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We investigate the conditions under which a set S of pure bipartite quantum states on a D × D system can
be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank.
We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results
include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure,
and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G| = N , the
number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number
of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving
necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid
for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases,
we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each
other by local unitary “shift” operations. These shifts are determined by the group structure, so need not be
simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D = 3 we show
that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we
find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions
for separable operations are also necessary conditions for local operations and classical communication (LOCC),
since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions
are demonstrated for LOCC, directly.
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I. INTRODUCTION

As summarized by the “no-cloning” theorem of [1], any
set of quantum states can be deterministically cloned if and
only if the states in the set are mutually orthogonal. When
the set consists of bipartite entangled states, and the cloning
is restricted to local operations and classical communication
(LOCC), the problem becomes much more difficult, and
further restrictions have to be imposed. The mere orthogonality
of the states no longer implies that they can be (locally) cloned.

The local cloning protocol of a set of bipartite entangled
states S = {|ψi〉AB} is schematically represented as

|ψi〉AB ⊗ |φ〉ab −→ |ψi〉AB ⊗ |ψi〉ab, ∀i, (1)

where the letters A,a label Alice’s systems and B,b label Bob’s
systems. Both parties are assumed to have access to ancillary
qudits and may share a classical communication channel, so
that in principle any LOCC operation can be performed. The
state |φ〉 is shared in advance between the parties, and it plays
the role of a “blank state” on which the copy of |ψi〉 is to be
imprinted.

The local cloning problem has recently received a great
deal of attention [2–6], and was partially extended to tripartite
systems in [7]. The question addressed in all previous work
was which sets of states S can be locally cloned (by LOCC)
using a given blank state |φ〉.

Note that if one can use LOCC to transform |φ〉 into three
maximally entangled states of sufficient Schmidt rank, then
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the local cloning of any set of bipartite orthogonal entangled
states becomes trivially possible, using teleportation: Alice
uses one maximally entangled state to teleport her part of
|ψi〉 to Bob, who then distinguishes it (i.e., learns i), and next
communicates the result back to Alice. Now both Alice and
Bob know which state was fed into the local cloning machine.
Finally, they transform deterministically the two remaining
maximally entangled states into |ψi〉 ⊗ |ψi〉 by LOCC, which
is always possible, according to [8].

Another possible scenario that uses only two entangled
blank states involves using LOCC to deterministically distin-
guish which state |ψi〉 was fed into the local cloning machine,
which can always be done if there are only two states in the
set S [9]. Then, knowing the state, one can deterministically
transform the two blank states into |ψi〉 ⊗ |ψi〉 (by LOCC). In
this case, one needs at least two maximally entangled resource
states, one for each of the two copies that must now be created,
since in general the entanglement of the original state will have
been destroyed in the process of distinguishing the states [10].

One might hope, however, that local cloning can be
performed using even less entanglement. As first shown in [2],
this hope is sometimes correct. Any two (and not more)
two-qubit Bell states can be locally cloned using only one
two-qubit maximally entangled state.

This result was further extended in [3] and [4], which
considered local cloning of maximally entangled states on
higher-dimensional D × D systems using a maximally en-
tangled resource of Schmidt rank D. First, necessary and
sufficient conditions for the local cloning of two maximally
entangled states were provided in [3], which also proved that
for D = 2 (qubits) or D = 3 (qutrits) any pair of maximally
entangled states can be locally cloned with a maximally
entangled blank state. Whenever D is not prime the authors
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showed that there always exist pairs of maximally entangled
states that cannot be locally cloned with a maximally entangled
blank state. A generalization to more than two states but prime
D was given in [4], which showed that a set of D maximally
entangled states can be locally cloned using a maximally
entangled resource if and only if the states in the set are locally
(cyclically) shifted,

|ψi〉 = 1√
D

D−1∑
r=0

|r〉A|r ⊕ i〉B, (2)

where the ⊕ symbol denotes addition modulo D.
Kay and Ericsson [5] extended the above results to the

LOCC cloning of full Schmidt rank partially entangled states
using a maximally entangled blank state. They presented an
explicit protocol for the local cloning of a set of D × D

cyclically shifted partially entangled states,

|ψi〉 =
D−1∑
r=0

√
λr |r〉A|r ⊕ i〉B, (3)

and asserted that (3) is also a necessary condition for such
cloning; the states to be cloned must be of this form.
Unfortunately, the proof is not correct,1 and therefore finding
necessary conditions when the states are partially entangled
remains an open problem.

In this paper, we consider a setS = {|ψi〉AB} of full Schmidt
rank qudit (of arbitrary dimension) partially entangled states.
Actually, we will begin by considering sets S in which only
one state is required to be full Schmidt rank, and then we will
see that in fact, all states in S must be full rank. Previous work
assumed the blank state |φ〉 to be maximally entangled, but in
the present article we do not impose any a priori assumptions
on |φ〉 and find that its Schmidt rank must be at least that
of the states in S. Furthermore, we do not restrict to LOCC
cloning, but allow for the more general class of separable
operations—all the necessary conditions we find for separable

1The matter was discussed with Kay [23]. The fact that the
argument is not correct can be observed after a careful reading
of the paragraph following Eq. (3) in [5]. The authors claim that
the local cloning of partially entangled states is equivalent to the
cloning of maximally entangled states, but this statement is incorrect,
because the authors implicitly modified the Kraus operators
that defined the local cloning i.e., changed Ak to A′

k = AkM0,
where M0, (defined in Eq. (3) of [5]), is the operator that
transforms the maximally entangled state (1/

√
D)

∑D−1
r=0 |r〉A|r〉B

to the partially entangled state |ψ0〉 = ∑D−1
r=0

√
λr |r〉A|r〉B .

The new Kraus operators do not satisfy the closure condition
anymore (necessary for a deterministic transformation), since∑

k A′
k
†
A′

k ⊗ Bk
†Bk = ∑

k M
†
0(Ak

†Ak)M0 ⊗ Bk
†Bk = M

†
0M0 ⊗ I �=

I ⊗ I , because M0 is not a unitary operator (unless |ψ0〉 is maximally
entangled, case excluded).

Another way of seeing that the argument is not correct is
to observe that, if the Bk operator performs the cloning of a
maximally entangled state using a maximally entangled blank, as it
is claimed, then Bk must be proportional to a unitary operator (see
Theorem 1 (iii) of [16] and Sec. 3.1 of [3]). It then follows that the
closure condition for the Kraus operators is not satisfied, with Ak as
defined in Eq. (3) of [5].

operations will also be necessary for LOCC since the latter is
a (proper) subset of the former [11].

The remainder of the paper is organized as follows. In
the next section we give a preliminary discussion and define
some terms that will be used. Then, in Sec. III, we turn
to the characterization of clonable sets of states, where we
show that |φ〉 and all states in S must be full Schmidt rank,
provide additional necessary conditions on S, and then prove
the group structure of these sets. From this group structure,
it is then shown that the number of states in S must divide
D exactly, and this is followed by a proof of a necessary
(“group-shifted”) condition on the local cloning of a set of
D × D maximally entangled states. Then, in Sec. IV, we
further consider group-shifted sets, now allowed to be not
maximally entangled, showing that a maximally entangled
blank state is sufficient by giving an LOCC protocol that clones
these states. This demonstrates that the necessary condition
found in the previous section for cloning maximally entangled
states is also sufficient for LOCC cloning. In Sec. V, we
provide necessary conditions on the minimum entanglement
in the blank. In addition, we obtain necessary and sufficient
conditions for local cloning of any set when D = 2 (entangled
qubits), and for any group-shifted set for D = 3 (entangled
qutrits); in both these cases we find that the blank state must be
maximally entangled, even when the states to be cloned are not.
For higher dimensions with these group-shifted sets, we also
show that the blank must have strictly more entanglement than
the states to be cloned. Finally, Sec. VI provides concluding
remarks as well as some open questions. Longer proofs are
presented in the appendixes.

