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We present an upper bound of the entanglement evolution for two-mode Gaussian pure states under a one-sided
Gaussian map. Based on this, the optimization of entanglement evolution is studied. Even if complete information
about the one-sided Gaussian noisy channel does not exist, one can still maximize the entanglement distribution
by testing the channel with only two specific states.
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I. INTRODUCTION

The study of the properties of quantum entanglement has
drawn much interest for a long time [1–4]. Although quan-
tum information processing (QIP) was initially studied with
discrete quantum states, it was then extended to continuous-
variable quantum states [5]. So far, many concepts and results
with two-level quantum systems have been extended to the
continuous-variable case with parallel results, such as quantum
teleportation [6], the inseparability criterion [7], the degree of
entanglement [8,9], entanglement purification [10–12], entan-
glement sudden death [13], the characterization of Gaussian
maps [14], and so on. However, this does not mean all results
with two-level quantum systems can have parallel results for
Gaussian states.

Entanglement distribution is the first step toward many
novel tasks in quantum communication and QIP [1]. In prac-
tice, there is no perfect channel for entanglement distribution.
Naturally, how to maximize the entanglement after distribution
is an important question in practical QIP. If we distribute the
quantum entanglement by sending one part of the entangled
state to a remote place through a noisy channel, we can use
the model of a one-sided noisy channel, or one-sided map.

Given the factorization law presented by Konrad et al. [15],
such a maximization problem for entanglement distribution
over a one-sided map does not exist for the 2 × 2 system be-
cause any one-sided map will produce the same entanglement
on the output states provided that the entanglement of the
input pure states are the same. The result was experimentally
tested [16] and has also recently been extended [17]. However,
such a factorization does not hold for the continuous-variable
state, as shown below. In this work, we consider the following
problem. Initially we have a bipartite Gaussian pure state.
Given a one-sided Gaussian map (or a one-sided Gaussian
noisy channel), we must find how to maximize the entan-
glement of the output state by taking a Gaussian unitary
transformation on the input mode before it is sent to the noisy
channel. We find that by testing the channel with only two
different states, if a certain result is verified, then we can find
the correct Gaussian unitary transformation which optimizes
the entanglement evolution for any input Gaussian pure state.
That is to say, we can maximize the output entanglement even
though we do not have the full information of the one-sided
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map. In what follows, we first show by specific example that
the factorization law for the 2 × 2 system presented by Konrad
et al. [15] does not hold for Gaussian states. We then present an
upper bound of the entanglement evolution for initial Gaussian
pure states. Based on this, we study how to optimize the
entanglement evolution over a one-sided Gaussian map by
taking a local Gaussian unitary transformation to the mode
before it is sent to the noisy channel.

II. OUTPUT ENTANGLEMENT OF ONE-SIDED GAUSSIAN
MAP AND SINGLE-MODE SQUEEZING

Most generally, a two-mode Gaussian pure state is

|g(U,V,q)〉 = U ⊗ V |χ (q)〉 (1)

and |χ (q)〉 =
√

1 − q2eqa
†
1a

†
2 |00〉 (−1 � q � 1) is a two-mode

squeezed state (TMSS). We define map $ as a Gaussian
map which acts on one mode of the state only. A Gaussian
map changes a Gaussian state to a Gaussian state only. In
whatever reasonable entanglement measure, the entanglement
of a Gaussian pure state in the form of Eq. (1) is uniquely
determined by q. Therefore, we define the characteristic
value of entanglement of the Gaussian pure state ρ(q) =
|g(U,V,q)〉〈g(U,V,q)| as

E[ρ(q)] = |q|2. (2)

On the other hand, any bipartite Gaussian density operator ρ

has a characteristic function of the form

C(α1,α2) = tr[ρD̂1(α1)D̂2(α2)] = e− 1
2 ᾱ�ᾱT

, (3)

where D̂k(αk) = eαka
†
k−α∗

k ak , � is the covariance matrix of ρ,
and ᾱ = (x1,y1,x2,y2) with αk = 1√

2
(xk + iyk). Therefore, a

Gaussian state is fully characterized by its covariance matrix
(CM) [5,9]. Suppose the CM of state U ⊗ V |χ (q)〉 is

