
(those in Fig. 1, right), but not for the original spins. Indeed,
the spin operators must be renormalized if one wishes to get
averages corresponding to real spin degrees of freedom. The
second term in (17) gives an important correction to 〈τ a · τ b〉
[Eq. (13)], inhibiting τ a(b) partial states with zero linear
entropy (in particular, perfect singlets).

Using symmetry alone, we can relate the scalar product
involving real and renormalized spins. The formal derivation is

E

∆(α)

E

many-body spectrum

probes singlet-triplet(low-energy sector)

FIG. 1. Schematic of the canonical transformed many-body
spectrum (at right) under the assumptions of adiabatic continuity
and a finite gap �(α). If one succeeds in finding the matrix elements
of Ŝ, the low-energy physics of our problem will be described by an
effective Hamiltonian containing just the probe’s canonical singlet
and triplet states. The transformation Ŝ renormalizes both operators
and states.

done in Appendix A [see Eqs. (A4)–(A14)]; here it is sufficient
to observe that if the robust gap situation is verified, taking
averages with respect to the spin bus is tantamount to taking
ground-state averages 〈· · ·〉bus = 〈ψ0| · · · |ψ0〉; the result is a
probe-only operator that, by symmetry, has the form

〈e−iŜτ a · τ be
iŜ〉bus = ηI2⊗2 + (1 − �)τ a · τ b, (18)

with η = η(α) and � = �(α), real, bounded, and temperature
independent. No other operators enter in this formula (18)
because the canonical transformation Ŝ will necessarily pro-
duce rotational-invariant probe operators (and there are just
two in 2 ⊗ 2, namely, the identity and the scalar product).
The parameters η and �, to which we refer as canonical
corrections, describe how much the states |�0,s〉 and |�0,m〉
differ from the product states |ψ0〉 ⊗ |χs〉 and |ψ0〉 ⊗ |χt

m〉
[see Eqs. (3) and (4)].

The probe’s correlation is obtained by averaging the latter
equation. It is instructive to consider the zero-temperature case:

〈τ a · τ b〉T =0 = 〈�0,s |τ a · τ b|�0,s〉 (19)

= 〈χs,ψ0|τR
a · τR

b |ψ0,χ
s〉 (20)

= −3 + η + 3�. (21)

The last equality implies the restriction 4 � η + 3� � 0. The
scenario of perfect entanglement, E(ρab) = 1, requires η +
3� = 0. Indeed, considering the approximation of Ref. [24]
is equivalent to taking τR

a(b) � τ a(b), which results in quasiper-
fect AFM correlations for T = 0: 〈τ a · τ b〉T =0 � 〈χs,ψ0|τ a ·
τ b|ψ0,χ

s〉 = −3. This approximation is strictly valid when
η � � � 0. At finite temperatures, we must use the form of
the probe Hamiltonian Hp := (�ab/4)τ a · τ b, to obtain

〈τ a · τ b〉 = η + (1 − �)〈τ a · τ b〉can, (22)

where

〈τ a · τ b〉can = Trp[e−βHpτ a · τ b]

Trp[e−βHp ]
= e−β�ab − 1

e−β�ab + 1/3
. (23)

The parameter �ab is, by definition, the singlet-triplet gap:
�ab = 〈χt |Hp|χt 〉 − 〈χs |Hp|χs〉. By virtue of the transfor-
mation (3)–(4), this equals

�ab = 〈�0,m|H |�0,m〉 − 〈�0,s |H |�0,s〉. (24)

In contrast to the real effective coupling, Jab(β), the coupling
�ab/4 is effectively temperature independent.
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Finally, we relate the real effective coupling defined by
Eq. (7) with the canonical parameters. This is accomplished
by equaling the right-hand sides of Eqs. (8) and (22) and
solving for Jab(β). We get

Jab(β) = 1

4β
ln

[
3(� − η) + (4 − 3� − η) exp(β�ab)

4 − � + η + (� + η/3) exp(β�ab)

]
.

(25)

We thus have achieved a parametrization of the temperature
dependence of ρab as a function of three parameters, �ab, the
singlet-triplet gap, and the canonical corrections � and η:

ρab(β) = Iab

4
+ 1

4

(
η/3 + (1 − �)

e−β�ab − 1

3e−β�ab + 1

)
τ a · τ b.