II. PRELIMINARY REMARKS AND DEFINITIONS

A separable operation � on a bipartite quantum system
HA ⊗ HB is a transformation that can be written as

ρ ′ = �(ρ) =
M−1∑
m=0

(Am ⊗ Bm)ρ(Am ⊗ Bm)†, (4)

where ρ is an initial density operator on the Hilbert space
HA ⊗ HB . The Kraus operators are arbitrary product operators
satisfying the closure condition,

M−1∑
m=0

A†
mAm ⊗ B†

mBm = IA ⊗ IB, (5)

with IA and IB the identity operators. The extension to
multipartite systems is obvious, but here we will only consider
the bipartite case. To avoid technical issues the sums in (4) and
(5), as well as the dimensions of HA and HB , are assumed to
be finite.

The local cloning protocol is described as follows. Suppose
Alice and Bob are two spatially separated parties, each holding
a pair of quantum systems of dimension D, with Alice’s
systems described by a Hilbert space HA ⊗ Ha and Bob’s
by HB ⊗ Hb. Let S = {|ψi〉AB}N−1

i=0 be a set of orthogonal
bipartite entangled states on HA ⊗ HB . Let |φ〉ab ∈ Ha ⊗ Hb

be another bipartite entangled state that plays the role of
a resource, which we call the blank state, and is shared in
advance between Alice and Bob. Their goal is to implement
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deterministically (i.e., with probability one) the transforma-
tion,

|ψi〉AB ⊗ |φ〉ab −→ |ψi〉AB ⊗ |ψi〉ab, ∀i = 0 · · · N − 1,

(6)

by a bipartite separable operation. Alice and Bob know
exactly the states that belong to the set S and also know
the blank state |φ〉ab, but they do not know which state will
be fed to the local cloning machine described by (6)—the
machine has to work equally well for all states in S! Note
that local cloning is defined up to local unitaries (i.e., a set
S = {|ψi〉AB}N−1

i=0 can be locally cloned if and only if the set
S ′ = {UA ⊗ V B |ψi〉AB}N−1

i=0 can be locally cloned), where UA

and V B are local unitaries. This is true because local unitaries
can always be implemented deterministically at the beginning
or at the end of the cloning operation.

The Schmidt coefficients of |ψi〉AB are labeled by λ(i)
r

and by convention are sorted in decreasing order, with λ
(i)
0 �

λ
(i)
1 � · · · � λ

(i)
D−1 and

∑D−1
r=0 λ(i)

r = 1, for all i = 0 . . . N − 1,
and the Schmidt coefficients of |φ〉ab are labeled by γr , with
γ0 � γ1 · · · � γD−1 and

∑D−1
r=0 γr = 1. To remind the reader

that the components of a vector 
λ are arranged in decreasing
order we use the notation 
λ↓.

The Schmidt rank of a bipartite state is the number of its
nonzero Schmidt coefficients. We say that a state of a D × D

dimensional system has full Schmidt rank if its Schmidt rank
is equal to D.

We use the concept of majorization, which is a partial
ordering on D-dimensional real vectors. More precisely,
if 
x = (x0, . . . ,xD−1) and 
y = (y0, . . . ,yD−1) are two real
D-dimensional vectors, we say that 
x is majorized by 
y and
write 
x ≺ 
y if and only if

∑k
j=0 x

↓
j �

∑k
j=0 y

↓
j holds for all

k = 0, . . . ,D − 1, with equality when k = D − 1.
For two D × D bipartite pure states |χ〉 and |η〉, we use the

shorthand notation |χ〉 ≺ |η〉 to denote the fact that the vector
of Schmidt coefficients of |χ〉 is majorized by the vector of
Schmidt coefficients of |η〉. See [8] or Chapter 12.5 of [12] for
more details about majorization.

The entanglement of a D × D bipartite pure state |χ〉 can be
quantified by various entanglement measures,2 the ones used
extensively in this paper being the entropy of entanglement,

E(|χ〉) = −
D−1∑
r=0

λr logD λr, (7)

and the G-concurrence [13],

CG(|χ〉) = D

(
D−1∏
r=0

λr

)1/D

, (8)

where λr denotes the rth Schmidt coefficient of |χ〉. The
base D in the logarithm in (7) as well as the prefactor D

in (8) appear for normalization purposes, so that the entropy
of entanglement as well as the G-concurrence of a maximally
entangled state are both 1, regardless of the dimension.

2Often called entanglement monotones (i.e., nonincreasing under
LOCC).

III. CHARACTERIZING SETS OF CLONABLE STATES

A. Preliminary analysis

Mathematically, the local cloning problem can be formu-
lated in terms of a separable transformation on a set of pure
input states S = {|ψi〉AB}N−1

i=0 , using a blank state |φ〉ab.
If a set of statesS can be locally cloned using the blank state

|φ〉ab, then there must exist a bipartite separable operation �

for which

�(|ψi〉〈ψi |AB ⊗ |φ〉〈φ|ab) = |ψi〉〈ψi |AB ⊗ |ψi〉〈ψi |AB,
(9)

∀i = 0 · · · N − 1

(note here that an overall phase factor in the definition of the
individual states is of no significance). Since � is separable, it
can be represented by a set of product Kraus operators,

M−1∑
m=0

(Am ⊗ Bm)(|ψi〉〈ψi |AB ⊗ |φ〉〈φ|ab)(Am ⊗ Bm)†

= |ψi〉〈ψi |AB ⊗ |ψi〉〈ψi |AB, ∀i = 0 · · · N − 1, (10)

where operators Am act on HA ⊗ Ha , and Bm on HB ⊗ Hb.
The above equation is equivalent to

Am ⊗ Bm(|ψi〉AB ⊗ |φ〉ab) = √
pmie

iϕmi (|ψi〉AB ⊗ |ψi〉ab),
(11)

∀i = 0 · · · N − 1, ∀m = 0 · · · M − 1,

where eiϕmi is a complex phase that may depend on m and i,
and pmi are probabilities for which

M−1∑
m=0

pmi = 1, ∀i = 0 · · · N − 1. (12)

By map-state duality in the computational basis3 [14–17]
one can rewrite (11) as

Am(ψi ⊗ φ)BT
m = √

pmie
iϕmi ψi ⊗ ψi, ∀i,m, (13)

where ψi and φ are now operators obtained from the
corresponding kets by turning a ket into a bra, and BT

m is
the transpose of Bm.

The superscripts in (13) that label the Hilbert spaces have
been dropped for clarity, since now one can regard everything
as abstract linear operators, or matrices in the computational
basis. Although map-state duality is basis dependent, our
results will not depend on the choice of a specific basis.

We now state our first result characterizing sets of states S
that can be locally cloned.

Theorem 1. Rank of states in S. Let S = {|ψi〉AB}N−1
i=0 be a

set of bipartite orthogonal states on HA ⊗ HB with one state,
say |ψ0〉, having full Schmidt rank. If the local cloning of S is

3As an example of map-state duality, a bipartite state
|χ〉AB ∈ HA ⊗ HB , |χ〉AB = ∑

cij |i〉A|j〉B , is transformed into a
map χ : HB −→ HA, χ = ∑

cij |i〉A〈j |B . Note that the rank of
the operator χ is the Schmidt rank of |χ〉AB , and the squares of
the singular values of χ (or, equivalently, the eigenvalues of χχ †)
are the Schmidt coefficients of |χ〉AB . For more details about
map-state duality, see Sec. II of [16].
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possible by a separable operation using a blank state |φ〉, then
|φ〉 and all states in S must be full rank.

Proof. This result follows directly from (13). Given that
|ψ0〉 has full Schmidt rank, then ψ0 is a full rank operator.
Since the rank of a tensor product is the product of ranks,
ψ0 ⊗ ψ0 is a full rank operator. From (12), there must be an m

such that pm0 > 0, then for this m and for i = 0 the right-hand
side of (13) is a full rank operator, thus the left-hand side is also
full rank. Then, since a product of operators cannot have rank
exceeding that of any of the individual operators in the product,
ψ0 ⊗ φ is full rank, as are Am and BT

m for this m. ψ0 ⊗ φ

being full rank implies that φ is full rank. Now for ∀i �= 0, the
left-hand side of (13) has rank D × rank(ψi) as multiplying by
the full rank operators Am and BT

m do not change the rank. In
addition, D × rank(ψi) is always non-zero, as rank(ψi) � 1,
thus pmi �= 0 for this m, otherwise the right-hand side of (13)
would have zero rank. Then the right-hand side of (13) is of
rank [rank(ψi)]2, so rank(ψi) = D, ∀i, and we are done. �

In this paper, we are considering sets S in which at least one
state is full rank. Therefore, by this theorem, we may instead
restrict to sets in which every state is full rank, and we will do
so throughout the remainder of the paper.

