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Communication at the quantum speed limit along a spin chain
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Spin chains have long been considered as candidates for quantum channels to facilitate quantum commu-
nication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type
interactions. We build on the work of Balachandran and Gong [V. Balachandran and J. Gong, Phys. Rev.
A 77, 012303 (2008)] and show that by applying optimal control to an external parabolic magnetic field,
one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that
the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes
the form of a dispersed wave. We conclude that optimal control is not only a useful tool for experimental
application, but also for theoretical inquiry into the physical limits and dynamics of many-body quantum
systems.
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I. INTRODUCTION

Quantum computers promise to allow efficient simulation
of large dynamic and complex systems and deliver
performance advantages over their classical counterparts. One
of the central considerations for the construction of a quantum
computer is an infrastructure that can rapidly and robustly
transport qubit states between sites where qubit operations
can be performed. The components for this infrastructure may
be thought of as quantum channels for quantum information
transfer. One of the technologies under investigation to
constitute such a channel is the one-dimensional spin
chain [1–10], which consists of a string of particles coupled
via their spin degrees of freedom, each acting as an effective
two-level quantum system. As is customary in quantum
information processing, proper engineering of the control
parameters of the system is essential to achieve the high
fidelity necessary for robust quantum computation. This can be
obtained, for instance, by employing a numerical optimization
method which, for the specific settings of the problem, seeks
the optimal control pulses that allow one to implement the
desired operation [11–21]. In this paper, we apply such a
method, known in the literature as the Krotov method [22,23],
to the case of quantum state transfer along a one-dimensional
spin chain. The specific system we use was introduced by
Balachandran and Gong [1], but here we show that by
designing the external driving parameters with optimal
control methods, one can obtain a significant increase in
fidelity, even over short timescales [24].

These high-fidelity, high-speed transmissions exhibit inter-
esting characteristics. If one ignores the effects taking place
near the boundaries of the chain, the evolution of the excitation
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is that of a dispersed wave, moving with almost constant
velocity along the chain. This velocity is independent of the
chain length, and furthermore has an upper bound, indicating
the presence of a fundamental limit on the rate of transmission.
Through a closer analysis, we show that this limit can be
directly related to the theoretical maximum speed of the state
transfer allowable by the laws of quantum mechanics [25–29].

Producing time-optimal gates has already been explored in
the literature [30–34] where the authors considered geodesics
on the Bloch sphere for systems with a low number of
dimensions. Unfortunately, extension of these methods to
many-body systems (such as the system we consider here) are
prohibitively difficult. Conversely, the numerical optimization
methods that we employ have little difficulty in finding sets of
optimal solutions, even at this limit. In effect, we demonstrate
that through application of optimal control, we cannot only
transmit the excitation with a high fidelity, but also at the fastest
possible speed. One can even reverse the problem, implying
that optimal control can be used to probe such fundamental
dynamical limits on many-body quantum systems. Such tools
will be invaluable as the ambition of quantum science leads it
toward investigations of systems of greater complexity which
are less tractable analytically.

The paper is arranged as follows. In Sec. II, we describe
the system used for information transfer in more detail
and the precise scheme which we will use for propagating
quantum information in the system. Section III discusses the
application of optimal control to the transfer scheme, and
shows that optimal control can effect significant gains in the
transfer speed. We then discuss the fundamental limit of these
improvements in Sec. IV, and show that optimal control in fact
allows us to reach this limit, thus allowing us to transfer the
spin state in the fastest possible time allowable by the laws
of quantum mechanics. Finally, we present the conclusions in
Sec. V.
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II. SPIN CHAINS AS QUANTUM CHANNELS

A. Overview

Using spin chains as quantum channels for communication
between two parties was first proposed by Bose in 2003 [6]
and later developed in a series of papers (we refer the reader
to Ref. [2] for a review). The idea is relatively simple: Alice
(the sender) has a quantum state she wants to relay to Bob
(the receiver). Between them is a one-dimensional chain of
N spin-1/2 particles which are coupled via nearest-neighbor
interactions. Alice has access to the first spin in this chain,
and can prepare its spin state as she chooses. Bob has access
to the final site (the terms “spin” and “site” will be used
interchangeably), whose state he can read out. Following [1],
we apply an external parabolic magnetic field, which Alice
can control. The procedure for sending quantum information
along the chain is as follows.