(26)
These parameters can in principle be computed in perturbation
theory (see Appendix B):

�ab � (2Jα)2χ̃r (0), (27)

� � (2Jα/
√

3)2
∑
m>0

∑
µ=x,y,z

∣∣〈ψ0|Sµ

A − Sµ

B |ψm〉∣∣2

(Em − E0)2 , (28)

η = O
(
α4J 4

/
�4

0

)
. (29)

In Eq. (28), the states of the spin bus are denoted by |ψm〉
(with eigenenergy Em). The canonical parameters for small α

can be computed by diagonalizing the spin bus Hamiltonian,
H0|ψk〉 = Ek|ψk〉. This is, however, only possible in a few
models whose analytical solutions are known, as in the case of
the 1D XY model [25], or in situations where conformal sym-
metry fixes the form of dynamical correlations (e.g., critical
spin chains) [24]. In general, whether the canonical parameters
describe the correlations of the probes accurately for a given
spin model must be investigated by comparing result (22) [or
equivalently, Eq. (25)] with numerical simulations. We recall
that this model will only describe the partial state of probes
interacting with large lattices if adiabatic continuity and a
robust gap hold (Appendix A). In what follows, we describe
a class of systems that shows impressive agreement with this
canonical theory.

III. QUANTUM MONTE CARLO RESULTS

Our systems consist of 2D finite latticesL, with N = l × nc

spins-1/2 and two extra probes, where l is the number of
longitudinal sites and nc stands for the number of coupled
chains, varying from nc = 1 (spin chain) to nc = l (square
lattice) (see Fig. 2 for a possible geometry). The Hamiltonian
of the lattice is

H0 = J
∑
〈i,j〉

�Si · �Sj , (30)

with J > 0. The qubit probes interact with the spins at the
boundary of the most central chain through an isotropic
interaction [Eq. (1)]. We expect a significant change in LDE
from the common 1D scenario analyzed in [5,16], as the
physics of a 2D spin system is very distinct. In particular,
the two-leg ladder chain has an Haldane gap [26] which
should play against a large Jab; very massive excitations,
�0 � 0.504J , make the correlations die particularly fast [27].

FIG. 2. (Color online) Schematic of the total system: The probes
(blue) interact locally with a 2D lattice (the bus) through sites A and B.
It is well known that spin chains can mediate entanglement between
additional spin-1/2 particles, even at large distances [5,16,24] (the
so-called LDE), but the question of how increasing dimensionality
changes the 1D LDE picture has not been addressed until now.

Our QMC simulations were performed with the library LOOPER

from the Algorithms and Libraries for Physics Simulations
(ALPS) project [28] (see Appendix C for details on the
numerics).

A. Thermal LDE

We now outline the main results from the QMC simulations
for the entire family of AFM lattices. Among the 20 spin
systems studied, only the spin chain (nc = 1) was addressed in
previous works. This system is able to generate a large amount
of LDE in the weak coupling regime, in accordance with
the numerical result from [5]; our choice of coupling entails,
for l = 20 and nc = 1, J 2

p/�0 � 0.015J (with �0 extracted
from [27])—well inside perturbation limits. The numerical
results indeed show probes almost maximally entangled.
Table I summarizes the results for the two most representative
lattices.

These results show a curious property of the 2D spin system:
Whereas for nc = 1, the spin-triplet gap due to the probes
is �ab � 3 × 10−3�0, for nc = 20, this gap is �ab � 1.3 ×
10−1�0, a difference of about 2 orders of magnitude for the
ratio �ab/�0. This leads to a much more robust LDE against
temperature in 2D, albeit at the cost of a larger canonical
correction, � ∼ 0.15, suppressing the possibility of EC � 1
at T = 0. Indeed, taking the values for � and η in Table I
and using Eqs. (9) and (21), we get, at T = 0, EC � 0.984
for the spin chain and EC � 0.788 for the square lattice. A
clear picture of LDE is now given in light of the exposition

TABLE I. The singlet-triplet gap �ab and canonical parameters
in representative systems for α = 0.05. The canonical parameters are
calculated by fitting the QMC data for different temperatures with
Eq. (22). The expressions for �0 ≡ �ab(α = 0) were taken from
Refs. [27] and [29].