As just argued in the proof of the previous theorem, for m

such that pm0 > 0, all operators in (13) are full rank, hence
invertible. From now on we will only consider those m such
that pm0 > 0. Now take the inverse of (13), replace i by j , and
right multiply (13) by it to obtain

Am

(
ψiψ

−1
j ⊗ I

)
A−1

m =
√

pmi

pmj

ei(ϕmi−ϕmj )
(
ψiψ

−1
j ⊗ ψiψ

−1
j

)
.

(14)

Define

T
(m)
ij =

√
pmi

pmj

ei(ϕmi−ϕmj )ψiψ
−1
j , (15)

for those m for which pm0 > 0. Then (14) can be written more
compactly as

Am

(
T

(m)
ij ⊗ I

)
A−1

m = T
(m)
ij ⊗ T

(m)
ij . (16)

Since for every i, ψi is full rank, we see that det(ψi) �= 0, so
det(T (m)

ij ) is also nonvanishing. Thus, taking the determinant
on both sides of (16) yields

det
(
T

(m)
ij

)D = 1, (17)

where we have used the fact that det(A ⊗ B) =
det(A)M det(B)N , for A and B being N × N and M × M

matrices, respectively. Recalling the definition of T
(m)
ij in (15),

this condition becomes

1 =
(

pmi

pmj

)D/2 ∣∣∣∣ det(ψi)

det(ψj )

∣∣∣∣ , (18)

or

pmj = pmi

∣∣∣∣ det(ψi)

det(ψj )

∣∣∣∣
2/D

. (19)

Summing (19) over m yields

|det(ψi)| = |det(ψj )|, (20)

implying

pmi = pmj , (21)

hence, these determinants and probabilities are independent of
the input state. As a consequence, we may write T

(m)
ij in the

simpler form,

T
(m)
ij = ei(ϕmi−ϕmj )ψiψ

−1
j . (22)

Observation. The fact that pmi = pm, independent of i,
implies that the cloning apparatus provides no information
whatsoever about which state was input to that apparatus, nor
can any such information “leak” to an external environment
that might be used to implement the local cloning separable
operation. This is not without interest, since it rules out
the possibility of local cloning by locally distinguishing
while preserving entanglement [10]. This result turns out
to be valid in the much more general setting of one-to-one
transformation of full Schmidt rank pure-state ensembles
by separable operations, but a discussion of these broader
implications will be presented in a future publication.

We can now provide additional conditions that must hold in
order for S to be a set of states that can be locally cloned
by separable operations. These are stated in the following
theorem, which holds under completely general conditions,
applicable for any N and D.

Theorem 2. Necessary conditions. Let S = {|ψi〉AB} be a
set of full Schmidt rank bipartite orthogonal entangled states
on HA ⊗ HB . If the local cloning of S using a blank state
|φ〉ab ∈ Ha ⊗ Hb is possible by a separable operation, then
the following must hold:

(i) All states in S are equally entangled with respect to the
G-concurrence measure,

CG(|ψi〉AB) = CG(|ψj 〉AB), ∀i,j. (23)

(ii) Any two states in S must either share the same set of
Schmidt coefficients or be incomparable under majorization.

(iii) Spec
(
T

(m)
ij ⊗ I

) = Spec
(
T

(m)
ij ⊗ T

(m)
ij

)
, ∀i,j, (24)

where Spec(·) denotes the spectrum of its argument and T
(m)
ij

is defined as in (22).
Proof. Proof of (i). This follows at once from (20), the

definition (8) of G-concurrence, and the fact that for any state
|χ〉 the product of its Schmidt coefficients is equal to |det(χ )|2.

Proof of (ii). The proof follows from Theorem 1 (ii) and
(iii) of [16] which states that any two bipartite states |χ〉 and
|η〉 that are comparable under majorization (i.e., |χ〉 ≺ |η〉 or
|η〉 ≺ |χ〉) and have equal G-concurrence must share the same
set of Schmidt coefficients.

Proof of (iii). The proof follows at once from (16). �

B. Characterization of clonable sets in terms of finite groups

We next show that to any set S of states that can all be
cloned by the same apparatus, there can be associated a finite
group, and the set is essentially generated by this group.

Theorem 3. Group structure of S. Let S = {|ψi〉AB} be a set
of full Schmidt rank bipartite orthogonal entangled states on
HA ⊗ HB . If the local cloning of S is possible by a separable
operation, then the set S can be extended to a larger set

022313-4



LOCAL CLONING OF ENTANGLED STATES PHYSICAL REVIEW A 82, 022313 (2010)

such that {T (m)
ij } of (22) for fixed j,m constitutes an ordinary

representation of a finite group, G. Since the states in S are
related as eiϕmi |ψi〉 = eiϕmj (T (m)

ij ⊗ IB)|ψj 〉, then the larger set,
with N = |G| members, is generated by the action of the group
G on any individual state in the set.

Proof. The starting point of the proof is to multiply (16) on
the left of (13) (with index k) to obtain

Am

(
T

(m)
ij ψk ⊗ φ

)
BT

m = √
pmeiϕmkT

(m)
ij ψk ⊗ T

(m)
ij ψk. (25)

Using (22) this becomes

Am

(
ψiψ

−1
j ψk ⊗ φ

)
BT

m

= √
pmei(ϕmi−ϕmj +ϕmk )ψiψ

−1
j ψk ⊗ ψiψ

−1
j ψk, (26)

which by map-state duality implies that the state |ψiψ
−1
j ψk〉 is

cloned by the same apparatus as all the states in the original set
S. Therefore, |ψiψ

−1
j ψk〉—which, by considering the version

of (26) that corresponds to states [as in (11)], taking the
squared norm of both sides and summing over m, is seen
to be normalized—must either (i) be orthogonal to the entire
set S, or (ii) be equal to one of those original states up to an
overall phase factor. If this state is orthogonal to S, then S can
be extended by including this state as one of its members. So
assume S has been extended to its maximal size (since we are
working in finite dimensions, this size will be finite), and then
we can conclude that for every i,j,k,

ψiψ
−1
j ψk = ei(ϕml−ϕmi+ϕmj −ϕmk )ψl, (27)

for some l, where the phase in the above expression has been
determined by comparing (26) to (13). Next multiply this latter
expression on the right by e−iϕmnψ−1

n to obtain

T
(m)
ij T

(m)
kn = T

(m)
ln . (28)

Hence, the collection of T
(m)
ij is closed under matrix multipli-

cation, which is associative. In addition, T
(m)
ii = I for every

i and T
(m)
ij T

(m)
ji = I for every i,j , so we see that the identity

element and inverses are present, which concludes the proof
that the set {T (m)

ij } with fixed m form a representation of a
group, G. Now, the number of index pairs (i,j ) is N2, where
N is the number of states in S. However, we will now show
that in fact the order |G| of this group is equal to N and
not N2.

Setting n = j in (28), we have

T
(m)
ij T

(m)
kj = T

(m)
lj , (29)

so the product is closed even when the second index is
constrained to be the same. If we set l = j , we see that
with T

(m)
jj = I , then for each i there exists k such that

T
(m)
kj = (T (m)

ij )−1. Hence, for every fixed j the set Tj = {T (m)
ij }

also is a representation of G. Similarly, one can show the same
holds if instead it is the first index that is held fixed. Note now
that by multiplying (28) on the right by (T (m)

kn )−1, and given
that (28) holds for any i,j,k,n, we see that for every i,j , Tij is
a member of the group formed by the Tkn for fixed n. That is,
the group of the Tkn for fixed n contains all elements Tij .

Could two or more of the T
(m)
ij be equal, for fixed j? We will

now show this is not the case by demonstrating the linearly
independence of the set Tj . Indeed,

0 =
N−1∑
k=0

ckT
(m)
kj =

N−1∑
k=0

cke
i(ϕmk−ϕmj )ψkψ

−1
j

(30)

⇐⇒ 0 =
N−1∑
k=0

cke
iϕmkψk.

However, the ψk are mutually orthogonal, Tr(ψ†
kψj ) = δjk , so

this can only be satisfied if all the ck vanish, implying that Tj is
linearly independent, and hence, that |G| = N : the (maximal)
number of states in S is equal to the order of G.