� =
(

A C

CT B

)
; (4)

|q|2 is uniquely determined by |A| (the determinant of the
matrix A). So, to compare the entanglement of two Gaussian
pure states, we only need to compare the |A| values of their
covariance matrices.
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We start with the projection operator T̂k(qα), which acts on
mode k only:

T̂k(qα) =
∞∑

n=0

qn
α |n〉〈n| = q

a
†
kak

α . (5)

This operator has an important mathematical property,

T̂k(qα)(a†
k,ak)T̂ −1

k (qα) = (qαa
†
k,ak/qα), (6)

which is used later in this paper. For simplicity, we sometimes
omit the subscripts of states and/or operators provided that the
omission does not affect the clarity.

Define the one-mode squeezed operator S(r) = er(a†2−a2),
where r is a real number and bipartite state |ψr (q0)〉 = I ⊗
S(r)|χ (q0)〉. We have the following theorem.

Theorem 1. Consider the one-sided map I ⊗ T̂ (q1) acting
on the initial state |ψr (q0)〉. The entanglement for the outcome
state I ⊗ T̂ (q1)|ψr (q0)〉 is a descending function of |r|.
Mathematically, if |r1| > |r2| then

E[I ⊗ T̂ (q1)|ψr1 (q0)〉] < E[I ⊗ T̂ (q1)|ψr2 (q0)〉]. (7)

Proof. Using the Baker-Campbell-Hausdorff (BCH)
formula, up to a normalization factor we have

|ψr (q0)〉 = e
− 1

2 a
†
1

2
q2

0 tanh(2r)+ 1
2 a

†
2

2
tanh(2r)+ q0a

†
1a

†
2

cosh(2r) |00〉. (8)

A detailed derivation of this identity is given in the Appendix.
Based on Eq. (5), the one-sided map I ⊗ T̂ (q1) changes state
|ψr (q0)〉 into

|ψ ′〉 = ef1a
†
1

2+f2a
†
2

2+f3a
†
1a

†
2 |00〉, (9)

where f1 = − 1
2q2

0 tanh(2r), f2 = 1
2q2

1 tanh(2r), and f3 =
q0q1

cosh(2r) . Here we have omitted the normalization factor.
Since we only need the covariance matrix of state |ψ ′〉, the
normalization can be disregarded because it does not change
the covariance matrix. Suppose the characteristic function of
state ρ ′ = |ψ ′〉〈ψ ′| has the form

C(α1,α2) = tr[ρ ′D̂1(α1)D̂2(α2)] = e− 1
2 ᾱ�

′
ᾱT

, (10)

where �′ is the CM of |ψ ′〉 and D̂k(αk) = eαka
†
k−α∗

k ak ,
ᾱ = (x1,y1,x2,y2) with αk = 1√

2
(xk + iyk), as defined

earlier. Writing �′ here in the form of Eq. (4),
we find A = diag[b1,b2], C = diag[c1,c2], and
B = diag[d1,d2] with b1 = − 1

2 + 1+2f2

1+2f1+2f2+4f1f2−f 2
3

, b2 =
− 1

2 + 1−2f2

1−2f1−2f2+4f1f2−f 2
3

, d1 = − 1
2 + 1+2f1

1+2f1+2f2+4f1f2−f 2
3

,

d2 = − 1
2 + 1−2f1

1−2f1−2f2+4f1f2−f 2
3

, c1 = −f3

1+2f1+2f2+4f1f2−f 2
3

, and

c2 = f3

1−2f1−2f2+4f1f2−f 2
3

. The entanglement in whatever

measure of state |ψ ′〉 is a rising functional of |A| and

|A| = 1

4
+ 2q2

0 q2
1

1−4q2
0 q2

1 +q4
1 +q4

0 (1+q4
1 )+(1−q4

0 )(1−q4
1 ) cosh (4r)

. (11)

This is obviously a descending functional of |r|. �
This theorem actually shows that there is not a factorization

law similar to that in 2 × 2 states for the continuous-variable
states in any good entanglement measure.