Gaps �0/J �ab/J

Spin chain 3.2/l � 0.16 5.07 × 10−4

Square lattice 9.26/l2 � 0.02 3.04 × 10−3

Canonical corrections � η

Spin chain 1.03 × 10−2 6.27 × 10−4

Square lattice 1.46 × 10−1 −1.37 × 10−2
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FIG. 3. (Color online) Black triangles show effective coupling,
Jab, at a distance l = 20, as a function of nc, number of transverse
chains (kBT = 2 × 10−3J ). Blue dots (nc even) and red squares
(nc odd) show temperature above which LDE vanishes. The inset
shows canonical coupling (i.e., the probe’s singlet protection gap of
Fig. 4) in the same units used to represent Jab. The error bars from
QMC cannot be seen as they are typically below 1%; α = 0.05 in all
plots.

of the previous section: The singlet is strongly localized at the
boundary sites (the probes) for nc = 1, and thus the mechanism
for LDE is quasioptimal, making the effective Hamiltonian
picture [Eq. (11)] extremely accurate. This is not the case in
general, where the renormalization of spins [Eq. (17)] cannot
be ignored, a fact particularly evident for the square lattice
where � ∼ O(10−1).

Let us investigate these issues more carefully. We post-
pone the implication of these results to the emergence of
“robust gaps” in 2D. We focus first on the small probe-bus
coupling, α = 0.05, before venturing away from perturbation
theory. Figure 3 shows Jab (for kBT = 2 × 10−3J ) and the
entanglement “critical temperature” Tc. The scale of Tc is �ab

apart from small corrections (see Fig. 5, bottom). These plots
show a clear enhancement of the ability of the antiferromagnet
to generate long-range effective interactions among distant
probes as one reaches the square lattice at thermal energies
kBT = 2 × 10−3J . The consequences for LDE are evident:
The 2D lattices, with nc > 4, mediate more entanglement at

FIG. 4. (Color online) Schematic of the opening of a gap �ab by
two spin-1/2 probes that couple locally to a bus with arbitrary strength
αJ . The low-energy sector is separated from excited states by the gap
�(α) and has a singlet-triplet separation �ab, which is enhanced
with the dimensionality of the bus. If the singlet is localized near
the probes, they will be highly entangled even at large distances (the
so-called LDE). We show that �ab is a robust gap in the square AFM
lattice (see text).

1 5 10 15 20
0

0.05

0.1

0.15

0.2

nc

perfect LDE

1 5 10 15 20
0.03
0.02
0.01

0
0.01

nc

1 5 10 15 20
0

8

16

24

nc

32

FIG. 5. (Color online) (top) Canonical correction � for the same
family of spin lattices of Fig. 3. The inset shows that the η correction
is negligible compared to �; the bars represent an estimate of the
error due to QMC fluctuations. The nc = 2 and nc = 4 systems are
not represented since the data do not provide reliable values for
canonical corrections. (bottom) The singlet protection gap for finite
probe coupling (α = 0.05) in blue (nc even) and red dots (nc odd). The
critical temperature is represented (small black dots) for comparison.

high temperatures (see later). In Fig. 3, a wiggly behavior up
to nc = 4 and a transition for nc > 4 are also observed; that is,
the increase of �ab (and also Jab) becomes smooth because the
Haldane gap, very large for nc = {2,4} [27], gets suppressed.

We would expect the ground state of 2D antiferromagnets
to reduce substantially the LDE because of the symmetry
breaking at T = 0 for large lattices [17,29,30]; the finite
sub-lattice magnetization should reduce the amount of genuine
quantum correlations shared by the probes. This is borne out
by the results of the QMC simulations, shown in Fig. 6,
where Jab (and hence entanglement) is found to decrease at
low temperatures, kBT � 10−4J , when the number of chains
increases. Nevertheless, at higher temperatures, the opposite
occurs: Jab increases with nc; this reflects the increase of the
probe’s protection gap, �ab, for it sets the temperature scale
at which entanglement vanishes.

