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Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model
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The Kitaev honeycomb model with a topological phase transition at zero temperature is studied using the
quantum-information method. Based on the exact solution of the ground state, the mutual information between
two nearest sites and between two bonds with the greatest distance are obtained. It is found that the mutual
information shows some singularities at the critical point where the system transits from the gapless phase
to the gapped phase. Finite-size effects and scaling behavior are also studied. Our results indicate that the
mutual information can serve as a good indicator of the topological phase transition. This is because the mutual
information is believed to be able to catch some global correlation properties of the system. Meanwhile, this
method has the advantages that the phase transition can be determined easily and the order parameters, which
are hard to obtain for some topological phase transitions, are not necessarily known.
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I. INTRODUCTION

Recently, the Kitaev honeycomb model has become a
popular subject in both the fields of condensed matter physics
and quantum-information processing [1–13]. This model was
first introduced by Kitaev to study anyons, and the analytic
exact solution to the ground state of this model has been
obtained by several methods [1,14–17]. It has rich phase
transitions and has both a gapless phase with non-Abelian
anyon excitation and three gapped phases with Abelian anyon
excitations depending on the values of the parameters in the
Hamiltonian. It has been shown that the system possess a
topological phase transition, which cannot be characterized by
symmetry-breaking theory and the corresponding local order
parameters but can be characterized by nonlocal string order
parameters [1,18]. One interesting point is that the system is a
scarce exactly solvable model with dimension higher than one,
and thus it provides a test bed for many numerical methods
in two-dimensional systems just as the Ising model does in
one dimension. With these interesting properties, the Kitaev
honeycomb model has been studied intensively and has been
extended to other cases [12,19].

The Kitaev honeycomb model also has practical advantages
as an active subject potential applications in quantum informa-
tion and quantum computation. It has been suggested to use the
Kitaev honeycomb model to realize fault-tolerant topological
quantum computation. The system is a good candidate to
encode quantum information while those quantum states can
be naturally protected from the inevitable decoherence by
the environment [20]. The Kitaev honeycomb model can be
realized by using an optical lattice [21,22] and by using
superconducting quantum circuits [23,24]. It has also been
studied by means of fidelity susceptibility [15] and the
extended Kitaev model has been studied with entanglement
approaches [13].

In this paper, we investigate the Kitaev honeycomb model
from the quantum-information perspective [25,26]. We study
the topological phase transition in this model by means
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of mutual information between the component lattices. It
is generally believed that the mutual information measures
the total information and describes the global correlation
properties [27]. We find that both the derivative of mutual infor-
mation between two nearest neighbor lattices and the mutual
information between two bonds of the lattice can detect the
topological phase transition in the Kitaev honeycomb model.
This quantum-information method has great advantages in
that the singular behavior occurs exactly at the point when
the gapless phase transits into a gapped phase. We also study
finite-size effects and the scaling behavior of the singularities
of the mutual information.

This paper is organized as follows. In Sec. II we briefly
introduce the Kitaev honeycomb model, then diagonalize
the Hamiltonian and give the exact solution of the ground
state based on Kitaev’s initial method. After that, we calculate
the two-site and four-site correlation functions to prepare for
the determination of the two-site and two-bond reduced density
matrix. In Secs. III and IV, we calculate the two-site mutual
information and two-bond mutual information and the former
one’s derivative, respectively. Section V gives conclusions and
remarks.

II. KITAEV HONEYCOMB MODEL

The Kitaev honeycomb model is a two-dimensional spin-
1/2 lattice model with nearest neighbor interactions. It has two
kinds of simple sublattices, which are denoted by the dark dots
and empty circles in Fig. 1. Each lattice interacts with three
nearest neighbors of the opposite kind through three distinct
bonds labeled as an x link, a y link, and a z link. For each
bond the interaction has a different coupling constant. The
Hamiltonian is

H = −Jx

∑
x links

σx
j σ x

k − Jy

∑
y links

σ
y

j σ
y

k − Jz

∑
z links

σ z
j σ z

k , (1)

where the subindexes j,k denote the location of the site, and
σα

k (α = x,y,z) is the Pauli matrix at site k. We take the axis
of the system in the n1 and n2 direction, and in each direction
there are L unit cells. Therefore the whole system has 2L2
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FIG. 1. (Color online) Sketch of the Kitaev honeycomb model.
The unit cell (highlighted by an elliptic circle) contains two sites of
different kinds. For simplicity, we choose the coordinate axes in n1

and n2 directions.

sites. Next, we use Kitaev’s original method to diagonalize
this Hamiltonian and get its ground state.

