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Delayed birth of distillable entanglement in the evolution of bound entangled states
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The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is
investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated
atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed
sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the
radiation wavelength.
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I. INTRODUCTION

Dynamical creation of entanglement by the indirect inter-
action between otherwise decoupled systems has been studied
by many researchers mainly in the case of two-level atoms
that interact with the common vacuum. When the two atoms
are separated by a small distance compared to the radiation
wavelength λ, there is a substantial probability that a photon
emitted by one atom will be absorbed by the other, and the
resulting process of photon exchange produces correlations
between the atoms. Such correlations may cause that initially
separable states become entangled (see, e.g., Refs. [1–4]).
The case of three-level atoms is very interesting for many
reasons. First of all, in a system of coupled multilevel atoms,
which have closely lying energy states and that interact
with the vacuum, quantum interference between different
radiative transitions can occur, which results in coherences in a
system that are known as vacuum-induced coherences. In addi-
tion to the usual effects, such as collective damping and dipole-
dipole interaction, which involves nonorthogonal transition
dipole moments [5,6], here, radiative coupling can produce
a new interference effect in the spontaneous emission. This
effect manifests by the cross coupling between radiative
transitions with orthogonal dipole moments [7] and is strongly
dependent on the relative orientation of the atoms [8,9]. All
such collective properties of the system influence the quantum
dynamics, which can significantly differ from a corresponding
single atom dynamics. On the other hand, the theory of
entanglement between the pairs of such atoms is much more
complex than in the case of qubits. As is well known, there is
no simple necessary and sufficient condition of entanglement,
since the Peres-Horodecki separability criterion [10,11] only
shows that the states that are not positive after partial transpo-
sition [(NPPT) states] are entangled. However, there can exist
entangled states that are positive after this operation, and such
states are not distillable [12]. Hence, all entangled states can
be divided into two classes; one contains free entangled states
that can be distilled by using local operations and classical
communication (LOCC), and the other consists of bound
entangled states for which no LOCC strategy can be used to
extract pure state entanglement. Since many effects in quantum
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information exploit pure maximally entangled states, only dis-
tillable states can directly be used for quantum communication.
To the contrary, nondistillable states involve some kind of
irreversibility: We need pure entanglement to create them, but
no pure entanglement can be obtained back from them [13].

The dynamics of entanglement between three-level
atoms with vacuum-induced coherences was previously
investigated mainly in the context of creation or degradation
of NPPT states [14,15]. In particular, it was shown that, for
small distances between the atoms, the system decays to a
stationary state that can be entangled, even if the initial state
was separable [14]. On the other hand, if the distance is
comparable to the radiation wavelength, the dynamics brings
all initial states into the asymptotic state in which both atoms
are in their ground states, but there still can be some transient
entanglement between the atoms [15].

In the present paper, we investigate the dynamics of
bound entangled initial states. There are some results that
concern decoherence and disentanglement of bound entangled
states [16]; but, here, we focus on the process of dynamical
creation of distillable entanglement due to the collective
damping and cross coupling between the three-level atoms.
For the specific bound entangled initial state and the small
interatomic distance, we show that the asymptotic state is both
entangled and distillable. Thus, we obtain a stationary-free
entanglement. The same result is also valid for other initial
states, which include separable states. So, this dynamics of
three-level atoms distinguishes distillable states, since all
nontrivial asymptotic entangled states are also distillable. For
larger distances, the dynamics of the bound entangled initial
state is very peculiar: The system very quickly disentangles,
and only after some finite time, does a distillable entanglement
suddenly appear. (The similar phenomenon of delayed sudden
birth of entanglement was observed in the case of two-level
atoms [17].) So also, in this situation, the physical process
of spontaneous emission can create some transient distillable
entanglement out of the initially prepared bound entanglement.