For the remainder of the paper, we will use labels f,g,h

instead of i,j,k, where the former represent elements of the
group G; the group multiplication is denoted as fg, with e

the identity element. For example, instead of ψ0 we will now
write ψe, and in place of T

(m)
j0 we will simply write T

(m)
f .

We may now utilize the powerful tools of group theory
to study sets S of clonable states, obtaining a very strong
constraint on how many states any given apparatus can
possibly clone. Any group G is characterized by its irreducible
representations, which we denote as �(α)(f ),f ∈ G, and
any representation of G may be decomposed into a direct
sum of irreducible representations with a given irreducible
representation �(α)(f ) appearing some number nα times in
that sum. In general, a given representation may have nα = 0
for some α, but since here our representation is linearly
independent, we know that every irreducible representation
must appear at least once [18].

We can use character theory [19] to calculate nα . Defining
characters as χ (T (m)

f ) = Tr(T (m)
f ) and χ (α)(f ) = Tr[�(α)(f )],

we have that

nα = 1

|G|
∑
f ∈G

χ (α)(f )∗χ
(
T

(m)
f

)
. (31)

However, by taking the trace of (16) and recalling that the trace
of a tensor product is equal to the product of the traces, we see
that χ (T (m)

f ) is equal to either 0 or D. Since every invertible
representation of a finite group is equivalent to a unitary
representation, the eigenvalues of our representation matrices
T

(m)
f all have magnitude one. Hence χ (T (m)

f ) = D if and only

if all eigenvalues of T
(m)
f are equal to 1, in which case we

have that T
(m)
f = I because T

(m)
f is similar to a unitary matrix

and therefore diagonalizable. However, T (m)
f = I is equivalent

to f = e, since T
(m)
f = ei(ϕmf −ϕme)ψf ψ−1

e . Hence, we may con-

clude that χ (T (m)
f ) vanishes except when f = e, in which case

χ (T (m)
e ) = D.

nα = Ddα

|G| , (32)

where dα = χ (α)(e) is the dimension of the αth irreducible
representation. Since for every ordinary representation of a
finite group there is always the trivial irreducible representation
of all ones, �(t)(f ) = 1, ∀f ∈ G, where this irreducible
representation has dimension dt = 1, we have immediately
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that nt = D/|G| is an integer, implying that N = |G| divides
D. Thus,

Theorem 4. Number of clonable states. If an apparatus can
locally clone more than one state on a D × D system, where
at least one (and therefore all; see Theorem 1) of these states
has full Schmidt rank, then that apparatus can in fact clone a
number of states that divides D exactly. In particular, if D is
prime, then any such apparatus can clone exactly D states, no
more and no less.

Now we see from (32) that nα is an integer multiple of dα . If
|G| = D so that nα = dα , we have what is known as the regular
representation of G. Otherwise, our representation is a direct
sum of an integer number nt = D/|G| of copies of the regular
representation. As is well known, there is always a choice of
basis in which the matrices in a unitary regular representation
appear as permutation matrices L(f ), with each row (column)
having only a single nonzero entry equal to one. In this
basis, denoted as {|g〉}g∈G, we have that L(f )|g〉 = |fg〉. The
representation L(f ) is called the left regular representation.
One can as well use the right regular representation R(f ) with
R(f )|g〉 = |gf −1〉, but without loss of generality in the rest of
the paper we restrict only to L(f ), since for finite groups the
right and left regular representations are equivalent [20].

In our case the representation will generally not be unitary,
so when |G| = D we will have that

T
(m)
f = SL(f )S−1, (33)

for some invertible matrix S.
In the remainder of the paper we restrict consideration to

|G| = D (or, equivalently, to nt = 1), and note that all results
obtained in the remainder of the paper are valid (with small
modifications) also when |G| < D. However, the notation
becomes a bit cumbersome, so we defer detailed discussion
about the |G| < D case to Appendix B.

C. Form of the clonable states when all are maximally entangled

It was shown in [3] that when at least one of the states in
S is maximally entangled, then all states in S must also be
maximally entangled. In this section, we consider such sets, in
which case the T

(m)
f must all be unitary. This follows directly

from the fact that when ψe is proportional to the identity then
ψf is proportional to T

(m)
f , and also that |ψf 〉 is maximally

entangled if and only if ψf is proportional to a unitary.
We have seen that when N = D, then T

(m)
f = SL(f )S−1

for some invertible S, and L(f ) is the permutation form of the
regular representation of group G. However, we have

Lemma 5. Unitary equivalence. For any two unitary repre-
sentations Tf and L(f ) of a finite group G, which are equiv-
alent in the sense that Tf = SL(f )S−1 for some invertible
matrix S, then these two representations are also equivalent by
a unitary similarity transformation, Tf = WL(f )W †, with W

unitary.
A proof of this lemma is given in Chapter 3.3 of [21], and

we provide an alternative proof in Appendix A1.
What this lemma tells us is that ψf is proportional to

WL(f )ψeW
† (since by local unitaries, ψe can be made

proportional to the identity, we will assume here that this is
the case, and then ψe commutes with W †), or

|ψf 〉 = cf [WL(f ) ⊗ W ∗]
∑
g∈G

|g〉A|g〉B

= 1√
D

(W ⊗ W ∗)
∑
g∈G

|fg〉A|g〉B, (34)

where W ∗ is the complex conjugate of W , the states {|g〉}g∈G

are some orthonormal basis, 〈g|h〉 = δg,h, and we have omitted
an unimportant overall phase (from cf , of magnitude D−1/2)
in the last line. Note that up to unimportant local unitaries
and relabeling of group elements, the set of states (34) can be
written either as

|ψf 〉 = 1√
D

∑
g∈G

|fg〉A|g〉B, (35)

or

|ψf 〉 = 1√
D

∑
g∈G

|g〉A|fg〉B. (36)

The states above are of a form that we will refer to as “group-
shifted.”

In Sec. IV, we provide an explicit LOCC protocol that
accomplishes cloning of such shifted sets of states. Thus, we
have:

Theorem 6. Maximally entangled states. A set of maximally
entangled states on a D × D system can be cloned by LOCC
if and only if there exists a choice of Schmidt bases shared
by those states such that they have a group-shifted form, as in
(35) or (36).

This extends the result of [4], which applied only for
prime D.

Additionally, we remark that in our protocol presented in
Sec. IV, there is no need for classical communication (the
measurement Mr and the additional corrections Qr appearing
in that protocol can be omitted when the states to be cloned
are maximally entangled). This result was first proven in [3],
where it was shown that the Kraus operators implementing the
cloning of maximally entangled states have to be proportional
to unitary operators. A completely different proof of this fact
was later provided in [16], in which it was shown that a
separable operation that maps a pure state to another pure
state, both sharing the same set of Schmidt coefficients, must
have its Kraus operators proportional to unitaries; in our case
|ψf 〉 ⊗ |φ〉 and |ψf 〉 ⊗ |ψf 〉 do share the same set of Schmidt
coefficients, since they are maximally entangled. We here have
another simple proof of this result, since we have proved in
Theorem 6 that a set of maximally entangled states must be
group-shifted in order that they can be cloned, and since our
protocol in Sec. IV clones any set that is group-shifted without
using communication.

D. Form of the clonable states when D = 2 (qubits)

Here, we restrict our attention to local cloning of qubit
entangled states, D = 2. As D is prime, we know from
Theorem 3 that exactly two states can be cloned, S =
{|ψe〉AB,|ψg〉AB}. Both are assumed to be entangled (nonprod-
uct), but not maximally entangled.
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Since there is only one independent Schmidt coefficient
for a two-qubit state, any two such states are comparable
under majorization, and then from part (ii) of Theorem 2 it
follows at once that these states have to share the same set
of Schmidt coefficients. This is already a surprising result,
implicitly assumed (but not proved) in recent work on local
cloning of qubit states [6]. We can actually prove a stronger
condition: not only do the states have to share the same set
of Schmidt coefficients, but they must also share the same
Schmidt basis and be of a shifted form, as summarized by the
following theorem.