A. The ground state

We first introduce the following Majorana transformation
to transform the Pauli operators into the Majorana fermion
operators:

σx = ibxc, σ y = ibyc, σ z = ibzc, (2)

where the Majorana operators satisfy A† = A, A2 = 1, AB +
BA = 0, and bxbybzc = 1, for A,B ∈ {bx,by,bz,c} and A �=
B. Thus, the Hamiltonian becomes

H = −
∑

α

J α
∑

α links

bα
j bα

k cj ck

= i
∑

α

J α
∑

α links

(
ibα

j bα
k

)
cj ck

= i
∑

α

J α
∑

α links

ûjkcj ck

= i

2

∑
j,k

Jαj,k
ûj,kcj ck. (3)

In the last equation, the value of α is totally determined
by the site indexes j and k. The factor 1/2 is due to each
lattice being counted twice in the summation of the lattices.
It can be easily shown that û2

j,k = 1, [ûj,k,H ] = 0, and ûj,k

commute with each other. As a result the eigenvalues of ûj,k we
present here by uj,k are ±1, and the whole Hilbert space can
be decomposed into a series of eigenvalue spaces described
by the eigenvalues of ûj,k . According to Refs. [14,28], the

ground state is in the vortex-free space so that we assume
uj,k = 1 for all links, where j is a kind of simple sublattice
presented by the empty circles in this paper. Notice that
uj,k = −uk,j .

As the unit cell of this model contains one empty circle
lattice and one dark dot lattice, we introduce a pair of indexes
(s,λ) to take the place of the previous site index j , where the
first index s stands for the location of the unit cell and the
second one describes the two different kinds of sublattice. In
this paper, we let the empty circle’s second index take the value
1, and the dark dot’s index takes the value 2. See Fig. 1. Then
the Hamiltonian becomes

H = i

2

∑
s,λ,t,µ

Js,λ,t,µcs,λct,µ. (4)

The two-dimensional system we studied is on the surface
of a torus with periodic boundary conditions. Because of
the translational invariance of the system, Js,λ,t,µ is actually
determined by three indexes: λ, µ, and t − s. Then we
introduce the Fourier transformation

Js,λ;t,µ = J0,λ;t−s,µ = 1

L2

∑
q

e−iq·(rt−rs )J̃λ,µ(q),

cs,λ =
√

2

L2

∑
q

eiq·rs aq,λ. (5)

The inverse transformation is

J̃λ,µ(q) =
∑

t

eiq·rt J0,λ;t,µ,

aq,λ =
√

1

2L2

∑
s

e−iq·rs cs,λ, (6)

where aq,λ satisfies a−q,λ = a
†
q,λ, a2

q,λ = 0, [aq,λ,a
†
q,µ]+ ≡

aq,λa
†
q,µ + a

†
q,µaq,λ = δpqδλ,µ, and other anticommutators are

all equal to zero. Then the Hamiltonian becomes

H = i
∑

q

2∑
λ,µ=1

J̃λ,µ(q)a−q,λaq,µ. (7)

After simple calculations we obtain J̃1,1(q) = ∑
t e

iq·rt J01,t1 =
0, because J01,t1 = 0. For a similar reason J̃2,2(q) = 0. As each
lattice interacts with its three nearest neighbors, there are only
three values of t corresponding to the three neighbors that
make J01,t2 take nonzero values. Thus J̃1,2(q) = Jxe

iq·n1 +
Jye

iq·n2 + Jz and J̃2,1(q) = −J̃ ∗
1,2(q), where n1 and n2 are in

the directions shown in Fig. 1. Let f (q) ≡ J̃1,2(q) = ε(q) +
i�(q), and choose −→qx to be in the direction of n1 and −→qy to be
in the direction of n2. Then we have