(1) The spin chain is prepared in its ground state with respect
to the external magnetic field.

(2) Alice prepares the initial spin state to be the state she
wishes to transfer.

(3) By manipulating the magnetic field, Alice controls the
propagation of the spin along the chain, which takes place due
to the coupling between the spin degrees of freedom.

(4) After some prescribed time when the state has been
transferred to the final site, Bob reads out the state of this site.

B. The Hilbert space and Hamiltonian

The model we consider is sketched in Fig. 1. It is composed
of a one-dimensional spin-1/2 chain with N sites, where
distances are measured by the variable x (although this
may not be a physical distance). We will consider uniform
Heisenberg nearest-neighbor couplings characterized by the
same coupling strength J , and the presence of a parabolic
external magnetic field in the z direction, normal to the
direction x. Consequently, the field will act on the nth site as

Bn(t) = C(t)[xn − d(t)]2, (1)

where d(t) is the position of the field minimum along x at
time t , and C(t) is a measure of the global field strength.

The Hamiltonian then takes the form,

H (t) = −J

2

N−1∑
n=1

�σn · �σn+1 +
N∑

n=1

Bn(t)σ z
n , (2)

where n labels the spin sites, with n = 1 and n = N referring
to the first and last spins, respectively, and �σn = (σx

n ,σ
y
n ,σ z

n )
are the Pauli spin operators for the nth spin. For convenience,

z

x

n  1n

FIG. 1. (Color online) The one-dimensional spin chain used for
information transfer. The (blue) solid circles represent sites along
the chain, with the applied magnetic field depicted. The effective
couplings are indicated operating between the sites.

all system parameters are scaled to make them dimensionless,
and the coupling strength is set to J = 1.

The dynamics are governed by the interplay between the
nearest-neighbor interactions and the interaction of each
site with the external parabolic magnetic field. When sites
are far from the field minimum, the local field strength
dominates over the nearest-neighbor interactions, effectively
“switching off” the coupling between sites. For sites near
the minimum where the field is weak, the nearest-neighbor
coupling dominates, and the neighboring sites interact with
each other. These two processes control the propagation of
spin states along the chain.

C. Communicating quantum information

We identify the computational basis for our system with the
quantized states of each spin, such that |0〉 = |↓〉 (spin down
with respect to z) and |1〉 = |↑〉 (spin up). Assume that Alice
prepares the chain in the initial state |�(0)〉, with the first spin
site in the state |1〉, and all other sites in their ground state |0〉.
We can write this state as

|�(t = 0)〉 = |ϕ1〉 ≡ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, (3)

with the first spin site in the state |1〉, and all other sites in their
ground state |0〉. The states |ϕn〉 are defined as

|ϕn〉 ≡
N⊗

m=1

|δmn〉, n = 1, . . . ,N, (4)

where δmn is the Kronecker delta. Alice’s goal is to manipulate
the magnetic field parameters C(t) and d(t) such that at the
final time T the final state obeys

|〈�(T )|ϕN 〉|2 = 1. (5)

The protocol for transferring the state is based on that described
in Ref. [1], which we outline in Fig. 2. The transfer begins
with the state |�(0)〉 and with the potential minimum centered
at x = 0. At first, the interaction between the first two sites

...

...

...