II. MIXED-STATE ENTANGLEMENT AND DISTILLATION

A. Distillability of entanglement

Distillability of mixed entangled state ρ is the property that
enables to convert n copies of ρ into a smaller number of
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k copies of a maximally entangled pure state by means of
LOCC [18]. It is known that all pure entangled states can be
reversibly distilled [19], and any mixed two-qubit entangled
state is also distillable [20]. In the general case, the following
necessary and sufficient condition for entanglement distillation
was shown in Ref. [12]: The state ρ is distillable if and only if
there exists n such that ρ is n-copy distillable (i.e., ρ⊗n can be
filtered to a two-qubit entangled state). However, this condition
is hard to apply, since conclusions based on a few copies
may be misleading [21]. A more practical but not necessary
condition is based on the reduction criterion of separability
[22]. The criterion can be stated as follows: If a bipartite state
ρ of a compound system AB is separable, then

ρA ⊗ 1 − ρ � 0 and 1 ⊗ ρB − ρ � 0, (1)

where

ρA = trB ρ, ρB = trA ρ. (2)

As shown in Ref. [23], any state that violates Eq. (1) is
distillable, so if

ρA ⊗ 1 − ρ �� 0 or 1 ⊗ ρB − ρ �� 0, (3)

the state ρ can be distilled. The condition Eq. (3) is easy to
check, and we will use it in our discussion of dynamical aspects
of distillability.

B. Peres-Horodecki criterion and bound entanglement

To detect entangled states of two qubits, we apply the Peres-
Horodecki criterion of separability [10,11]. From this criterion
follows that any state ρ for which its partial transposition ρPT

is nonpositive (NPPT state) is entangled. One also defines
negativity of the state ρ as

N (ρ) = ‖ρPT‖tr − 1

2
. (4)

N (ρ) is equal to the absolute value of the sum of the negative
eigenvalues of ρPT and is an entanglement monotone [24],
however, it cannot detect entangled states that are positive
under partial transposition [(PPT) states]. Such states exist [25]
and, as shown in Ref. [12], are not distillable. They are called
bound entangled PPT states. Up to now, it is not known if
there exist bound entangled NPPT states [26].

To detect some of the bound entangled PPT states, we
can use the realignment criterion of separability [27,28]. The
criterion states that, for any separable state ρ of a compound
system, the matrix R(ρ) with elements,

〈m| ⊗ 〈µ|R(ρ)|n〉 ⊗ |ν〉 = 〈m| ⊗ 〈n| ρ |µ〉 ⊗ |ν〉 (5)

has a trace norm not greater than 1. So, if the realignment
negativity defined by

NR(ρ) = max

(
0,

‖R(ρ)‖tr − 1

2

)
(6)

is greater then zero, the state ρ is entangled. In the case of two
qubits, the measure Eq. (6) cannot detect all NPPT states [29];
but, for larger dimensions, the criterion is capable of detecting
some bound entangled PPT states [27].

III. TIME EVOLUTION OF THREE-LEVEL ATOMS

To study the dynamics of entanglement between three-level
atoms, we consider the model introduced by Agarwal and
Patnaik [7]. We start with the short description of the model.
Consider two identical three-level atoms (A and B) in the V

configuration. The atoms have two near-degenerate excited
states |1α〉, |2α〉 (α = A,B) and ground states |3α〉. Assume
that the atoms interact with the common vacuum and that
transition dipole moments of atom A are parallel to the trans-
ition dipole moments of atom B. Due to this interaction, the
process of spontaneous emission from two excited levels to the
ground state takes place in each individual atom, but a direct
transition between excited levels is not possible. Moreover,
the coupling between two atoms can be produced by the
exchange of the photons, but, in such an atomic system, the
radiative process in which atom A in excited state |1A〉 loses
its excitation, which, in turn, excites atom B to state |2B〉
is also possible. This effect manifests by the cross coupling
between radiation transitions with orthogonal dipole moments.
The evolution of this atomic system can be described by the
following master equation [7]:

dρ

dt
= i [H,ρ] + (LA + LB + LAB)ρ, (7)

where

H =
2∑

k=1

�k3
(
σA

k3σ
B
3k + σB

k3σ
A
3k

)

+
∑

α=A,B

�vs

(
σα

23σ
¬α
31 + σα

32σ
¬α
13

)
, (8)

and, for α = A,B,

Lαρ =
2∑

k=1

γk3
(

2σα
3kρσα

k3 − σα
a3σ

α
3kρ − ρσα

k3σ
α
3k

)
. (9)