ε(q) = Jx cos qx + Jy cos qy + Jz,

�(q) = Jx sin qx + Jy sin qy, (8)

where qx and qy take values qx,qy = 2πn/L, n =
−(L − 1)/2, . . . ,(L − 1)/2. We can see that ε(−q) = ε(q),
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�(−q) = −�(q), and f (−q) = f ∗(q). The Hamiltonian then
becomes

H =
∑

q

if (q)a†
q,1aq,2 + [if (q)]∗ a

†
q,2aq,1. (9)

Next, we introduce the following Bogoliubov transformation:

Cq,1 = uqaq,1 + vqaq,2,

C
†
q,1 = u∗

qa
†
q,1 + v∗

qa
†
q,2,

(10)
Cq,2 = v∗

qaq,1 − u∗
qaq,2,

C
†
q,2 = vqa

†
q,1 − uqa

†
q,2,

with the new operators satisfying [Cq,λ,C
†
p,µ]+ =

δpqδλ,µ,C2
q,λ = 0. By using the Bogoliubov transformation,

the Hamiltonian is diagonalized as

H =
∑

q

|fq|(C†
q,1Cq,1 − C

†
q,2Cq,2), (11)

with uq = 1√
2
, vq = i√

2

fq

|fq| , v−q = −v∗
q, and C−q,1 =

−2u∗
qv

∗
qC

†
q,2. Since C

†
q,1Cq,1 = 1 − C

†
−q,2C−q,2, the Hamilto-

nian reads

H =
∑

q

|fq|(1 − C
†
−q,2C−q,2 − C

†
q,2Cq,2)

=
∑

q

|fq|(1 − 2C
†
q,2Cq,2). (12)

The normalized ground state is

|G〉 =
∏

q

C
†
q,2|0〉, (13)

with Cq,2|0〉 = 0. The energy gap is 2 minq{|fq|}.

B. The phase diagram

This ground state has two distinct phases in the parameter
space. In the region of |Jx | � |Jy | + |Jz|, |Jy | � |Jx | + |Jz|
and |Jz| � |Jy | + |Jx | it is gapless with non-Abelian excita-
tion, and in other regions it is gapped with Abelian anyon
excitations [14]. We focus on the Jx + Jy + Jz = 1 plane. The
phase diagram is shown in Fig. 2. In this paper, we investigate
the behaviors of two-site mutual information and two-bond
mutual information in the phase transition from the gapless
phase to a gapped phase along the red dashed line in the phase
diagram of Fig. 2.

C. Correlation functions

In this section we calculate the two-site and four-site
correlation functions at the ground state of the systems that
will be used to construct the reduced density matrix. Suppose
the two nearest lattices to be studied are linked by z bonds.
The correlation function between two nearest lattices is〈

σ z
r,1σ

z
r,2

〉 =
〈
bz

r,1b
z
r,2

2

L2

∑
q,q′

ei(q+q′)·raq,1aq′,2

〉

= −i
2

L2

∑
q,q′

ei(q+q′)·r〈aq,1aq′,2〉.

Jz=1, Jx=Jy=0

Jx=1, Jz=Jy=0 Jy=1, Jx=Jz=0

Az

Ax Ay

B

FIG. 2. (Color online) The phase diagram of the Kitaev honey-
comb model in the Jx + Jy + Jz = 1 plane in the parameter space. In
the three shaded areas labeled Ax , Ay , and Az, the system is gapped
with Abelian anyon excitation, and in the unshaded area labeled B

the system is gapless with non-Abelian excitation. In this paper, we
focus on the red dashed line Jx = Jy = (1 − Jz)/2, where the critical
point of topological phase transition is Jz = 0.5.

By using the relation

〈aq,1aq′,2〉 = 〈(u∗
qCq,1 + vqCq,2)(v∗

q′Cq′,1 − uq′Cq′,2)〉
= −u∗

quq′ 〈Cq,1Cq′
,2〉

= i

2
δq,−q′

fq

|fq| ,

we obtain the correlation function〈
σ z

r,1σ
z
r,2

〉 = 1

L2

∑
q

fq

|fq| = 1

2L2

∑
q

fq + f−q

|fq|

= 1

L2

∑
q

εq

Eq
, (14)

where Eq = |fq| =
√

ε2
q + �2

q.