In Fig. 6, the lines are near perfect fits to the Monte Carlo
data, using Eq. (25). For sake of clarity, we have presented
the agreement just for four lattices, although all fits show the
same degree of accuracy. The observed linear dependence of
Jab with the temperature for T → 0 is easily understood: A
zero-temperature (finite) entanglement below the maximum
value of 1 requires βJab(β) → constant, when β → ∞. This
constant can be derived from Eq. (25), yielding

βJab(β) −−→
β→∞

1

4
ln

[
4 − 3� − η

� + η/3

]
. (31)
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FIG. 6. (Color online) The points in the plot show Jab as function
of the temperature from QMC simulations for α = 0.05. The lines
stand for the fit with the expression given in Eq. (25), with nc = 1
(blue), nc = 10 (red; circles), nc = 15 (green; squares), and nc = 20
(black; triangles). The agreement between the QMC data is excellent,
resulting in a average deviation of ∼0.1%–1%, depending on the
lattice.

Thus the canonical corrections (� and η) determine the
low-temperature physics of the probes. It is instructive to
notice that one recovers the condition from quasiperfect LDE
derived earlier [Eq. (21)]; βJab → ∞ as 3� + η → 0 and
thus, according to Eq. (8), 〈τ a · τ b〉T =0 � −3. This is a very
special scenario occurring in 1D antiferromagnets and also
in dimerized chains [25]. The present results reveal that
quasiperfect LDE is also mediated by the three-ladder chain,
3� + η � 0.007. As soon as we approach the 2D scenario,
more precisely when nc > 4, the � correction gets larger (see
Fig. 5 for the variation of � with nc) and a fraction of the
entanglement is lost.

In our simulations, the value of η is negligible (a careful
inspection shows that the fits we present are virtually indis-
tinguishable from the fits with η = 0 up to α � 0.1), and the
nc = 3 spin system mediates the largest amount of LDE at
T = 0 (see Fig. 5), EC � 0.997. Curiously, this behavior is
not altered by varying the coupling in the entire range we
have simulated: α ∈ [0.05,0.2]. In fact, for large α, namely,
α = 0.2, the discrepancy between the nc = 1 and nc = 3
lattices is quite significant: � � 0.238 against � � 0.079.
This is a very interesting property of the three-leg ladder: the
ability of generating high-quality ground-state entanglement
for a wide range of probe-bus coupling.

For the highest temperatures simulated, the effective cou-
pling saturates (Fig. 6) to a constant value, �ab(1 − �)/4,
when η is negligible (i.e., not far away from the perturbation
limit, α � 0.1), suffering a slight change with temperature
otherwise:

Jab(T ) � �ab

4
(1 − �) − kBT

12
η + O

(
�2

ab�

kBT

)
. (32)

An estimate of the entanglement critical temperature, Tc, is
obtained by noting that Jab(T ) has already saturated when the
concurrence vanishes. Indeed, combining Eqs. (10) and (32),
we obtain

kBTc � 0.93�ab(1 − �). (33)

This agrees with the numerical results within 1%; in
Fig. 5 (bottom), the increasing mismatch between kBTc and

the gap �ab with nc reflects the increase in �. This equation
for Tc generalizes the previous result for the spin-1/2 AFM
Heisenberg ring [24]—where �ab is equal to 4α2χ̃r (0) in
the perturbative regime [Eq. (27)]—by the inclusion of the
� correction.

The square lattice is the system with the best thermal
LDE robustness, despite its appreciable reduction of zero-
temperature entanglement, � � 0.146, a fact explained by
the emergence of a large singlet-triplet gap, �ab, which is
about 6 times the protection gap of the single spin chain. The
regime of high temperatures, kBT � �0, is not described by
Eq. (25) anymore, which assumes negligible thermal occu-
pancy of excited states of the spin bus, a crucial assumption of
our analytical modeling. However, according to our estimate
[Eq. (33)], no LDE is expected in this temperature range
because it vanishes at much lower temperatures; Jab(β) should
decrease with the temperature at some point and eventually
drop to zero, reflecting totally uncorrelated probes. The initial
drop of Jab with T is captured by Eq. (32).