(a)

(b)

(c)

n=Nn=1

FIG. 2. (Color online) The transfer begins with the state |�(0)〉
and with the potential minimum centered at x = 0. (a) The excitation
is localized at the first site. (b) The field minimum moves along the
chain during the evolution. (c) The spin state has been completely
transferred to the final site in the chain.
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dominates over the interaction with the locally weak magnetic
field, and so the sites interact and the spin state migrates
from the first site to the second. As the field minimum moves
along the x axis, nearest-neighbor interactions are effectively
switched on for pairs of spins closest to the minimum, and
switched off for spin pairs that are distant. By correctly moving
the field minimum and adjusting the field strength, the spin
state is able to traverse the chain. The condition in Eq. (5)
means that we do not preserve the phase of the initial state;
to achieve this (as also discussed in Ref. [1]) one can use
dual-rail encoding [35–37], whereby one encodes the qubit
in the entanglement phase of a pair of spin chains. In what
follows, we shall only consider the phase-insensitive transfer
of a single excitation.

Since each site of the chain has two internal spin states,
the size of the Hilbert space H scales exponentially with
the number of sites, so that for N (�1) sites, dim H = 2N .
However, since [H (t),

∑N
n=1 σ z

n ] = 0, the state of the system
only evolves within the subspace U ⊂ H, spanned by the N

basis states |φn〉 [2]. The reduced size of the effective Hilbert
space is particularly beneficial when one wants to numerically
simulate the evolution efficiently. We do this by solving the
associated Schrödinger equation,

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (6)

where Ĥ is the matrix form of the Hamiltonian that acts only
on the subspace U ,

Ĥ (t) ≡ Ĥ0 + Ĥ1(t), (7)

with

Ĥ0 = −2J + J

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0 0
1 0 1 0 0
0 1 0 0 0
...

. . .
...

0 0 0 0 1
0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

and

Ĥ1(t) = diag [f0(t),f1(t), . . . ,fN−1(t)] , (9)

where fn(t) = C(t)[xn − d(t)] (note that we have rescaled the
energy so that spins pointing down do not contribute to the total
energy). The Schrödinger equation is integrated numerically
using the Crank-Nicolson method [38].

This scheme was first considered by Balachandran and
Gong [1], who showed that by choosing d(t) = st and C(t) =
k, where s and k are constant, one is able to adiabatically
transfer the state across the entire chain with relatively good
fidelities. However, the transfer rates here are very slow, with
transfer times typically on the order of 104J for fidelities
greater than 99%.

In many proposed implementations of quantum computers,
it is likely that transport processes will take up a significant
amount of the total operating time. It therefore seems clear
that one should seek to minimize the time required for these
processes. However, according to quantum mechanics there
is some fundamental limit which restricts the speed at which
we can communicate with our spin chain, referred to in the

literature as the quantum speed limit (QSL) [25–29,39]. The
goal is to come as close as possible to this limit, effectively
communicating at the highest possible speed allowable by
quantum mechanics. We shall see in the next section that
optimal control can help us in this endeavor.

III. OPTIMAL DYNAMICS

We can state our problem in the following way: we start
with an initial state, and want to control the system to produce
the desired final state. In our case, the initial state is |ϕ1〉, and
we want to achieve the final state |ϕN 〉 (up to a global phase).
We can control the evolution of the system using the external
magnetic field, in particular, the time-dependent controls d(t)
and C(t). (Although in principle we could also control the
interspin coupling J , this is much more difficult to achieve
experimentally.) Optimal control theory provides us with a set
of tools to search for the optimal way to control the system,
often referred to as the set of optimal controls.

Here, we implement an optimal control algorithm most
commonly known as the Krotov method. In outline, the method
works as follows.

(1) We solve the Schrödinger equation from (6) to find
|�(T )〉, where T is the total evolution time.

(2) We define the co-state |χ (T )〉 = |ϕN 〉〈ϕN |�(T )〉. This
state is propagated backwards to the initial time.

(3) The initial state is then propagated forward again
through time, but at each time step we calculate the matrix
elements,

〈χ (t)|∂H (un(t); t)
∂un(t)

|�(t)〉, (10)

for the two controls u1(t) = d(t) and u2(t) = C(t). The matrix
elements are then used to update the control functions, which
are then used to propagate �(t) to the next time step.