The correlation function between two bonds as highlighted
by elliptic circles in Fig. 1 is〈
σ z

r1,1σ
z
r1,2σ

z
r2,1σ

z
r2,2

〉 = 〈
bz

r1,1b
z
r1,2b

z
r2,1b

z
r2,2Cr1,1Cr1,2Cr2,1Cr2,2

〉
= − 4

L4

∑
q1,q2,q3,q4

ei(q1+q2)·r1ei(q3+q4)·r2

× 〈
ar1,1ar1,2ar2,1ar2,2

〉
,

where〈
ar1,1ar1,2ar2,1ar2,2

〉 = −1

4

fq1

|fq1 |
fq3

|fq3 |
〈
C

†
−q1,2

(
C−q2,2 + Cq2,2

)
× (

C
†
−q3,2

− Cq3,2
)
Cq4,2

〉
= 1

4

fq1∣∣fq1

∣∣ fq3∣∣fq3

∣∣ (δq2,−q3δq1,−q4

− δq1,−q3δq2,−q4 − δq1,−q2δq3,−q4

)
.
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Then, we arrive at

〈
σ z

r1,1σ
z
r1,2σ

z
r2,1σ

z
r2,2

〉 = − 1

L4

(∑
q1,q3

fq1∣∣fq1

∣∣ fq3∣∣fq3

∣∣ei(q1−q3)·(r1−r2) −
∑
q1,q2

ei(q1+q2)·(r1−r2) −
∑
q1,q3

fq1∣∣fq1

∣∣ fq3∣∣fq3

∣∣
)

= − 1

L4

∑
q1,q3

fq1fq3 + f−q1f−q3∣∣fq1

∣∣ · ∣∣fq3

∣∣ {cos[(q1 − q3) · (r1 − r2)] − 1}

= 1

L4

∑
q1,q3

�q1�q3 − εq1εq3

Eq1Eq3

{cos[(q1 − q3) · (r1 − r2)] − 1} . (15)

III. MUTUAL INFORMATION BETWEEN TWO
NEIGHBOR LATTICES

The reduced density matrix of two sites i and j is ρi,j =
1
4

∑3
α,β=0〈σα

i σ
β

j 〉σα
i σ

β

j , where σ 1 = σx , σ 2 = σy , σ 3 = σ z,
and σ 0 is the identity. In the system (1), each site interacts with
its three neighbors by different operators (σx , σy , and σ z), and
each two linked sites together have only one kind of operator
available (i.e., σασα), with α corresponding to the type of their
link. We find that only the correlation function along the link
interacting direction is nonzero when we study the reduced
matrix of two linked sites. That is, if we consider the two
lattices with a z link (see Fig. 1), all the correlations are zero
except 〈σ zσ z〉. Therefore, the reduced density matrix of this
model has only diagonal elements, although the interactions of
one site have three components. This indicates that the model
(1) is much more like a classical system and similar to the Ising
model. That may explain why this two-dimensional model can
be solved analytically.

To show our results more clearly, we use a numerical
method to diagonalize the Hamiltonian exactly. With the

FIG. 3. (Color online) The smallest translation-invariant sub-
system of the Kitaev honeycomb model with periodic boundary
conditions. The eight interaction sites in the subsystem are highlighted
by red numbers on the graph. The sites labeled by small black numbers
are the repetitions of the eight sites because of the periodic boundary
condition and torus topology.

periodic boundary conditions, we diagonalize an eight-lattice
system, which is the smallest subsystem on the surface of a
torus (see Fig. 3), and calculate all 16 two-site correlation
functions. Here we omit the subindex corresponding to the
sites’ position because the value is invariant by the translational
invariance of this system. The explicit form of the Hamiltonian
reads

H8 = Jx

(
σx

5 σx
3 + σx

6 σx
4 + σx

7 σx
1 + σx

8 σx
2

)
+ Jy

(
σ

y

3 σ
y

6 + σ
y

5 σ
y

4 + σ
y

8 σ
y

1 + σ
y

7 σ
y

2

)
+ Jz

(
σx

3 σx
7 + σx

4 σx
8 + σx

5 σx
1 + σx

6 σx
2

)
. (16)

By using the periodic boundary conditions, the system size
of the system (16) can be extended to infinity. The main
properties of the system are kept since all possible inter-
actions are considered. The result is shown in Fig. 4. We
see that the correlation functions along the z direction are
nonzero.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