Theorem 7. Entangled qubits. Let S = {|ψe〉AB,|ψg〉AB} be
a set of two orthogonal two-qubit entangled states and let
λ be the largest Schmidt coefficient of |ψe〉AB , assumed to
satisfy 1/2 < λ < 1. If the local cloning ofS using a two-qubit
entangled blank state |φ〉ab is possible by a separable operation,
then, up to local unitaries (that is, the same local unitaries
acting on both states), the states must either be of the form,

|ψe〉AB =
√

λ|0〉A|0〉B + √
1 − λ|1〉A|1〉B,

(37)
|ψg〉AB =

√
λ|0〉A|1〉B + √

1 − λ|1〉A|0〉B,

or

|ψe〉AB =
√

λ|0〉A|0〉B + √
1 − λ|1〉A|1〉B,

(38)
|ψg〉AB =

√
λ|1〉A|0〉B + √

1 − λ|0〉A|1〉B.

Note that a relative phase eiϑ may be introduced into |ψg〉,
without altering |ψe〉, by Alice and Bob doing local unitaries
on systems A and B, UA,B = |0〉〈0| + e±iϑ/2|1〉〈1| (one of
them chooses the upper sign; the other does the lower, which
accomplishes the task up to an unimportant overall phase).
Therefore, the theorem allows cloning of states with these
phases.

Proof. First note that without loss of generality one can
always assume that the first state |ψe〉AB is already in Schmidt
form,

|ψe〉AB =
√

λ|0〉A|0〉B + √
1 − λ|1〉A|1〉B, (39)

since this can be done by a local unitary map UA ⊗ V B .
Therefore, the operators ψe and ψg obtained by map-state
duality can be assumed to have the form,

ψe =
(√

λ 0

0
√

1 − λ

)
, (40)

ψg =
(

a00 a01

a10 a11

)
, (41)

where λ is the largest Schmidt coefficient of |ψe〉AB and aij

are complex numbers with
∑ |aij |2 = 1, which is equivalent

to the requirement that |ψg〉 be normalized.
Orthogonality between these two states implies that

0 =
√

λa00 + √
1 − λa11. (42)

Since the only group of order 2 is cyclic with elements e,g and
g2 = e, we have from Theorem 3 that (T (m)

g )2 = SL(g)2S−1 =
I . Thus, we require

(
ψgψ

−1
e

)2 =
(

eiϑ 0

0 eiϑ

)
, (43)

where the factor of eiϑ arises from the phases that appear in
the definition of T (m)

g ; see (22). Thus, (43) implies

a2
00

λ
= a2

11

1 − λ
= eiϑ − a01a10√

λ(1 − λ)
, (44)

and either (i) a00
√

1 − λ = −a11

√
λ; or (ii) a01 = 0 = a10.

The condition that ψg be normalized in the latter case (ii), along
with (42) and (44), can only be satisfied if λ = 1/2, a case we
are not considering here. The former case (i) along with (42)
implies that a00 = 0 = a11 (again, assuming λ �= 1/2). This
concludes the proof, since it implies that |ψg〉AB has to have
either the form (37) or the form (38), up to an unimportant
global phase.

Now one can immediately see that one of the families of
states considered in [6], of the form |ψe〉 = √

λ|0〉A|0〉B +√
1 − λ|1〉A|1〉B and |ψg〉 = √

1 − λ|0〉A|0〉B − √
λ|1〉A|1〉B

cannot be locally cloned with a blank state of Schmidt rank 2,
unless they are maximally entangled (case already studied
in [3]).

IV. LOCAL CLONING OF GROUP-SHIFTED STATES:
EXPLICIT PROTOCOL USING A MAXIMALLY

ENTANGLED BLANK STATE

Consider now a set of group-shifted partially entangled
states S = {|ψf 〉AB}f ∈G on HA ⊗ HB , where the dimension
of both Hilbert spaces HA and HB is equal to D,

|ψf 〉AB =
∑
g∈G

√
λg|g〉A|fg〉B, (45)

and we remind the reader that throughout this section we
restrict to the |G| = D case (see Appendix B for the |G| < D

case). The reader should also note that we are here using the
form (36), where the shift is on the B side, rather than the form
(35), which was used throughout Sec. III with the shift on the
A side.

In the following we present a protocol that locally clones
S using a maximally entangled blank state of Schmidt rank
D. Our protocol, which works for any group G, is a direct
generalization of the one presented for the special case of a
cyclic group in [5].

Theorem 8. Group-shifted states. Let S = {|ψf 〉AB}f ∈G be
a set of group-shifted full Schmidt rank bipartite orthogonal
entangled states on HA ⊗ HB as defined by (45). The local
cloning of S is always possible using a maximally entangled
blank state |φ〉ab of Schmidt rank D.

Proof. Without loss of generality the maximally entangled
blank state can be written as

|φ〉ab = 1√
D

∑
h∈G

|h〉a|h〉b. (46)

The local cloning protocol is summarized below and the
quantum circuit is displayed in Fig. 1.

(1) Starting with |ψf 〉AB ⊗ |φ〉ab, both Alice and Bob apply
the “controlled-group” unitary,∑

g∈G

|g〉〈g| ⊗ Pg, with Pg =
∑
h∈G

|gh〉〈h|, (47)
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Pg
a a

b b

A A

B B

r

r

Pg

Mr Qr

Qr

=

a

b

A

B

| |ψf 〉 ⊗ |φ〉 ψf 〉 ⊗ |ψf 〉

FIG. 1. Circuit diagram for the local cloning of group-shifted
states with a maximally entangled blank state. There is no need to
perform the measurement Mr and the corrections Qr whenever the
states to be cloned are maximally entangled.

where the permutation Pg acts on system a (b) and is controlled
by system A (B), to obtain

∑
g∈G

√
λg|g〉A|fg〉B 1√

D

∑
h∈G

|gh〉a|fgh〉b

=
∑
g∈G

√
λg|g〉A|fg〉B 1√

D

∑
h∈G

|h〉a|f h〉b. (48)

(2) Next, Alice performs a generalized measurement on
system a with Kraus operators,

Mr =
∑
h∈G

√
λhr |h〉〈h|,

∑
r∈G

Mr
†Mr = I, (49)

and communicates the result r to Bob. Conditioned on the
result r , the output state is∑

g∈G

√
λg|g〉A|fg〉B

∑
h∈G

√
λhr |h〉a|f h〉b. (50)

(3) Both Alice and Bob apply the unitary correction,

Qr =
∑
h∈G

|hr〉〈h|, (51)

on systems a and b, respectively, to obtain∑
g∈G

√
λg|g〉A|fg〉B

∑
h∈G

√
λhr |hr〉a|f hr〉b

=
∑
g∈G

√
λg|g〉A|fg〉B

∑
h∈G

√
λh|h〉a|f h〉b

= |ψf 〉AB ⊗ |ψf 〉ab, (52)

which is the desired output.
Note that from symmetry considerations, states of the

form
∑

g∈G

√
λg|fg〉A|g〉B (with the term fg appearing now

on Alice’s side instead of Bob’s side) can also be locally
cloned, by interchanging the roles of Alice and Bob in the
protocol (e.g., performing the measurement Mr on system b

instead of a), then sending the result back to a. Therefore, in
the following, when discussing group-shifted states, we will
restrict to the states of the form (45).

V. LOCAL CLONING OF GROUP-SHIFTED STATES:
MINIMUM ENTANGLEMENT OF THE BLANK

Here again, we restrict for simplicity to the |G| = D

case, and discuss the extension of the results for |G| < D

in Appendix B.

A. Necessary conditions for arbitrary D

We now turn our attention to the task of characterizing
the blank state, which essentially amounts to determining the
amount of entanglement it must have in order for the local
cloning to be possible. We first give a very general lower
bound as:

Theorem 9. Minimum entanglement of the blank. Let
S = {|ψf 〉AB}f ∈G be a set of full Schmidt rank bipartite
orthogonal entangled states on HA ⊗ HB . If the local cloning
of S using a blank state |φ〉ab ∈ Ha ⊗ Hb is possible by a
separable operation, then it must be that

Ent(|φ〉ab) � max
f ∈G

Ent(|ψf 〉AB), (53)

where Ent(·) denotes any pure-state entanglement measure.
Proof. We recently proved in [17] that any pure-state

entanglement monotone is nonincreasing on average under
the general class of separable operations. The theorem follows
directly, since otherwise the local cloning machine increases
entanglement across the Aa/Bb cut. �

Providing a more detailed lower bound appears to be
difficult, in general, but turns out to be possible in the special
case of group-shifted states.