B. Beyond weak coupling

Figures 3 and 5 deal with relatively small probe-bus
coupling, but the results presented so far are more general. For
instance, choosing a sufficiently large α to strongly suppress
the zero-temperature entanglement via partial frustration
among the neighborhood of the bulk spins connected with
the probes, we again find excellent agreement with Eq. (25).
For intermediate probe-bus coupling, α = 0.1 and α = 0.2,
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FIG. 7. (Color online) Concurrence, an entanglement monotone
for qubits, as a function of temperature for different lattices and
couplings. Lattices supporting more entanglement at strictly T = 0
have worse performance at higher temperatures. The lines are fits
using Eq. (25) for Jab(β) and Eqs. (8) and (9). The fits are nearly
perfect for the entire temperature range in which entanglement
persists.
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the measured concurrence is fitted with an expression derived
from Eq. (22), as shown in Fig. 7. These results show that in
all our measured systems, the conditions for our model hold,
namely, a singlet-triplet, low-energy sector and an excited bus
sector which is not significantly populated. This is surprising,
particularly in the case of large lattices, which have a gap �0

smaller than αJ ; not only do we find a well-protected singlet
with a considerable amount of LDE, but the lowest singlet and
triplet remain separated from the rest of the spectrum, allowing
a complete description of entanglement only in terms of these
two energy levels.

On the other hand, though the strong coupling to the
spin bus reduces the zero-temperature entanglement, it also
allows a larger split between the singlet and triplet, leading
to entangled probes at much higher temperatures. Typically,
exchange interactions in antiferromagnets can be of the order
of 0.1 eV, resulting in an effective coupling of the order
of 0.3 meV for the square lattice (l = 20) at temperature
∼12 K and α = 0.2. This is to be compared with the value of
0.01–0.1 meV achievable in quantum dot spins [31], although
decoherence effects in spin lattices can lessen this difference.
The critical temperature (above which the correlations shared
by the probes are completely classical) can be increased by
a factor of 20 from a weakly coupled spin chain (α = 0.05)
to an intermediate coupled (α = 0.2) 2D lattice, entanglement
surviving up to kBT � 1.2 × 10−2J (Fig. 7)—an appreciable
enhancement of the thermal robustness of such correlations.

C. Robust gaps in 2D

The QMC results analyzed in light of our model show that
two probes interacting with AFM spin systems open a gap
�ab which is enhanced with the dimensionality of the system.
For the square lattice and probe-bus coupling Jp = 0.05J , the
gap reads �ab � 3.04 × 10−3J , a robust gap. The point is that
the 20 × 20 lattice, without probes, has a small singlet-triplet
gap �0 � 0.02J (see Refs. [29,30]), making the bus-probe
interaction nonperturbative. Even so, these probes opened a
considerable gap, and their reduced state displays a large
amount of T = 0 entanglement, EC � 0.79, in resemblance
to the spin chain bus with probes. The situation in the 2D
lattice is very distinct, though, because for the spin chain,
�ab/�0 = O(10−3), whereas in the square lattice, this ratio is
2 orders of magnitude greater, �ab/�0 = O(10−1).

The whole analysis of this article follows from fits of
the probe-probe correlation 〈τ a · τ b〉 computed by QMC for
several temperatures to a simple analytical model derived
under adiabatic continuity hypothesis. These fits provide the
values of �ab and the canonical corrections (� and η). Our
reliance on this model is not exclusively due to the nearly
perfect fits to which it leads (see Fig. 8).

A crucial test of this model is given by checking the scaling
of � and η with α [Eqs. (28) and (29)]. We give an estimate
for this scaling for the spin chain with L = 20 based on three
simulations in Fig. 9: The dependence of � and η with α

can be read from the slopes � ∼ α2.26 and η ∼ α3.95, which
agree well with the theoretical prediction for weak coupling
given by our model (� ∼ α2 and η ∼ α4). Recall that for
α = 0.2, we have αJ > �0, and thus the system is already
well inside the intermediate coupling regime. Nevertheless, the

0.0000 0.0005 0.0010 0.0015 0.0020
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0.5
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0.3

0.2

0.1

0.0

kBT J

A
.

B
4

FIG. 8. (Color online) Probe-probe correlation, 〈τ a · τ b〉/4, at a
distance l = 20, as a function of temperature for the spin chain (red,
thick) and the square lattice (blue, dashed); α = 0.05 in both plots.
The dots are given by the QMC simulations (where the error bars from
QMC cannot be seen as they are typically below 1%). The lines stand
for the fit with Eq. (22). The dashed horizontal line separates classical
correlations (above) from quantum correlations (below). The upper
curve (red) shows that the quality of the fits extends beyond the region
where entanglement is nonzero.