III. UPPER BOUND OF ENTANGLEMENT EVOLUTION

Since U ⊗ I and I ⊗ $ commute, the unitary operator
U plays no role in the entanglement evolution under the
one-sided map I ⊗ $, and hence we only need to consider
the initial state |g(I,V ,q)〉 = I ⊗ V |χ (q)〉 = |ϕ(q)〉. We also
define ρG(qα) = I ⊗ $(|ϕ(qα)〉〈ϕ(qα)|).

Using Eq. (6), one easily finds |ϕ(q = qaqb)〉 = T̂ (qa) ⊗
I |ϕ(qb)〉. Since the operator T̂ (qa) ⊗ I and the map I ⊗ $
commute, we have

ρG(q = qaqb) = T̂ (qa) ⊗ IρG(qb)T̂ †(qa) ⊗ I. (12)

Using entanglement of formation [9,18], we can calculate the
entanglement of a two-mode Gaussian state through its optimal
decomposition form [9]. Suppose ρG(qb) has the following
optimal decomposition [9]:

ρG(qb) = U1 ⊗ U2ρ
s(q0)U †

1 ⊗ U
†
2 . (13)

Here U1,U2 are two local Gaussian unitaries and ρs is in the
form

ρs(q0) =
∫

d2β1d
2β2P (β1,β2)

× D̂(β1,β2)|χ (q0)〉〈χ (q0)|D̂†(β1,β2), (14)

where P (β1,β2) is positive definite, and D̂(β1,β2) = D̂1(β1) ⊗
D̂2(β2) is a displacement operator defined as D̂k(βk) =
eβka

†
k−β∗

k ak . According to the definition of optimal decompo-
sition [9,18], there are no other U1,U2 or positive definite
functional P (β1,β2) which can decompose ρG(qb) in the form
of Eq. (13) with a smaller |q0|. The entanglement of ρG(qb) is
equal to that of a TMSS |χ (q0)〉; that is, |q0|2. For the Gaussian
state ρG(qb) with its optimal decomposition of Eq. (13), we
define the characteristic value of entanglement of ρG(qb) as
E[ρG(qb)] = |q0|2.

Lemma 1. For any local Gaussian unitary U and operator
T̂ (qa), we can find θ, θ ′, and r satisfying

T̂ (qa)U ⊗ I · D̂(β1,β2)|χ (q0)〉
= R(θ ′) ⊗ R(θ ) · D̂(β ′

1,β
′
2) · T̂ (qa)S(r) ⊗ I |χ (q0)〉, (15)

whereS(r) is a squeezing operator defined earlier,R(θ ) is a ro-
tation operator defined by R(θ )(a†,a)R†(θ ) = (e−iθ a†,eiθ a),
and β ′

1,β
′
2 and β1,β2 are related by a certain linear transforma-

tion.
Proof. Any local Gaussian unitary operator U can

be decomposed into the product form of R(θ ′)S(r)R(θ ).
Also, S(r)R(θ ) ⊗ I · D̂(β1,β2) = D̂(β ′′

1 ,β ′′
2 ) · S(r)R(θ ) ⊗ I .

Defining d̂ = T̂ (qa) ⊗ I · D̂(β ′′
1 ,β ′′

2 ) · T̂ −1(qa) ⊗ I , we have

T̂ (qa)U ⊗ I · D̂(β1,β2)|χ (q0)〉
= T̂ (qa)R(θ ′)S(r)R(θ ) ⊗ I · D̂(β1,β2)|χ (q0)〉
= R(θ ′) ⊗ I · d̂ · T̂ (qa)S(r)R(θ ) ⊗ I |χ (q0)〉
= R(θ ′) ⊗ R(θ ) · D̂(β ′

1,β
′
2) · T̂ (qa)S(r) ⊗ I |χ (q0)〉.