Consider again the set of D group-shifted entangled states
(45), and allow for arbitrary phases, ϑf,g ,

|ψf 〉AB =
∑
g∈G

√
λge

iϑf,g |g〉A|fg〉B. (54)

Without loss of generality, the blank state |φ〉ab can be written
as

|φ〉ab =
∑
h∈G

√
γh|h〉a|h〉b, (55)

where γh are its Schmidt coefficients,
∑

h∈G γh = 1.
All states in S have the same Schmidt coefficients, and

hence the same entanglement. As shown above, the local
cloning of the above set of states is possible using a maximally
entangled blank state when all phases eiϑf,g are chosen to be 1,
but it is not yet known if one can accomplish this task using
less entanglement. One might hope that the local cloning of S
is possible using a blank state having the same entanglement as
each of the states inS, which could be regarded as an “optimal”
local cloning. However, we prove below that such an optimal
local cloning is impossible with these states. Indeed, we find
a sizable gap between the entanglement needed in the blank
state and the entanglement of the states of S. For D = 2 and
D = 3, we prove that a maximally entangled blank state is
always necessary.

In the rest of this section we will use the rearrangement
inequality (see Chapter X of [22]), which states that

xny1 + · · · + x1yn � xσ (1)y1 + · · · + xσ (n)yn

� x1y1 + · · · + xnyn, (56)
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for every choice of real numbers x1 � · · · � xn and y1 � · · · �
yn and every permutation xσ (1), . . . , xσ (n) of x1, . . . , xn.

The following lemma is the most important technical result
of this section (note that in the statement of this result, we will
use g for inverses g−1 of elements in the group G, which will
make the notation somewhat more readable).

Lemma 10. Majorization conditions. Let S = {|ψf 〉AB}f ∈G

be a set of D group-shifted full Schmidt rank bipartite
orthogonal entangled states on HA ⊗ HB as defined by (54)
and considered to be not maximally entangled. If the local
cloning of S using a blank state |φ〉ab is possible by a separable
operation, then

(i) The majorization condition,


α ≺ 
β, (57)

must hold. Here, 
α and 
β are vectors with D2 components
indexed by elements g,h ∈ G,

αg,h = γh

∑
f ∈G

µf λfg, βg,h =
∑
f ∈G

µf λfgλf h, (58)

and {µf }f ∈G is an arbitrary set of non-negative real coefficients
that satisfy

∑
f µf = 1.

(ii) The smallest Schmidt coefficient γmin of the blank state
has to satisfy

γmin � max
{µf }

ming,h∈G

∑
f ∈G µf λfgλf h

ming∈G

∑
f ∈G µf λfg

. (59)

(iii) In particular, a good choice of {µf } is given by

µf = η

λf

, with η−1 =
∑
g∈G

1/λg, (60)

for which (59) becomes

γmin � 1

D
min
g,h∈G

∑
f ∈G

1

λf

λfgλf h. (61)

The majorization relation (57) restricts the possible allowed
Schmidt coefficients for the blank state and can easily be
checked numerically, but an analytic expression is difficult
to find, since there is no simple way of ordering (58). That
is why parts (ii) and (iii) of the lemma have their importance,
since they focus only on the smallest Schmidt coefficient of the
blank state. In particular, the bound (iii) is crucial in deriving
the necessity of a maximally entangled blank state for the local
cloning of qubit and group-shifted qutrit states.

The proof of the lemma is rather technical and is
presented in Appendix A 2. However, the main idea of
the proof consists of adding an ancillary system HE

of dimension D on Alice’s side and then consider-
ing a superposition

∑
f ∈G

√
µf |ψf 〉AB ⊗ |φ〉ab ⊗ |f 〉E that

will be mapped by the deterministic separable operation
to an ensemble {pm,|�m,out〉AaBbE}, with |�m,out〉AaBbE =∑

f ∈G eiϕmf
√

µf |ψf 〉AB ⊗ |ψf 〉ab ⊗ |f 〉E, and we have used
the fact discovered above that pmf = pm, independent of f .
The average Schmidt vector of the output ensemble over the
AaE/Bb cut has to majorize the input Schmidt vector
(see [17]) and this yields (i). Parts (ii) and (iii) are direct
implications of (i).

B. Qubits and qutrits

When D = 2 or D = 3, one can easily show that the
minimum in (61) is exactly one, and therefore:

Theorem 11. Necessity of maximally entangled blank. The
following must hold.

(i) A maximally entangled state of Schmidt rank 2 is
the minimum required resource for the local cloning of two
entangled qubit states.

(ii) A maximally entangled state of Schmidt rank 3 is the
minimum required resource for the local cloning of three
group-shifted entangled qutrit states.

The proof of both (i) and (ii) follows easily from Lemma 10
(iii), by applying the rearrangement inequality to (61), and is
presented in Appendix A 3.

When D = 2, or when D = 3 and all phases eiϑf,g = 1,
an explicit protocol for cloning these states exists [5] (alterna-
tively, see the proof of our Theorem 8), and therefore Theorem
11 becomes a necessary and sufficient condition for the local
cloning of such states. In particular, together with Theorem 7,
it provides a complete solution to the problem of local cloning
when D = 2.

C. D > 3: finite gap in the necessary entanglement

For D > 3, preliminary numerical studies indicate that the
minimum (61) in Lemma 10 (iii) is often equal to one, with
few exceptions. It might be the case that a better choice of
{µf } in (59) of Lemma 10 (ii) may provide the 1/D lower
bound, but we were unable to prove this.

However, for any set of group-shifted states, we can prove
that there is a rather sizable gap between the entanglement
needed in the blank state and the entanglement of the states of
S, as stated by the following theorem.

Theorem 12. Finite gap. Let S = {|ψf 〉AB}f ∈G be a set of D

group-shifted full Schmidt rank bipartite orthogonal entangled
states on HA ⊗ HB as defined by (54) and considered to be
not maximally entangled. If the local cloning of S using a
blank state |φ〉ab is possible by a separable operation, then the
entanglement of the blank state has to be strictly greater than
the entanglement of the states in S, often by a wide margin.
Specifically,

E(|φ〉ab) � H ({qr}) > E(|ψf 〉AB), ∀f ∈ G, (62)

where E(·) denotes the entropy of entanglement and H ({qr})
is the Shannon entropy of the probability distribution {qr},
qr := ∑

f ∈G λf λf r ,
∑

r∈G qr = 1.
The proof follows by setting µf = 1/D in Lemma 10 (i),

but is rather long and is presented in Appendix A 4.

VI. CONCLUSION AND OPEN QUESTIONS

We have investigated the problem of local cloning of a set S
of bipartite D × D entangled states by separable operations,
at least one of which is full Schmidt rank. We proved that
all states in S must be full rank and that the maximal set
of clonable states must be generated by a finite group G of
order N , the number of states in this maximal set, and then we
showed that N has to divide D exactly. We further proved that
all states in S must be equally entangled with respect to the
G-concurrence measure, and this implied that any two states
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in S must either share the same set of Schmidt coefficients or
otherwise be incomparable under majorization.

We have completely solved two important problems in local
cloning. For D = 2 (entangled qubits), we proved that no more
than two states can be locally cloned, and that these states must
be locally shifted. We showed that a two-qubit maximally
entangled state is a necessary and sufficient resource for such
a cloning. In addition, we provided necessary and sufficient
conditions when the states are maximally entangled, valid for
any dimension D, showing that the states must be group-
shifted, and then we also provided an LOCC protocol that
clones such a set of states.

We have studied in detail the local cloning of par-
tially entangled group-shifted states and provided an explicit
protocol for local cloning of such states with a maximally
entangled resource. For D = 3 (entangled qutrits) we showed
that a maximally entangled blank state is also necessary and
sufficient, whereas for D > 3 we proved that the blank state
has to be strictly more entangled than any state in S, often by
a sizable amount.