J
z

co
rr

el
at

io
n 

fu
nc

tio
ns 〈σzσz〉

other correlation functions
except 〈σ0σ0〉

FIG. 4. (Color online) The ground-state two-site correlation
functions with a z link in the Kitaev honeycomb model. We see
that 〈σ 0

r,1σ
0
r,2〉 = 1, 〈σ z

r,1σ
z
r,2〉 �= 0, and others are zero. Jz is in units

of Jx + Jy + Jz.
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The explicit form of the reduced density matrix of two sites with a nearest neighbor is

ρr,1;r,2 = 1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 〈
σ z

r1,1σ
z
r1,2

〉
0 0 0

0 1 − 〈
σ z

r1,1σ
z
r1,2

〉
0 0

0 0 1 − 〈
σ z

r1,1σ
z
r1,2

〉
0

0 0 0 1 + 〈
σ z

r1,1σ
z
r1,2

〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

The eigenvalues of the reduced density matrix are λ1 =
λ2 = (1 − 〈σ zσ z〉)/4 and λ3 = λ4 = (1 + 〈σ zσ z〉)/4. Every
eigenvalue corresponds to two-fold degenerate eigenstates.
From the two-site reduced density matrix we can derive the
reduced density matrix for one site as I/2, where I is the
identity matrix. The mutual information of the two sites i and
j is

S(i : j ) = 2 − 2H

(
1 − 〈σ zσ z〉

4

)
− 2H

(
1 + 〈σ zσ z〉

4

)
,

(18)

where H (x) = −x log2(x).
The two-site mutual information along the line Jx = Jy =

(1 − Jz)/2 is shown in Fig. 5. We see that the mutual
information increases monotonically with increasing Jz. How-
ever, there exists a certain value Jm

z for which if J < Jm
z ,

0 0.2 0.4 0.6 0.8 1

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jz

S
(i:

j)

0.

FIG. 5. (Color online) Mutual information between two con-
nected sites. The mutual information increases monotonically with
increasing Jz. However, there exists a certain value J m

z for which
if J < J m

z , the mutual information is a concave function, whereas
if J > J m

z , the mutual information is a convex function. Thus, the
first-order derivative of the mutual information with respect to Jz has
a peak at J m

z . Jz is in units of Jx + Jy + Jz.

the mutual information is a concave function whereas if
J > Jm

z , the mutual information is a convex function. Thus,
the first-order derivative of the mutual information with
respect to Jz has a peak at Jm

z . The derivative of the mutual
information is shown in Fig. 6. From Fig. 6, we see that
the first-order derivative of the mutual information arrives
at the maximum value at the point Jm

z = 0.5, which exactly
corresponds the critical point Jz = 0.5. We also find that the
value of Jm

z is fixed when the system size changes. The
maximum value is a constant when the system size tends to
infinity, as shown in Fig. 7. This is different from the Ising
model, where the second-order derivative of entanglement
entropy diverges at the critical point in the thermodynamic

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Jz

∂
S

(i:
j)

/∂
J z

FIG. 6. (Color online) The first-order derivative of mutual in-
formation between two connected sites for system size L = 100.
The derivative of the mutual information has a maximum exactly
at the critical point Jz = 0.5. The small peaks in the gapless
region result from the fact that while calculating 〈σ z

r,1σ
z
r,2〉 certain

εq and Eq are both infinitesimal and some systemical error is
included. The peaks get smaller when L increases. The subgraph
shows that when the system size tends to infinity, the maximum
of the derivative of the mutual information tends to a constant as
log2[( ∂S(i:j )

∂Jz
)max − 3.879 34] = −0.003 84L − 2.121 74. Jz is in units

of Jx + Jy + Jz.
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1.5

2

2.5

3

3.5
x 10

−11

J
z

S
(r

1:r
2)

L=50

L=60

L=70

L

lo
g(

S
m

ax
-8

.3
43

63
E

-1
3) log(Smax-8.34363E-13)

FIG. 7. (Color online) The mutual information between two z

linked bonds with the greatest distance located on the torus surface
for a given system size. The small peaks in the gapless phase are
caused by the 0/0 error as before. The significant peak arises exactly
at the critical point. The subgraph shows that when the system size
tends to infinity, the peak value of the mutual information tends to a
constant as log2[S(r1 : r2)max − 8.343 63 × 10−13] = −0.106 37L −
18.8454. Here Jz is in units of Jx + Jy + Jz.

limit [29], although their density matrices are the same in
structure.