fits are very good up this value of coupling (see Fig. 7)—we
again emphasize that this is particularly remarkable for the
2D system, which is gapless in the thermodynamic limit and
has a broken symmetry phase. These facts provide added
confirmation of our analytical model and the conclusions
drawn about the spectrum of the system and the emergence
of robust gaps. If states other than the lowest singlet and
triplet contributed significantly to the spin correlations at the
temperatures in which we still find entanglement, the quality
of the fits, added to the fact that η � �, would be an amazing
coincidence indeed. Exact numerical diagonalizations could
provide direct evidence of the spectrum, but these are very hard
to perform for large 2D systems. We have used the algorithm
SPARSEDIAG from ALPS to compute the three lowest energies
for relatively small systems; Fig. 10 shows the emergence of
robust gaps for two different lattices (4 × 3 and 6 × 3).

3.0 2.8 2.6 2.4 2.2
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4

3

( 
 )

( 
)

FIG. 9. (Color online) Log-log representation (dots) of �(α) and
η(α) for a spin chain with L = 20 plus two probes—the nc = 1 system
of the article—and the respective linear fits (dashed lines).
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FIG. 10. (Color online) Plot of the low-energy spectrum for two
different systems with 100 values of α in the range [0,0.5]. The energy
is scaled to the absolute value of the ground-state energy for α = 0:
(left) a lattice with l = 4 and nc = 3 with gap �0 = 0.52J and (right)
a lattice with l = 6 and nc = 3 with gap �0 = 0.39J . The crossover
between weak and strong probe-bus coupling can be observed with
the respective emergence of robust gaps.

IV. CONCLUSIONS

We observed an enhancement of LDE by varying the
geometry of the magnetic spin systems serving as a quantum
bus. We presented the first direct measurement of the probe
correlation for finite temperature by means of QMC simula-
tions with the ALPS algorithm. Also, we derived an analytical
expression for the probe density matrix that completely
describes the probe-probe entanglement for the systems we
studied, even away from the weak-coupling regime. The
importance of the dimensionality of the bus is twofold: On
one hand, ground-state entanglement is reduced as we go
from a 1D to a 2D bus; on the other hand, robustness of
thermal entanglement increases considerably in 2D, raising the
possibility of entangling distant spin probes at temperatures
as high as T � 1.2 × 10−2J/kB , where J is the nearest
neighbor exchange constant of the bus, an appealing situation
for quantum computation based on magnetic spins. Finally, we
reported on a spin system supporting quasiperfect ground-state
LDE more efficiently than the AFM spin chain, particularly
in the intermediate probe-bus coupling regime: the three-leg
ladder chain.
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APPENDIX A

Full rotational symmetry entails that the probe density
matrix can be written as function of a single 2 ⊗ 2 invariant:

ρ̂ab = 1

3e−βJab(β) + e3Jab(β)
exp[−βJab(β)τ a · τ b] . (A1)

This allows us to parametrize the correlations between
probes as

〈τ a · τ b〉 = e−4βJab(β) − 1

e−4βJab(β) + 1/3
. (A2)

This tells us very little for the moment since the temperature
dependence of Jab(β) is unknown. On the other hand, by

definition,

〈τ a · τ b〉 = Tr[e−βH τ a · τ b]

Tr[e−βH ]
, (A3)

and using the canonical transformation Ŝ,

〈τ a · τ b〉 = Tr[e−βHS e−iŜτ a · τ be
iŜ]

Tr[e−βHS ]
. (A4)

The transformed Hamiltonian is HS = Hp + H ′
b; the corre-

sponding eigenbasis is made of product states [Eqs. (3) and
(4)]. Under the assumption that kBT � �(α) (i.e., that the
temperature is much smaller than the gap to excited states of the
bus), we can limit the trace to the states of the form |ψ0〉 ⊗ |χ〉,
where |χ〉 is any probe state and |ψ0〉 is the nondegenerate
ground state of the spin bus. This leads to

〈τ a · τ b〉 = Trp[e−βHp 〈ψ0|e−iŜτ a · τ be
iŜ |ψ0〉]

Trp[e−βHp ]
, (A5)

where Trp(· · ·) is a trace over probe states only. Since the
operator τ a · τ b is diagonal in bus space, this can obviously be
written as

〈τ a · τ b〉 = 1

Trp[e−βHp ]
Trp

[
e−βHp

∑
m

〈ψ0| e−iŜ |ψm〉

× τ a · τ b〈ψm| eiŜ |ψ0〉
]