The necessary form of the clonable states for D > 2
remains an open problem. One might guess that the states
have to be of a group-shifted form, but a proof of such a
claim is not presently available. Although we proved the
necessity of a maximally entangled resource for the D = 2
case and for group-shifted states in the D = 3 case, in higher
dimensions it is still not clear if a maximally entangled state
of Schmidt rank D is always necessary. Finally, it would
be of interest to investigate the local cloning of less than
full Schmidt rank states, a problem that is likely to bring
in additional complications, such as the possibility of first
distinguishing amongst the states in S while preserving the
states intact [10], and then once the state is known, the cloning
becomes straightforward with a blank state having Schmidt
coefficients that are majorized by those of each of the states in
S [8,17].
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APPENDIX A: MATHEMATICAL PROOFS

1. Proof of Lemma 5

Consider the singular value decomposition of S, S = VDU

with D diagonal and positive definite, and V and U unitary
operators. Using this expression for S in Tf = SL(f )S−1

shows that

V †Tf V = D(UL(f )U †)D−1, (A1)

or with T̃f = V †Tf V and L̃(f ) = UL(f )U †,

T̃fD = DL̃(f ). (A2)

Left-multiply (or right-multiply) each side of this equation
with the respective adjoint (D†T̃ †

f and L̃(f )†D†), and using

the fact that T̃f and L̃(f ) are both unitary, we have that T̃f and
L̃(f ) each commutes with D†D = D2. That is,

D2
i [T̃f ]ij = [T̃f ]ijD2

j ,
(A3)

D2
i [L̃(f )]ij = [L̃(f )]ijD2

j ,

from which we conclude that when Di �= Dj , [T̃f ]ij = 0 =
[L̃(f )]ij . By a judicious choice of U and V , we may arrange
for D to be a direct sum of scalar matrices (some may be
one-dimensional). That is, D = ⊕νανIν , and then we see
that Tf and L(f ) share the same block-diagonal structure,
with blocks corresponding to this direct sum decomposition
of D.

We also have directly from (A2) that

[T̃f ]ijDj = Di[L̃(f )]ij . (A4)

Therefore, when Dj = Di , [T̃f ]ij = [L̃(f )]ij , and we see
that the blocks of T̃f are identical to those of L̃(f ). In
other words, we have shown that T̃f = L̃(f ) or, equivalently,
Tf = WL(f )W † with W = V U , completing the proof.

2. Proof of Lemma 10

Proof of (i). Let us introduce an ancillary system HE of
dimension D on Alice’s side and construct the superposition,

|�in〉ABabE :=
∑
f ∈G

√
µf |ψf 〉AB ⊗ |φ〉ab ⊗ |f 〉E, (A5)

with {µf }f ∈G an arbitrary set of non-negative real coefficients
that satisfy

∑
f µf = 1. The proof is based on the fact that if

|ψf 〉AB ⊗ |φ〉ab is deterministically mapped to eiϕmf |ψf 〉AB ⊗
|ψf 〉ab [see (11)], then |�in〉ABabE will be deterministically
mapped to an ensemble {pm,|�m,out〉AaBbE}, where

|�m,out〉AaBbE =
∑
f ∈G

eiϕmf
√

µf |ψf 〉AB ⊗ |ψf 〉ab ⊗ |f 〉E.

(A6)

Note that this conclusion rests crucially on the fact, discovered
in the main text, that pmf = pm, independent of f .

Let us now write |�in〉ABabE in Schmidt form over the
AaE/Bb cut. One has (again we use f = f −1)

|�in〉ABabE

=
∑
f ∈G

√
µf

⎛
⎝ ∑

g,h∈G

eiϑf,g
√

λgγh|g〉A|fg〉B |h〉a|h〉b
⎞
⎠ |f 〉E

=
∑

f,g,h∈G

eiϑf,g
√

µf λgγh|g〉A|h〉a|f 〉E ⊗ |fg〉B |h〉b

=
∑

g,h∈G

⎛
⎝∑

f ∈G

eiϑf,f g

√
µf λf gγh|f g〉A|f 〉E

⎞
⎠ |h〉a ⊗|g〉B |h〉b

=
∑

g,h∈G

⎛
⎝∑

f ∈G

eiϑf ,fg

√
µf λfgγh|fg〉A|f 〉E

⎞
⎠ |h〉a ⊗ |g〉B |h〉b,

(A7)

where we used the group property of G and replaced g by
f g and summation over f by summation over f where
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necessary. The states on the AaE system are orthogonal for
different pairs of g,h, and therefore (A7) represents a Schmidt
decomposition, with Schmidt coefficients αg,h given by the
squared norm of the states on the AaE system,

αg,h = γh

∑
f ∈G

µf λfg. (A8)

A similar calculation yields for the Schmidt coefficients βg,h

of |�m,out〉ABabE the expression,

βg,h =
∑
f ∈G

µf λfgλf h, (A9)

independent of m, which means that the average Schmidt vec-
tor of the output ensemble under the Aa/BbE cut is the same
as the Schmidt vector of an individual state |�m,out〉ABabE .

We have proven in [17] that the average Schmidt vector of
the output ensemble produced by a separable operation acting
on a pure state has to majorize the input Schmidt vector, and
this concludes (i).

Proof of (ii). The proof follows as a direct consequence of
(i). A particular majorization inequality imposed by Lemma 10
(i) requires that the smallest Schmidt coefficients αmin and βmin

have to satisfy

αmin � βmin, (A10)

where α and β were defined in (A8) and (A9), respectively.
This is equivalent to

γmin �
ming,h∈G

∑
f ∈G µf λfgλf h

ming∈G

∑
f ∈G µf λfg

. (A11)

The above equation must hold regardless of which set of {µf }
was chosen, hence, taking the maximum over all possible sets
{µf } concludes the proof of (ii).

Proof of (iii). Inserting the expression (60) for {µf } in (A11)
yields

γmin �
ming,h∈G

∑
f ∈G

1
λf

λfgλf h

ming∈G

∑
f ∈G

1
λf

λfg

(A12)

= 1

D
min
g,h∈G

∑
f ∈G

1

λf

λfgλf h, (A13)

where (A13) follows from applying the rearrangement inequal-
ity to the denominator in (A12), which in this case reads as

min
g∈G

∑
f ∈G

1

λf

λfg =
∑
f ∈G

1

λf

λf = D. (A14)

3. Proof of Theorem 11

Proof of (i). In this case the group G is the cyclic group of
order 2, and we identify its group elements by {0,1}. We proved
in Theorem 7 that the qubit states have to be locally shifted.
The minimum in (61) of Lemma 10 (iii) becomes explicitly a
minimum over four quantities that correspond to all possible
pairings of g,h; a straightforward calculation shows that three
out of these four quantities are equal to 1, except for g = h = 1,

in which case the sum in (A13) equals λ2
1/λ0 + λ2

0/λ1. Order
the λ’s such that λ0 � λ1 and note that

1

λ0
� 1

λ1
, and (A15)

λ2
1 � λ2

0. (A16)

From the rearrangement inequality applied to (A15) and (A16)
it follows that

λ2
1

λ0
+ λ2

0

λ1
� λ2

0

λ0
+ λ2

1

λ1
= 1, (A17)

and hence the minimum in case (i) equals 1.
Proof of (ii). Now the group G is isomorphic to the cyclic

group of order 3 and again we identify its elements by {0,1,2}.
We order the λ’s such that λ0 � λ1 � λ2. The minimum
in (A13) is now taken over nine possible pairs g,h. Again
straightforward algebra shows that most expressions sum up
to 1, except for the following three cases for which we show
that the sum exceeds 1.

(1) g = h = 1, for which the sum in (A13) equals λ2
1/λ0 +

λ2
2/λ1 + λ2

0/λ2;
(2) g = h = 2, for which the sum in (A13) equals λ2

2/λ0 +
λ2

0/λ1 + λ2
1/λ2;

(3) g = 1, h = 2 or g = 2, h = 1, for which the sum in
(A13) equals λ1λ2/λ0 + λ2λ0/λ1 + λ0λ1/λ2.

Note first that

1

λ0
� 1

λ1
� 1

λ2
, (A18)

λ2
2 � λ1

2 � λ0
2, and (A19)

λ1λ2 � λ2λ0 � λ0λ1. (A20)

From the rearrangement inequality applied to (A18) and
(A19) it follows that

1

λ0
λ2

1 + 1

λ1
λ2

2 + 1

λ2
λ2

0 � 1

λ0
λ2

0 + 1

λ1
λ2

1 + 1

λ2
λ2

2 = 1,

(A21)

which proves case 1, and

1

λ0
λ2

2 + 1

λ1
λ2

0 + 1

λ2
λ2

1 � 1

λ0
λ2

0 + 1

λ1
λ2

1 + 1

λ2
λ2

2 = 1,

(A22)

which proves case 2.
Next apply the rearrangement inequality to (A18) and (A20)

to get

1

λ0
(λ1λ2) + 1

λ1
(λ2λ0) + 1

λ2
(λ0λ1)

� 1

λ0
λ0λ1 + 1

λ1
λ1λ2 + 1

λ2
λ0λ2 = 1, (A23)

and this proves case 3.