From the quantum-information perspective, the entangle-
ment measured by concurrence between two sites is zero
since the density has only diagonal elements, whereas the
entanglement between one site and all the remaining sites is

maximum [i.e., c =
√

d
d−1 (1 − Trρ2

i ) = 1, where c denotes the
concurrence, ρi is the reduced density matrix of the particle in
site i, and d is the dimension of ρi] [30,31].

IV. MUTUAL INFORMATION BETWEEN TWO BONDS
WITH LONGEST DISTANCE

In this section, we investigate the mutual information
between two z linked bonds. First, we need to calculate the
density matrix. For two arbitrary z linked bonds at r1 and r2

the density matrix is

ρr1,r2 = 1

16

∑
α,β=0,3

σα
r1,1σ

α
r1,2σ

β

r2,1σ
β

r2,2

〈
σα

r1,1σ
α
r1,2σ

β

r2,1σ
β

r2,2

〉
.

(19)

The eigenvalues of this density matrix are
(1 − 4〈σ zσ zσ zσ z〉)/16, (1 − 2〈σ zσ z〉 + 〈σ zσ zσ zσ z〉)/16,
and (1 + 2〈σ zσ z〉 + 〈σ zσ zσ zσ z〉)/16. These eigenvalues
correspond to eight-fold, four-fold, and four-fold degenerate
eigenstates, respectively. Then we obtain the mutual
information between two z linked bonds in r1 and
r2 as

S(r1 : r2) = 4H

(
1 + 〈σ zσ z〉

4

)
+ 4H

(
1 − 〈σ zσ z〉

4

)
− 8H

(
1 − 〈σ zσ zσ zσ z〉

16

)
− 4H

(
1 − 2〈σ zσ z〉 + 〈σ zσ zσ zσ z〉

16

)
− 4H

(
1 + 2〈σ zσ z〉 + 〈σ zσ zσ zσ z〉

16

)
. (20)

To reveal the long-range correlation in the system, we study
the bonds in the direction that contains the largest distance
in the torus, which is marked by a line of elliptic circles in
Fig. 1. Without loss of generality, we choose the positions of
the bonds as r1 = (0,0) and r2 = (0.5L,0.5L) in the (n1,n2)
coordinate system so that the two bonds have the greatest
separation. The mutual information between two z linked
bonds in this direction is shown in Fig. 7. We find that the
mutual information has a maximum at the critical point. This
property is valid for different system sizes. The peak values
tend to a constant when the system size L trends to infinity.

V. CONCLUSIONS

In this paper, based on the exact ground state of the Kitaev
honeycomb model we have obtained both the reduced density
matrices of two nearest neighbor sites and between two z

linked bonds with the greatest distance. We show that these
density matrices have only diagonal elements, so that there is
no entanglement between two local sites or two local bonds, but
the nonlocal entanglement between one site and the rest of the
whole system is maximum. From quantum-information theory,
the ground state, which is a multipartite state, seems more like
Greenberger-Horne-Zeilinger (GHZ) states other than W -type
states. We have calculated the mutual information between two
nearest neighbor sites and the mutual information between two
z linked bonds with the greatest distance in the torus topology.
The first-order derivative of the former mutual information
and the latter mutual information itself have peaks at the point
where the ground state transits from the gapless phase into a
gapped phase. This singular behavior serves as an exact and
easily obtainable detector of the topological phase transition in
the Kitaev honeycomb model. This localizable entanglement
is related to the string order parameters and the hidden
topological long-range order in one-dimensional spin chains
[32,33]. Moreover, the topological phase and topological phase
transition have their roots in hidden topological long-range
order and the string order parameters. Therefore, investigation
of the relation among the localizable entanglement, topological
phase transition, and other related quantities in the exactly
solvable two-dimensional Kitaev model may greatly enhance
our understanding of the topological phase. Research in this
direction should be further explored to extensively study the
topological phase and topological order by means of quantum
information.
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