(A6)

= Trp[e−βHp
∑

m Amτ a · τ bA
†
m]

Trp[e−βHp ]
, (A7)

where Am ≡ 〈ψ0| e−iŜ |φm〉 is an operator defined in probe
space. By symmetry, the operator∑

m

Amτ a · τ bA
†
m = 〈ψ0| e−iŜτ a · τ be

iŜ |ψ0〉 (A8)

must be a scalar in probe space and therefore of the form∑
m

Amτ a · τ bA
†
m = η + (1 − �) τ a · τ b, (A9)

where η and � are, by construction, temperature-independent
renormalization constants. Since Trp [τ a · τ b] = 0 and

(τ a · τ b)2 = 3 − 2τ a · τ b, (A10)

we obtain

Trp

[ ∑
m

Amτ a · τ bA
†
m

]
= 4η, (A11)

Trp

[ ∑
m

τ a · τ bAmτ a · τ bA
†
m

]
= 12(1 − �). (A12)

With these definitions, it is clear that

〈τ a · τ b〉 = η + (1 − �)〈τ a · τ b〉can, (A13)

where

〈τ a · τ b〉can := Trp[e−βHpτ a · τ b]

Trp[e−βHp ]
= e−β�ab − 1

e−β�ab + 1/3
. (A14)
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This looks exactly like the preceding expression, except
that now �ab, unlike Jab, is temperature independent. So
we achieve a parametrization of 〈τ a · τ b〉 in terms of three
temperature-independent parameters �ab, �, and η. This
result, although simple, has important consequences; for
instance, we see that symmetry implies that �ab is in fact
the gap separating the probe’s singlet and the probe’s triplet
up to any order. We can thus write

�ab = Etriplet(α) − Esinglet(α). (A15)

Using Eqs. (A2), (A13), and (A14), we can express Jab(β)
explicitly in these temperature-independent parameters:

Jab(β) = 1

4β
ln

[
3(� − η) + (4 − 3� − η) exp(β�ab)

4 − � + η + (� + η/3) exp(β�ab)

]
.

(A16)

In Appendix B, we derive the expression for � and show that
it is of second order in the small parameter Jα/�.

APPENDIX B

We now compute the canonical corrections, � and η, to
the probe canonical correlation [Eq. (A14)] in perturbation
theory. We assume the following conditions to hold: (1) the
temperature is small enough not to generate real excitations
of the spin lattice system and (2) the probes couple weakly to
the spin bus via an isotropic interaction with strength αJ such
that αJ � �0. In this limit, we can use the Schrieffer-Wolff
prescription for the canonical generator Ŝ [32]:

V + i[H0,Ŝ] = 0,

where H0 is the bus Hamiltonian and V the bus-probe coupling.
The canonical generator Ŝ has nonzero matrix elements
only between the ground-state manifold (at zero coupling)
and excited states of order ∼O(αJ/�0). The transformed
Hamiltonian is, to second order in V ,

HS := H0 − i

2
[Ŝ,V ].

To calculate the probe correlation, we expand the renormalized
spin operators in powers of Ŝ:

〈τ a · τ b〉 = Tr[e−iŜρab eiŜe−iŜτ a · τ b eiŜ] (B1)

= Tr

{
e−βHS

Z

(
τ a · τ b − i[Ŝ,τ a · τ b]

− 1

2
[Ŝ,[Ŝ,τ a · τ b]] + O

(
J 3α3

�3
0

))}
, (B2)

with Z := Tr[exp (−βHS)]. From the latter result, we can
express the Ŝ-renormalized spins as a function of the original
spins:

τ a · τ b −→̂
S

τR
a · τR

b = τ a · τ b + ξ ab, (B3)

with

ξ ab = − 1
2 [Ŝ,[Ŝ,τ a · τ b]] + O

(
J 3α3�−3

0

)
, (B4)

implying that the ground state of the probes ρab will never
be a perfect singlet if 〈ξ ab〉β is nonnegligible. The trace in
Eq. (B2) can be performed in two steps: (1) tracing out the bus

by considering just the overlap with the ground state, which is
justified by the low-temperature condition, and (2) performing
a thermal average in the 2 ⊗ 2 Hilbert space of the probes.