4. Proof of Theorem 12

By setting µf = 1/D in Lemma 10 (i), for all f ∈ G, the
majorization relation (57) reads as

1

D

γ × 
1 ≺ 
β, (A24)
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where (1/D) 
γ × 
1 represents a D2 component vector with
components γh/D, each component repeated D times; here

γ is the Schmidt vector of the blank state |φ〉ab. The
D2 components βg,h of 
β are given by

βg,h = 1

D

∑
f ∈G

λfgλf h = 1

D

∑
f ∈G

λf λf gh. (A25)

Note that it is also the case that β has D components
each repeated D times, so the majorization relation (A24)
implies a majorization relation between two D-component
vectors,


γ ≺ 
q, (A26)

where the rth component of 
q is given by

qr := D · βg,h|gh=r =
∑
f ∈G

λf λf r . (A27)

Note that both 
γ and 
q are normalized probability vectors.
Since the Shannon entropy is a Schur-concave function, (A26)
implies at once that

E(|φ〉ab) � H ({qr}). (A28)

We now show that the second inequality in (62) is strict.
First we will prove that the ordered vector of probabilities 
q↓,
with components defined in (A27) and decreasing magnitudes
of entries down its column, is majorized by 
λ↓, the ordered
vector of the λf ,


q↓ ≺ 
λ↓. (A29)

Since the Shannon entropy is not just Schur concave, but
strictly Schur concave, this will imply at once that

H ({qr}) � H ({λf }) = E(|ψf 〉AB), ∀f ∈ G, (A30)

with equality if and only if 
q↓ equals 
λ↓ (or, equivalently, if
and only if the unordered vector 
q is the same as 
λ up to a
permutation). One can see that 
q is not a permutation of 
λ
unless all λ’s are equal (case that we exclude). Hence, once we
show the majorization condition (A29) holds, the proof will
be complete.

We will actually show that 
λ↓ majorizes every vector 
q
of the qr ’s no matter how 
q is ordered. Denote by Sn, with
|Sn| = n and n = 1, . . . ,D − 1, the subset consisting of those
elements f ∈ G such that λf is one of the largest n of the λ’s.
Then, we need to show that for each n,∑

g∈Sn

λg �
∑
g∈Sn

qσ (g) =
∑
g∈Sn

∑
f ∈G

λf λf σ (g), (A31)

where σ is an arbitrary permutation of the group elements.
Since

∑
f λf = 1, this is equivalent to

∑
f ∈G

λf

⎡
⎣∑

g∈Sn

λg −
∑
g∈Sn

λf σ (g)

⎤
⎦ � 0. (A32)

However, given the way we have defined Sn, it is always true
that the quantity in square brackets is non-negative. The reason
is that the first term in this quantity is the sum of the n largest
of the λ’s. Therefore, the second term, which is also a sum of
n of the λ’s, cannot possibly be greater than the first. In fact,

it is clear that for general sets of Schmidt coefficients {λf },
the quantity in square brackets will not be particularly small,
implying that the gap between the required entanglement of
the blank state and the entanglement of the states in S will be
sizable. This ends the proof.

APPENDIX B: |G| < D CASE

In the main body of the current paper, we restricted our
consideration to the |G| = D case. All of our results remain
valid also when |G| < D, with minor modifications. Briefly,
when |G| < D, T

(m)
f is a direct sum of nt = D/|G| copies

of L(f ), and the following theorems or lemmas have to be
modified accordingly.

Theorem 6. Since Lemma 5 holds for any two unitary
representations, it will hold when the regular representation
L(f ) is replaced by a direct sum of a number of copies of L(f ).
In this case, the maximally entangled group-shifted states (35)
and (36) of Theorem 6 have the form,

|ψf 〉AB = 1√
D

nt∑
n=1

∑
g∈G

|fg,n〉A|g,n〉B, (B1)

or

|ψf 〉AB = 1√
D

nt∑
n=1

∑
g∈G

|g,n〉A|fg,n〉B, (B2)

respectively. Here, the states {|g,n〉}g∈G,n=1,...,nt
are an

orthonormal basis, 〈g,n|h,m〉 = δg,hδn,m. The symbols f,g ∈
G label the group elements and m,n = 1, . . . ,nt label the
copies of the regular representation.

Theorem 8. When the family of partially entangled group-
shifted states (45) is replaced by

|ψf 〉AB =
nt∑

n=1

∑
g∈G

√
λg,n|g,n〉A|fg,n〉B, (B3)

and the maximally entangled blank state (46) is modified
to

|φ〉ab = 1√
D

nt∑
m=1

∑
h∈G

|h,m〉a|h,m〉b, (B4)

the local cloning protocol of Theorem 8 continues to work,
provided:

(1) The controlled-group unitary (47) is replaced
by

nt∑
n=1

∑
g∈G

|g,n〉〈g,n| ⊗ Pg, with

(B5)

Pg =
nt∑

m=1

∑
h∈G

|gh,m〉〈h,m|.

(2) The measurement (49) Alice performs is changed
to

Mr =
nt∑

m=1

1

(
∑

k∈G λk,m)1/2

∑
h∈G

√
λhr,m|h,m〉〈h,m|, (B6)

022313-12



LOCAL CLONING OF ENTANGLED STATES PHYSICAL REVIEW A 82, 022313 (2010)

where the factor involving the sum over k is needed to
ensure that this set of measurement operators corresponds to a
complete measurement.

(3) Finally, the unitary correction (51) Alice and Bob
perform is modified to

Qr =
nt∑

m=1

∑
h∈G

|hr,m〉〈h,m|. (B7)

Lemma 10. First the blank state has to be modified to

|φ〉ab = 1√
D

nt∑
m=1

∑
h∈G

√
γh,m|h,m〉a|h,m〉b. (B8)

Next we follow the line of thought in Appendix A2. Even
though there are only |G| < D states in the clonable set
S, we still use a D-dimensional ancillary system HE on
Alice’s side, with a basis now given by {|f,n〉E}f ∈G,n=1,...,nt

.
Restricting to an ancillary system of dimension |G| leads to
unnecessary complications, since the rearrangement inequality
can no longer be applied in part (ii) to obtain (iii).

We consider again an input superposition,

nt∑
n=1

∑
f ∈G

√
µf,n|ψf 〉AB ⊗ |φ〉ab ⊗ |f,n〉E, (B9)

and look at the Schmidt vector of the output ensemble produced
by the separable operation acting on (B9), where {µf,n} is an
arbitrary set of coefficients satisfying

∑nt

n=1

∑
f ∈G µf,s = 1.

We then have:

(i) The majorization condition 
α ≺ 
β corresponding to
(57) holds, provided the vectors 
α and 
β in (58) are redefined as

α
n,m
g,h = γh,m

nt∑
s=1

∑
f ∈G

µf ,sλfg,n,

(B10)

β
n,m
g,h =

nt∑
s=1

∑
f ∈G

µf ,sλfg,nλf h,m.

(ii) The smallest Schmidt coefficient γmin of the blank has
to satisfy

γmin � max
{µf,s }

minm,n ming,h∈G

∑nt

s=1

∑
f ∈G µf ,sλfg,nλf h,m

minn ming∈G

∑nt

s=1

∑
f ∈G µf ,sλfg,n

.

(B11)

(iii) A good choice of {µf,s} is given by µf,s = 1/λf ,s

[ignore the normalization, since µf,s appears both on
the numerator and denominator of (B11)]. Then (B11)
becomes

γmin � 1

|D| min
m,n

min
g,h∈G

nt∑
s=1

∑
f ∈G

1

λf ,s

λfg,nλf h,m. (B12)

Theorem 12. Theorem 12 still provides a finite gap
between the entanglement needed in the blank state and the
entanglement of group-shifted states (B3). The proof follows
the same ideas as before, by setting µf,s = 1/D, for all f ∈ G

and s = 1, . . . ,nt in the majorization relation of the “modified”
Lemma 10 (i) above.
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