In the second equality above, we used the fact that T̂ (qa) and
R(θ ′) commute. Also, d̂ there is not unitary. However, using
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the BCH formula and the vacuum state property ak|00〉 = 0,
we can always construct a unitary operator D̂(β ′

1,β
′
2) so that

the final equality above holds and β ′
1, β ′

2 are certain linear
functions of β1, β2. This completes the proof of Eq. (15). �

Theorem 2. Using the entanglement formation as the entan-
glement measure, if the entanglement of ρG(qb) is equal to that
of TMSS |χ (q0)〉, the entanglement of ρG(q = qaqb) must not
be larger than that of TMSS |χ (qaq0)〉. Mathematically, we
say that if |q| � |qb| � 1 we have

E[I ⊗ $(|ϕ(q)〉〈ϕ(q)|)]
E[I ⊗ $(|ϕ(qb)〉〈ϕ(qb)|)] � E[|ϕ(q)〉〈ϕ(q)|]

E[|ϕ(qb)〉〈ϕ(qb)|] . (16)

Here |ϕ(q)〉 = I ⊗ V |χ (q)〉 as defined earlier, and V can be
any Gaussian unitary operator.

Proof. Using Eqs. (12) and (13) with Eq. (15), we have

E[ρG(q = qaqb)]

= E[I ⊗ U2 · T̂ (qa)U1 ⊗ IρsU
†
1 T̂ †(qa) ⊗ I · I ⊗ U

†
2 ]

= E

[
R(θ ′

1) ⊗ U2R(θ1)

( ∫
d2β1d

2β2P (β1,β2)

× D̂(β ′
1,β

′
2) · T̂ (qa)S(r1) ⊗ I |χ (q0)〉〈χ (q0)|S†(r1)

T̂ †(qa) ⊗ I · D̂†(β ′
1,β

′
2)

)
R†(θ ′

1) ⊗ R†(θ1)U †
2

]

� E

( ∫
d2β1d

2β2P (β1,β2)D̂(β ′
1,β

′
2) · T̂ (qa) ⊗ I

× |χ (q0)〉〈χ (q0)|T̂ †(qa) ⊗ I · D̂†(β ′
1,β

′
2)

)

� |qaq0|2 = E[|χ (qa)〉〈χ (qa)|]E[ρG(qb)]. (17)

In the third step above we used Theorem 1 for the inequality
sign. �

Remark. Obviously, the inequality of formula (16) also
holds if we replace |ϕ(q)〉 by |g(U,V,q)〉 and replace |ϕ(qb)〉
by |g(U ′,V ,qb)〉, and U, U ′ can be arbitrary unitary operators.
Theorem 2 also gives rise to the following theorem.

Theorem 3. Given the one-sided Gaussian map I ⊗ $, if
the equality sign holds in formula (16) for two specific values
q,qb and 0 < |q| < |qb| � 1, then the equality sign there holds
even if q,qb are replaced by any q ′,q ′′, respectively, as long as
|q ′|,|q ′′| ∈ [|q|,1].

Proof. For simplicity, we first consider the case where q is
replaced by any q ′.

(1) Suppose |q ′| ∈ [|q|,|qb|]. The left-hand side of for-
mula (16) is equivalent to w′ · z′, and w′ = E[I⊗$(|ϕ(q)〉〈ϕ(q)|)]

E[I⊗$(|ϕ(q ′)〉〈ϕ(q ′)|))]
and z′ = E[I⊗$(|ϕ(q ′)〉〈ϕ(q ′)|)]

E[I⊗$(|ϕ(qb)〉〈ϕ(qb)|)] . The right-hand side of for-

mula (16) is equivalent to w · z and w = E[|ϕ(q)〉〈ϕ(q)|]
E[|ϕ(q ′)〉〈ϕ(q ′)|] and

z = E[|ϕ(q ′)〉〈ϕ(q ′)|]
E[|ϕ(qb)〉〈ϕ(qb)|] . Theorem 2 itself says that w′ � w and

z′ � z. If the equality sign holds in formula (16), we have
w′ · z′ = w · z; hence we must have w = w′ and z = z′, which
is just Theorem 3 in the case q is replaced by q ′.