Moreover,

LABρ =
2∑

k=1

∑
α=A,B

�k3
(
2σα

3kρσ¬α
k3 − σ¬α

k3 σα
3kρ − ρσ¬α

k3 σα
3k

)

+
∑

α=A,B

�vc

(
2σα

31ρσ¬α
23 − σ¬α

23 σα
31ρ − ρσ¬α

23 σα
31

+ 2σα
32ρσ¬α

13 − σ¬α
13 σα

32ρ − ρσ¬α
13 σα

32

)
. (10)

In Eqs. (8)–(10), ¬α is A for α = B and B for α = A, σα
jk is

the transition operator from |kα〉 to |jα〉, and the coefficient γj3

represents the single atom spontaneous-decay rate from state
|j 〉 (j = 1,2) to state |3〉. Since states |1α〉 and |2α〉 are closely
lying, the transition frequencies ω13 and ω23 satisfy

ω13 ≈ ω23 = ω0. (11)

Similarly, the spontaneous-decay rates:

γ13 ≈ γ23 = γ. (12)

The coefficients �j3 and �j3 are related to the coupling be-
tween two atoms and are the collective damping and the dipole-
dipole interaction potential, respectively. The coherence terms
�vc and �vc are cross-coupling coefficients, which couple a
pair of orthogonal dipoles. Detailed analysis shows the cross
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coupling between two atoms strongly depends on the relative
orientation of the atoms, and there are such configurations
of the atomic system that �vc = �vc = 0 and the other
configurations for which �vc �= 0,�vc �= 0. Moreover, all the
coupling coefficients are small for large distance R between
the atoms and tend to zero for R → ∞. On the other hand,
when R → 0, �13,�23, and �vc diverge, whereas

�13,�23 → γ and �vc → 0. (13)

The time evolution of the initial state of the system
is given by the semigroup {Tt }t�0 of completely positive
mappings, which act on density matrices, generated by the
Hamiltonian Eq. (8) and the dissipative part LA + LB + LAB .
The properties of the semigroup crucially depend on the
distance R between the atoms and the geometry of the system.
Irrespective of the geometry, when R is large compared to
the radiation wavelength, the semigroup {Tt }t�0 is uniquely
relaxed with the asymptotic state |3A〉 ⊗ |3B〉. Thus, for any
initial state, its entanglement asymptotically approaches 0.
However, there can still be some transient entanglement
between the atoms. On the other hand, in the strong correlation
regime (when R → 0), the semigroup is not uniquely relaxed,
and the asymptotic stationary states are nontrivial and depend
on initial conditions. The explicit form of the asymptotic state
ρas, for any initial state ρ with matrix elements ρkl (with
respect to the canonical basis), was found in Ref. [14]. It is
given by

ρas =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 x 0 0 z −x −z w

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 z 0 0 y −z −y v

0 0 −x 0 0 −z x z −w

0 0 −z 0 0 −y z y −v

0 0 w 0 0 v −w −v t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where

x = 1
8 (ρ22 + 2ρ33 + ρ44 + 2ρ77 − 2Re ρ24 − 4Re ρ37),

z = 1
4 (ρ36 − ρ38 − ρ76 + ρ78),

w = 1
4 (ρ26 + ρ28 + 2ρ39 − ρ46 − ρ48 − 2ρ79), (15)

y = 1
8 (ρ22 + ρ44 + 2ρ66 + 2ρ88 − 2Re ρ24 − 4Re ρ68),

v = 1
4 (−ρ23 − ρ27 + ρ43 + ρ47 + 2ρ69 − 2ρ89),

and

t = 1 − 2x − 2y. (16)

By depending on the initial state, the asymptotic state Eq. (14)
can be separable or entangled. In Sec. IV, we will study
distillability of ρas for some initial states.