(4) We can then calculate the fidelity of the transport,

F ≡ |〈�(T )|ϕN 〉|2, (11)

which tells us how close we were to achieving our goal.
(Note that we will often refer not to the fidelity, but to the
infidelity I ≡ 1 − F .) If we achieve fidelity F = 1 (up to a
given threshold), we stop the optimization; otherwise we begin
again at step III.

There are several aspects in implementing the algorithm
which are described in more detail in Ref. [22]. Figure 3 shows
the nonadiabatic transfer of a spin excitation across a chain of
N = 101 spins without applying optimal control. One sees
that during propagation, much of the spin excitation has been
left behind. One way to correct this would be to lower the field
strength; this will allow neighboring sites to interact for longer,
so that more of the excitation can be transmitted. However,
this causes the excitation to spread out, which can be seen
in Fig. 4. In comparison with Fig. 3, we see that although
we have not left as much of the excitation behind, we have
spread it over more sites. After applying optimal control (300
iterations of the update procedure), we arrive at the evolution
shown in Fig. 5. Here we see that we no longer leave excitation
behind at the initial spin sites, and although we spread out the
excitation during transport, we successfully recover the highly
localized final state, giving a final fidelity F that differs from
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FIG. 3. (Color online) Excitation probability plotted against x for
a spin chain with N = 101 sites, at times (a) 0, (b) 100, and (c) 200,
in units of J −1. Here, d(t) = 0.5t and C(t) = 1. The final fidelity is
only around 15%.

unity by < 10−4. The pulses required to achieve this result
are shown in Fig. 6. Typical features of these pulses are large
modulations at the boundaries, necessary for “accelerating” (it
will be useful here to imagine an excitation wave) the excitation
at the initial time, and then “decelerating” it near the final time.
Small modulations are required at intermediate times in order
to prevent the excitation from spreading over too many sites.
It is also worth noting that the speed achieved here is at least
two orders of magnitude faster than is possible in the adiabatic
case for comparable fidelities [1].

If we decrease T , we find for all times T shorter than a
particular time T ∗

QSL that even after applying the optimization
algorithm we are still unable to achieve high-fidelity state
transfer. In other words, there is a minimum time required
to perform the transfer [29]. The lower bound on the value
of T ∗

QSL is set by the quantum speed limit; no transfer can
take place faster than the QSL allows. Figure 7 shows the
same transfer of excitation as in Fig. 5, but in this case we
have set the total allowed time T = T ∗

QSL (how we determined
T ∗

QSL is shown later). One sees clearly that the evolution of
the system is that of a wave of excitation, moving with an

Ψ
(t

) |Ψ
(t

)
2

x

FIG. 4. (Color online) Excitation probability plotted against x for
a spin chain with N = 101 sites, at times (a) 0, (b) 100, and (c) 200,
in units of J −1. Here, d(t) = 0.5t and C(t) = 0.1. The final fidelity
here is around 5%.

Ψ
(t

)|Ψ
(t

)
2

x

FIG. 5. (Color online) Excitation probability plotted against x for
a spin chain with N = 101 sites, at times (a) 0, (b) 100, and (c) 200,
in units of J −1. Here, d(t) and C(t) were optimally controlled. The
final fidelity is >99%.

almost constant velocity along the chain. When we choose
time T < T ∗

QSL, we find accordingly that the optimal control
algorithm is unable find an optimal solution, even after many
thousands of iterations. This is a strong indication that we
have gone beyond the quantum speed limit, and there is no
solution by which we can transfer the excitation across the
chain in the given time. The evolution of the system in this
case is shown in Fig. 8. In comparison to Fig. 7, one sees that
the evolution looks much the same. However, if one compares
the excitation profile at T/2 for both evolutions, one sees that
while the evolution at the QSL has the excitation wave centered
at the 51st site (i.e., the halfway point), the evolution for a time
T < T ∗

QSL falls short of the halfway point after T/2. This is
an indication that we are indeed beyond the QSL, since if
we cannot reach the halfway point before half the time has
elapsed, we might well guess that we cannot reach the final
site in the remaining half of the time.