(2) Suppose |q ′| > |qb|. As is already known, ρG(q) =
T̂ (qa) ⊗ IρG(qb)T̂ †(qa) ⊗ I . Consider Eq. (15). Unitary U1 in
the optimal decomposition of Eq. (13) must be a rotation op-
erator only (i.e., it contains no squeezing), because, otherwise,
according to Theorem 1, E[ρG(q)] is strictly less than |q0qa|2,
which means the equality in formula (16) does not hold.

We denote q ′ = qb/qc and |qc| < 1. We have

ρG(q ′ = qb/qc)

= T̂ −1(qc) ⊗ IρG(qb)(T̂ −1(qc) ⊗ I )†

= T̂ −1(qc) ⊗ I · R1 ⊗ U2ρ
sR†

1 ⊗ U
†
2 · T̂ −1(qc) ⊗ I

= R1 ⊗ U2

∫
d2β1d

2β2P (β1,β2)D̂(β ′
1,β

′
2)

×|χ (q0/qc)〉〈χ (q0/qc)|D̂†(β ′
1,β

′
2) · R†

1 ⊗ U
†
2 . (18)

Here we used T̂ −1(qc) ⊗ I |χ (qb = q ′qc)〉 = |χ (q ′)〉. We used
the optimal decomposition for ρG(qb) in the second equality,
and Lemma 1 in the last equality above. Equation (18) is
one possible decomposition of the state ρG(q ′) but not nec-
essarily the optimized decomposition. Therefore, E[ρG(q ′ =
qb/qc)] � |q0|2/|qc|2 = |q ′|2/|qb|2 · E[ρG(qb)]. On the other
hand, according to Theorem 2, we further obtain that
E[ρG(qb = q ′qc)] � |qb|2/|q ′|2 · E[ρG(q ′)].

Remark. Since here |q ′| � qb, the sign � should be replaced
by the sign � in formula (16), when q is replaced by q ′. These
two inequalities and result of (1) lead to

E[ρG(q ′)]
E[ρG(qb)]

= E[|χ (q ′)〉〈χ (q ′)|]
E[|χ (qb)〉〈χ (qb)|] (19)

for any q ′ provided that |q| � |q ′| � 1. Replacing the symbol
q ′ above by the symbol q ′′, we have another equation.
Comparing these two equations we conclude Theorem 3. �

Lemma 2. Given any Gaussian unitaries U and V , we have

E[I ⊗ $(U ⊗ V |φ+〉〈φ+|U † ⊗ V †)] = E[I ⊗ $(|φ+〉)].
(20)

Here |φ+〉 is the maximally entangled state defined as the
simultaneous eigenstate of position difference x̂1 − x̂2 and
momentum sum p̂1 + p̂2, with both eigenvalues being zero.
Also, when q = 1, the state |χ (q)〉 = |φ+〉.

Proof. We prove the following fact first. For any local
Gaussian unitary operators U and V , we can always find
another Gaussian unitary operator V so that

U ⊗ V |φ+〉 = V ⊗ I |φ+〉. (21)

Proof. Any local Gaussian unitary operator can be de-
composed into the product form of R(θ ′)S(r)R(θ ). For any
TMSS |χ (q)〉, we have R(θ1) ⊗ R(θ2)|χ (q)〉 = I ⊗ R(θ1 +
θ2)|χ (q)〉. For the maximally TMSS |φ+〉 we have S(r) ⊗
S(r)|φ+〉 = |φ+〉, for which both sides are the simultane-
ous eigenstates of position difference and momentum sum,
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with both eigenvalues being zero. This is confirmed by
directly using Eq. (8): for the maximally TMSS |φ+〉 =
limq→1 |χ (q)〉, we have S(r) ⊗ I |φ+〉 = I ⊗ S†(r)|φ+〉. Sup-
pose V = R(θ ′