The first-order term does not contribute as the generator Ŝ

has null matrix elements in the ground state:

〈ψ0|[Ŝ,τ a · τ b]|ψ0〉 = [〈ψ0|Ŝ|ψ0〉,τ a · τ b] = 0. (B5)

Then we are left with a zero-order term

C0 = Tr

[
e−βHS

Z τ a · τ b

]
,

yielding the canonical correlation, 〈τa · τb〉can, and with a
second-order correction C2:

C2 = − 1

2Z Tr{e−βHS [Ŝ,[Ŝ,τ a · τ b]]}. (B6)

We must have some care to evaluate the preceding thermal
average. Let us reproduce the main steps:

C2 = − 1

2Z Tr[e−βHS (ŜŜτ a · τ b − 2Ŝτ a · τ bŜ + τ a · τ bŜŜ)]

(B7)

� − 1

Z
∑
k�0

Tra,b[〈ψ0| e−βHS |ψk〉

× 〈ψk|(ŜŜτ a · τ b − Ŝτ a · τ bŜ)|ψ0〉]. (B8)

The effective Hamiltonian has no matrix elements between
eigenstates belonging to different sectors (up to the order
at which we are working), which simplifies the preced-
ing summation as only the GS contributes [compare with
Eqs. (A4) and (A5)]:

〈ψ0| e−βHS |ψk〉 = e−βHp 〈ψ0| e−βH ′
b |ψk〉δ0k. (B9)

Indeed,

C2 = − 1

Z Tra,b{e−βHp 〈ψ0|(ŜŜτ a · τ b − Ŝτ a · τ bŜ)|ψ0〉}.
(B10)

The averages of the quadratic terms ∼ŜŜ must be done
separately as Ŝ does not commute with the probe operators in
general. It is convenient to introduce the matrix elements:

Sab(m,n) := 〈ψm|Ŝ|ψn〉
= 〈ψm|PmŜPn|ψn〉. (B11)

In second-order perturbation theory, the generator reads [32]

Sab(m,n) = Jα〈ψm| (τ a · SA + τ b · SB) |ψn〉
i(Em − En)

= Jα

i�mn

(τ a · 〈ψm|SA|ψn〉 + τ b · 〈ψm|SB |ψn〉) .

(B12)

Inserting the resolution of the identity
∑

m |ψm〉〈ψm| in the
expression for C2, we get, after some algebra,

C2 = −4α2J 2

3

∑
k>0

∑
µ=x,y,z

∣∣〈ψ0|
(
Sµ

A − Sµ

B

)|ψk〉
∣∣2

�2
k0

〈τ a · τ b〉can.

(B13)
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Indeed, we arrive at the desired result:

〈τ a · τ b〉 = 〈τ a · τ b〉can(1 − �) + η, (B14)

� =
(

2αJ√
3

)2 ∑
k>0

∑
µ=x,y,z

∣∣〈ψ0|
(
Sµ

A − Sµ

B

)|ψk〉
∣∣2

�2
k0

+ O(α3),

(B15)

with 〈τ a · τ b〉can given previously in Eqs. (A13) and (A14) and
where η = 0 up to second-order perturbation theory since no
constant term has emerged from our expansion. It can be shown
that this term is at most of fourth order, O[(Jα/�)4] [33].

APPENDIX C

We have performed several careful checks of the results
obtained from the ALPS code. Our LOOPER simulations used
the following Monte Carlo input parameters: number of
thermalization steps, 15 000; number of sweeps, 400 000. As

a check, we used larger values of these parameters with no
change in the results. We have no evidence whatsoever that
our simulations failed to converge.

An important check of convergence is obtained through the
measurement of the staggered magnetization. In our simulation
(for the square lattice and α = 0.05), we obtained√〈(

Mz
s

)2〉 = 0.180 08, (C1)

which gives a value
√

3
√

〈(Mz
s )2〉 ≈ 0.311 91 close to the

known value of the sublattice magnetization in the thermo-
dynamic limit (our system is finite and has open boundary
conditions which may explain the small deviation).

The QMC error bars for the correlations are typically
below 1%; for instance, for the square lattice, α = 0.05, and
the lowest simulated temperature, we have an estimate from
the simulations error {τ a · τ b/4} � 3[error MQ{〈τ z

a τ z
b 〉/4}] =

0.000 735, while the value of the correlation in this case is
〈τ a · τ b〉/4 = −0.214 852.
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