We can see this failure of the optimization algorithm
more clearly in Fig. 9. For times T > T ∗

QSL, the infidelity
converges almost exponentially toward zero. For times

-0.3

 0

 0.3

 0.6

C
(t

)

(a)

-0.3

 0

 0.3

 0.6

 0.9

 0  50  100  150  200

d(
t)

 -
 d

0(
t)

Time t

(b)

FIG. 6. (Color online) The optimal control pulses for (a) C(t) and
(b) d(t) − d0(t), where d0(t) = 0.5t . The main features here are large
perturbations at the initial and final time due to the boundaries, and
slower modulations for the intermediate stage of the transport.
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FIG. 7. (Color online) The probability density of the wave
function along the chain at different times: (a) t = 0, (b) t = T/4,
(c) t = T/2, (d) t = 3T/4, and (e) t = T , where T = T ∗

QSL =
56.50J −1. Both d(t) and C(t) were found after 100,000 iterations
of the optimal control algorithm.

T < T ∗
QSL, the decrease in infidelity saturates after several

hundred iterations.
Another indication that the QSL has been reached can be

found by examining the average “velocity” of the excitation
wave as it moves across the chain. Given a total time T for the
propagation, the average rate at which the excitation should
be transmitted is given by va = (N − 1)/T . Examining the
dynamics, we can see that for much of the propagation time,
the excitation moves along the chain with an (approximately)
constant velocity. We can quantify this velocity as

vd = 4

T 2

∫ 3T
4

T
4

〈x〉 dt, (12)

where 〈x〉 = 〈�(t)|x|�(t)〉 is the expectation value of the
position of the excitation along the chain. In other words, we
take the average position of the excitation in the time interval
[T/4,3T/4] (to avoid effects at the ends of the chain) and
divide by the average time taken to reach that position, T/2.

In the ideal case, we would have va = vd , in which case the
optimal solution would be the transit of the excitation along
the chain at exactly the average rate required to reach the other
end. However, as we cross the threshold set by the QSL, we
should find that vd reaches a maximum, which is the maximum
speed at which the excitation can propagate. This is exactly
what is seen in Fig. 10.

The last issue we want to address is robustness. In essence,
how much information in the control pulses given in Fig. 6
(and indeed in all of the control pulses at the QSL) can be

Ψ
(t

)|Ψ
(t

)
2

x

FIG. 8. (Color online) The probability density of the wave
function along the chain at different times: (a) t = 0, (b) t = T/4,
(c) t = T/2, (d) t = 3T/4, and (e) t = T , where T < T ∗

QSL =
53.30J −1. Both d(t) and C(t) were found after 100,000 iterations
of the optimal control algorithm.

10−5

10−4

10−3

10−2

10−1

101 102 103 104 105

1
−

F

FIG. 9. (Color online) The decrease in infidelity of a transfer
across a chain with 101 sites against the iterations of the control
algorithm. The solid (red) line is the convergence for a transfer time
T = 70.92J −1 > T ∗

QSL, the dashed (green) line for a transfer time
T = T ∗

QSL = 56.50J −1, and the dotted (blue) line for a transfer
time of T < T ∗

QSL = 53.33J −1.

discarded without detriment to the transfer fidelity? Figure 11
shows an example spectrum of a pulse for d(t) for a transfer
along a chain of 101 spins at the QSL, and Fig. 12 shows
the effect on the fidelity after filtering the optimized pulses.
The filter applied is a simple frequency cutoff: the pulse (in
frequency space) is convoluted with a function,

γ (ν; νmax) =
{

ν if |ν| � νmax,

0 otherwise,
(13)

where νmax is the maximum allowed frequency in the pulse.
We see that not all of the frequencies in the control pulses
need be retained; on average, we only need frequencies up to
around 4J in order to maintain a high fidelity. Note that this
is independent of the chain length N . Figure 13 shows a set of
pulses that transport the excitation along a chain of 101 spins
with an infidelity I < 10−4, where the maximum frequency
component is ∼ 4J .