B)S(rB)R(θB); then

U ⊗ V |φ+〉 = V ⊗ I |φ+〉, (22)

where V = UR(θB)S†(rB)R(θ ′
B). This completes the proof

of Eq. (21). Then we can easily get Eq. (20) by using this
fact. �

If the equality sign in formula (16) holds, we can apply
Theorem 3 by replacing qb by 1 and we obtain E[ρG(q ′)] =
|q ′|2 · E[I ⊗ $(|φ+〉)]. On the other hand, by using
Theorem 2 and Lemma 2, we have E[ρG(q ′)] � |q ′|2 · E[I ⊗
$(|φ+〉)]. This means

E[ρG(q ′)] = max
{V ′}

{E[I ⊗ $(|g(I,V ′,q ′)〉)]}, (23)

where ρG(q ′) = I ⊗ $(|g(I,V ,q ′)〉〈g(I,V ,q ′)|) as defined ear-
lier, and {V ′} is the set containing all single-mode Gaussian
unitaries. The equality holds for any q ′ provided that the
equality of formula (16) holds for two specific values q,qb

and |q ′| � |q|.
Theorem 3 leads to the following conclusion for the

maximization of the entanglement evolution under a one-sided
Gaussian map.

Conclusion. Suppose that we have a TMSS |χ (q ′)〉. We
want to maximize the entanglement distribution over a one-
sided Gaussian map I ⊗ $ by taking the local Gaussian unitary
operation I ⊗ V ′ before entanglement distribution. Although
we do not have complete information of the map I ⊗ $, it
is still possible for us to find out a specific Gaussian unitary
operation V so that the entanglement distribution is maximized
over all V ′, for an initial state |χ (q ′)〉 with any |q ′| � |q|, as
long as we can find two specific values |qb| > |q| such that the
equality sign in formula (16) holds. Obviously, the conclusion
is also correct for any initial state which is a Gaussian pure
state.

The conclusion actually says that, in verifying that V can
maximize the entanglement distribution for all initial states
{|χ (q ′)〉||q ′| � |q|}, we only need to verify the equality sign
of formula (16) for two specific values.

IV. EXPERIMENTAL PROPOSAL

To experimentally test our major conclusion, we can
consider the following beam splitter (BS) channel: Initially,
beams 1 and 2 are in a TMSS ρ12 = |χ (q ′)〉〈χ (q ′)|, which is
the initial bipartite Gaussian pure state. Writing the CM of
ρ12 in the form of Eq. (4), we find A = B = diag[x,x],C =
diag[y, − y] with x = 1

1−q ′2 + 1
2 ,y =

√
x2 − 1/4. Beam 3 is

in a squeezed thermal state ρ3 = S̃(u3)ρthS̃
†(u3). Here S̃(u) is

a squeezing operator defined by

S̃(u)(x̂,p̂)S̃†(u) = (ux̂,p̂/u)

and ρth is a thermal state whose CM is diag[b3,b3]. Beam 3
together with the BS makes the one-sided Gaussian channel
I ⊗ $B such that

ρ
′
12 = I ⊗ $B(|χ (q ′)〉〈χ (q ′)|)

= Tr3(I ⊗ UB · ρ12 ⊗ ρ3 · I ⊗ U
†
B),
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FIG. 1. (Color online) The entanglement with different squeezing
factors u2. Point M corresponds to the maximum entanglement
with u2 = u3 = 3. Here we set u3 = 3 and q ′ = 2/3, θ = π/6,
and b3 = 1.

where ρ
′
12 is the final output state of modes 1 and 2, and Tr3

is the partial trace operator over beam 3. A beam splitter will
transform x̂2,x̂3 by

UB(x̂2,x̂3)U−1
B −→ (x̂2,x̂3)

(
cos θ sin θ

− sin θ cos θ

)
.