v d
J

va J

FIG. 10. (Color online) The average speed of the excitation wave
vd versus va . The solid (red) line shows results for a chain length of
41 sites, the long-dashed (green) line shows the same for 61 sites, the
short-dashed (dark blue) line for 81 sites, the dotted (pink) line for
101 sites, and the dashed-dotted (light blue) line for 121 sites. The
black dotted line is the line va = vd .
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102

ν J

FIG. 11. (Color online) The solid (red) line shows the Fourier
transform of the pulse d(t) − d0(t) for a chain length of 101 spins
with a total time T = 56.50J −1.
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1
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ν J

FIG. 12. (Color online) The infidelity of the transfer related to
the maximum frequency component of the controls retained after
filtering. For key, see Fig. 10.

C
(t

)

(a)

(b)

d
(t

)
−

d
0
(t

)

t

FIG. 13. (Color online) The optimal control pulses for (a) C(t)
and (b) d(t) − d0(t), where d0(t) = 1.77t . The maximum frequency
component is ∼ 4J .

IV. THEORETICAL LIMITS OF NONRELATIVISTIC
QUANTUM THEORY

Does the limit T ∗
QSL discussed in the last chapter have

a physical origin, or is it simply a numerical constraint,
stemming from the construction of the optimization routine
itself? If, in fact, we are able to reach the physical limit
by application of optimal control routines, then it would
appear that optimal control cannot only be used to improve
the operation of experimental implementations, but indeed
to probe a system’s dynamics and physical limits. This
connection was already investigated in Ref. [29]; here, we
elucidate further the methods that were applied and draw more
specific conclusions.

The physical limits on quantum systems (and hence any
physical system) have been investigated theoretically in quan-
tum systems for several years; such considerations led Lloyd
in [28] to calculate the maximum rate at which any machine
can process information [28]. In particular, the notion of a
“quantum speed limit” has been reported by several authors.
We briefly recount this theory and its particular application to
our problem.

A. The quantum speed limit

What is the absolute maximum speed at which we can
transfer information along our chain? This amounts to finding
the minimum time it takes for the given initial state |�(0)〉 to
evolve to the goal state |ϕN 〉. A possible route for finding this
minimum time was explored by Carlini et al. [30], where it
was shown that one may derive the time-optimal Hamiltonian
for a given state evolution by minimizing the quantum action
S of the system, by which the problem may be interpreted as a
quantum analog of the classical brachistochrone. In principle,
the same procedure could be performed in our case, but the
complexity of the calculation is prohibitive for a many-body
system like ours. Hence, we ask a more general question, as in
Giovannetti et al. [26]: how fast can a quantum system under
a time-independent Hamiltonian evolve in time?

The notions of energy and time are not inseparable, an idea
that presents itself in the enigmatic time-energy uncertainty
relation [40]. Hence, the minimum time in which we can
perform some given evolution must be connected to the related
energy scales. This minimum time is referred to as the quantum
speed limit. For the case where the evolution is from an
initial state to an orthogonal state for a time-independent
Hamiltonian, this relation can be written explicitly as [26]

τQSL ≡ max

(
πh̄

2E
,

πh̄

2�E

)
, (14)

with

�E ≡
√

〈ψ(0)|[Ĥ − E]2|ψ(0)〉, (15)

E ≡ 〈ψ(0)|Ĥ |ψ(0)〉. (16)

As pointed out, this is only valid when the time evolution is
governed by a time-independent Hamiltonian: E and �E are
a measure of the energy resources available in the system only
at the initial time, which for time-independent Hamiltonians
defines a fixed energy scale. In our case, the methodology must
be slightly modified, by considering instead the mean energy
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spread of our system as it evolves under our time-dependent
Hamiltonian, which we find by averaging the instantaneous
energy spread of the system over the time interval [0,T ].
By integrating over time, we effectively apply the bound
to infinitesimal time steps dt where the Hamiltonian is
approximately constant. We modify the definition in Eq. (14)
to read [29]