Taking a squeezed transformation S̃(u2) on mode 2 before
sending beams 2 and 3 into the BS, the output state ρ̃

′
12 of

mode 1 and 2 should be

ρ̃
′
12 = I ⊗ $B(I ⊗ S̃(u2)|χ (q ′)〉〈χ (q ′)|I ⊗ S̃†(u2))

= Tr3[I ⊗ UB · I ⊗ S̃(u2) ⊗ I

· ρ12 ⊗ ρ3 · I ⊗ S̃†(u2) ⊗ I · I ⊗ U
†
B].

The CM of ρ̃
′
12 is denoted by �̃

′
12. Writing �̃

′
12 in

the form of Eq. (4), we find A = diag[x,x], C =
diag[y cos θ

√
u2, − y cos θ/

√
u2], and B = diag[u2x cos2

θ + u3b3 sin2 θ,x cos2 θ/u2 + b3 sin2 θ/u3]. Using the results
presented in [9], we find that the equality sign in formula (16)
can hold with V = S̃(u2 = u3) for any two different q and qb.

In an experiment, we can take, for example, q = 0.02
and qb = 0.5, and testing with many different V we should
find that the equality sign in formula (16) can hold with
V = S̃(u2 = u3). Our major conclusion is verified if we can
find that the same V = S̃(u3) always maximizes the output
entanglement for any input state |χ (q ′)〉 provided that |q ′| �
0.02. Numerical calculation is shown in Fig. 1, from which
we can find that the maximum entanglement is really attained
when V = S̃(u3).

V. CONCLUDING REMARK

In summary, we present an upper bound of the entanglement
evolution of a two-mode Gaussian pure state under a one-sided
Gaussian map. We show that one can maximize the entangle-
ment distribution over an unknown one-sided Gaussian noisy
channel by testing the channel with only two specific states.
An experimental scheme is proposed.
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APPENDIX

Here we give the details of the proof of Eq. (8). The
following lemma is used.

Lemma 3 [19]. If A and B are two noncommuting operators
that satisfy the conditions

[A,[A,B]] = [B,[A,B]] = 0,

then eA+B = eAeBe− 1
2 [A,B].

The squeezing operator S(r) = er(a†2−a2) can be normally
ordered as [20]

S(r) = 1√
cosh(2r)

e
1
2 a†2

tanh(2r)e−a†a{ln[cosh(2r)]}e− 1
2 a2 tanh(2r).

We neglect the constant of normalization in all the following
calculations:

I ⊗ S(r)|χ (q0)〉
= er(a†

2

2−a2
2 )eq0a

†
1a

†
2 |00〉

= eq0a
†
1[a†

2 cosh(2r)−a2 sinh(2r)]er(a†2
2 −a2

2 )|00〉

= eq0a
†
1[a†

2 cosh(2r)−a2 sinh(2r)]e
1
2 a

†
2

2
tanh(2r)|00〉

= e
1
2 a

†
2

2
tanh(2r)eq0a

†
1{a†

2 cosh(2r)−[a2+a
†
2 tanh(2r)] sinh(2r)}|00〉

= e
1
2 a

†
2

2
tanh(2r)e

q0a
†
1[

a
†
2

cosh(2r) −a2 sinh(2r)]|00〉

= e
1
2 a

†
2

2
tanh(2r)e

q0a
†
1a

†
2

cosh(2r) e− 1
2 a

†
1

2
q2

0 tanh(2r)|00〉

= e
− 1

2 a
†
1

2
q2

0 tanh(2r)+ 1
2 a

†
2

2
tanh(2r)+ q0a

†
1a

†
2

cosh(2r) |00〉.
In the second-to-last equality we have used Lemma 3. This
completes the proof of Eq. (8).
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