τQSL ≡ max

{
πh̄

2J
,

πh̄

2�E2

}
, (17)

where

�E = 1

T

∫ T

0
�E(t) dt, (18)

with

�E(t) ≡
√

〈�(t)|[Ĥ (t) − E(t)]2|�(t)〉, (19)

E(t) ≡ 〈�(t)|Ĥ (t)|�(t)〉. (20)

As was already pointed out, this speed limit defines the time
it takes to rotate from the initial state to an orthogonal state.
Since the initial and final sites are not directly coupled, we
cannot immediately rotate from the initial state to our goal
state. Due to this condition, we postulate that the speed limit
must be interpreted as an effective time-per-site; the total time
it takes to traverse the chain is this time-per-site multiplied by
the number of sites (minus one) in the chain, or equivalently,
the number of edges we have between the initial state vertex
and the final state vertex when one views the spin chain as a
connected graph.

Equation (17) effectively states that the minimum time it
takes to rotate from the current system state to an orthogonal
state is bounded from below by πh̄/(2J ) [we shall see later
that for the evolutions we consider, the second term in Eq. (17)
is always less than this term, so that we can neglect it]. By
considering the speed limit of a simple two-spin system with a
coupling strength J , we can associate this bound with the time
it takes to swap an excitation between only two sites, given
that for the initial state the excitation is completely localized
on one of the two sites. Using the reasoning above, we see
that the quantum speed limit theory predicts that the minimum
time to traverse the chain is given simply by the time it takes
to perform a swap between two neighboring sites (which we
shall henceforth refer to as “orthogonal swaps”) multiplied
by the number of sites in the chain (minus one). However,
in our particular system, at some intermediate time it may
be (as we have already seen from the results in Sec. III) that
the excitation does not perform repeated swap operations, but
rather moves along the chain as a dispersed “wave.” If one
now imagines the picture of the excitation wave moving from
site to site, we note that two excitation waves centered at
neighboring sites are not orthogonal, unlike when we have
the excitation fully localized on a single site. This means
that we can expect the actual propagation time to be shorter
than the one calculated from simply doing repeated orthogonal
swap operations. The optimized system performs a controlled
excitation-wave propagation, which we can view as a cascade
of effective swap operations, each shorter in duration than that

given by the orthogonal swap. We are then motivated to write
the total time to traverse the chain as

TQSL = γ (N − 1)τQSL, (21)

where γ is a dimensionless constant that quantifies the
effective swap duration in terms of the orthogonal swap. As a
side remark, we note that one can also imagine mapping the
full chain with the effective swaps onto a shorter chain with
orthogonal swaps, which is analogous to a reduction of the
transmission length of the chain. Similar ideas have already
been explored for long-range interactions in Ref. [41].

B. Comparing limits

As already alluded to in Sec. III there comes a point
where the optimal control algorithm is no longer able to reach
an optimal solution. We aim to show that this limit on the
evolution time (which we denoted by T ∗

QSL) corresponds to
the quantum speed limit for the system TQSL discussed in
Sec. IV A.

The procedure for determining T ∗
QSL is as follows. We select

a chain length N , and set some initial evolution time T which
we assume to be longer than the corresponding T ∗

QSL. We
perform optimal control on the system for a fixed number of
iterations R. We then repeat this for shorter and shorter times
T . The results of the simulations are shown in Fig. 14. Note that
we plot the effective time-per-site (T − b)/(N − 1) in order to
make comparisons between chains of differing lengths easier.
One sees clearly that for longer times, we are able to complete
the state transfers with high fidelities. As we reduce the time,
we begin to see that the final value of the infidelity does not
converge to zero, even after many thousands of iterations of the
control algorithm. Somewhere in between these two extremes
lies the limit of the optimal control algorithm. We quantify
this by setting a threshold ε for the infidelity; the time T ∗

QSL for
each N is defined as the smallest value of the time T for which
the infidelity I < ε after R iterations. This threshold obeys a
linear relation:

T ∗
QSL ≈ a(N − 1) + b,

40 60 80 100 120
N

0.48

0.5

0.52

0.54

(T
−

b)
/(

N
−

1)

1

10−4

10−3

10−2

10−1

1

FIG. 14. (Color online) The infidelity reached after R = 100,000
iterations for different chain lengths N and effective time-per-site
(T − b)/(N − 1), where b = 3.65.
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T

N

FIG. 15. (Color online) A comparison of the quantum-speed-limit
time TQSL with the optimal control limit T ∗

QSL. The solid (red) line is
TQSL with γ = 1, which is the repeated orthogonal swaps. The (blue)
crosses are T ∗

QSL for different N in the range 21–131 with ε = 5 · 10−5.
The dashed (green) line is TQSL + b with γ = 0.34.

with a = 0.34 and b = 3.65. Note that this is a posteriori the
same b used in the effective time-per-site (T − b)/(N − 1) for
Fig. 14. The introduction of the constant b describes additional
effects due to the boundaries of the chain, where the excitation
wave is generated at the beginning of the evolution, and then
collapsed into a localized excitation at the end. Additionally, b
is not dependent on N (unless the chain length is of the order
of the width of the spin wave).

We now compare the results from the quantum speed limit
TQSL with T ∗

QSL, which is shown in Fig. 15. In order to evaluate
Eq. (17) for each value of N , we must numerically calculate
the second term in the bracket, since it depends upon the time-
evolved state |ψ(t)〉. For all points at our defined threshold,
this comes out to be less than the first term in the bracket in
Eq. (17), so that the speed limit is given simply by the effective
swap time. One finds that optimal control outperforms what
can be achieved through applying repeated swap operations
between adjacent spins. Furthermore, by ignoring boundary
effects for T ∗

QSL, we find that our model for the quantum speed
limit fits the data with a value of γ = 0.34. This means that the
speed limit achieved with the optimal control can be described
(ignoring the ends of the chain) as a cascade of effective swaps.

V. CONCLUSION

We have shown that we can successfully apply optimal
control to the system given in Eq. (2) to produce fast

transfers of excitations along spin chains; two orders of
magnitude faster, in fact, than was reported in Ref. [1] for
comparable fidelities. This has application in the fast transport
of quantum states over short distances. Furthermore, we have
found a fundamental limit for optimal control beyond which
optimization is not possible, and identified it as a speed
limit on the dynamics of the system, which is manifested
by the dynamics as the propagation of an excitation wave
with constant velocity. We compare this with the standard
formulation of the quantum speed limit, and show that for
our many-body problem, the quantum speed limit implies that
the optimal strategy for transport is characterized by effective
swaps along the chain. We confirm this through a comparison
with the numerical results.

It is interesting to note that aside from the theory on the
quantum speed limit, there is a large body of work concerned
with a similar bound specifically for spin systems, namely
the Lieb-Robinson bound [42–44]. It would be interesting to
investigate the connection between this bound and the QSL
(which will be the subject of future research), although it is
likely difficult to quantify this explicitly.

We have shown that not only is optimal control a useful tool
for the optimization of tasks relevant for quantum information
processing (specifically transmission of quantum information
along a spin chain), but also as a means to probe the limits of
many-body quantum systems where the theoretical methods
become unwieldy. We expect that given the generality of the
method, it should be able to probe fundamental limits of many
quantum systems that can be efficiently simulated. Indeed, we
used the same technique to prove a bound on the duration of
a unitary SWAP operation on a spin chain, showing that it was
achievable in a time that scaled only polynomially with the
number of sites [8] (although it was not shown that this was a
fundamental limit). We will continue with such investigations
in future work.
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