IV. GENERATION OF STATIONARY DISTILLABLE
ENTANGLEMENT

As shown in Ref. [14], the negativity of the asymptotic
states Eq. (14) can be obtained analytically in the case of

diagonal (i.e., separable) initial states. For such states, only
the parameters x,y, and t are nonzero, and the asymptotic
negativity reads

N (ρas) = 1
2 [

√
4(x2 + y2) + t2 − t]. (17)

Note that every nontrivial asymptotic state from that class
is entangled. Now, we show that this entanglement is free
(i.e., all such asymptotic states are distillable). To do this, we
show that ρas, which corresponds to diagonal initial states,
violates reduction criterion Eq. (1). Indeed, since for such
states,

trB ρas ⊗ 1 − ρas =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 0 0 0 0 0

0 x 0 0 0 0 0 0 0

0 0 0 0 0 0 x 0 0

0 0 0 y 0 0 0 0 0

0 0 0 0 y 0 0 0 0

0 0 0 0 0 0 0 y 0

0 0 x 0 0 0 a 0 0

0 0 0 0 0 y 0 b 0

0 0 0 0 0 0 0 0 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

where

a = 1 − 2x − y, b = 1 − x − 2y, c = x + y, (19)

and the matrix on the right-hand side of Eq. (18) has two
negative leading principal minors (other minors are positive),
so

trB ρas ⊗ 1 − ρas �� 0. (20)

Similarly,

1 ⊗ trA ρas − ρas �� 0. (21)

The interesting examples of nontrivial asymptotic states are
given by the separable initial states, where one atom is in the
excited state and the other is in the ground state, or two atoms
are in different excited states. In all such cases, the created
entanglement is free and can be distilled.

Now, we consider the possibility for creating free stationary
entanglement from the bound initial entanglement. As the
initial states, we take the family [30],

ρα = 2

7
|
0〉〈
0| + α

7
P+ + 5 − α

7
P−, 3 < α � 4, (22)

where

|
0〉 = 1√
3

3∑
j=1

|jA〉 ⊗ |jB〉, (23)

P+ = 1
3

(
P|1A〉⊗|2B 〉 + P|2A〉⊗|3B 〉 + P|3A〉⊗|1B 〉

)
, (24)

and

P− = 1
3

(
P|2A〉⊗|1B 〉 + P|3A〉⊗|2B 〉 + P|1A〉⊗|3B 〉

)
. (25)

The states Eq. (22) are constructed as follows: We prepare
the maximally entangled state |
0〉 and add some specific
noise, which results in the mixing of |
0〉 with separable
states P+ and P−. For a special choice of mixing parameter,
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such prepared states have positive partial transposition but are
entangled, as can be shown by computing the realignment
negativity. For ρα , it is given by

NR(ρα) = 1

21
(
√

3α2 − 15α + 19 − 1), (26)

and is obviously positive for 3 < α � 4. So the states Eq. (22)
are bound entangled, and the entanglement initially present
in |
0〉 cannot be extracted from them for any number of
copies of the states. It is worth noticing that, recently, the
bound entanglement was created experimentally in the system
of three qubits [31].

Although the states Eq. (22) are not diagonal, one can check
that the corresponding asymptotic states have the same form
as in the diagonal case. In fact, for all initial states ρα , there is
only one asymptotic state ρas given by

x = y = 5

56
and t = 9

14
. (27)

By the previous discussion, this state is entangled; and,
moreover, its entanglement is distillable. Thus, we have shown
that the physical process of spontaneous emission in the
radiatively coupled three-level atoms can transform initial
bound entanglement into free distillable entanglement of the
asymptotic state.

V. DELAYED CREATION OF DISTILLABLE
ENTANGLEMENT

In this section, we study, in detail, the evolution of
entanglement of the bound entangled initial states Eq. (22),
for 3 < α � 4, beyond the strong correlation regime. In
that case, the asymptotic state is trivial, but some transient
entanglement between the atoms can be produced. For
simplicity, we consider such atomic configuration for which
the cross-coupling coefficients are equal to zero. One can check
that the initial states Eq. (22) will evolve into the states of the
form

ρα(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 ρ15 0 0 0 ρ19

0 ρ22 0 0 0 0 0 0 0

0 0 ρ33 0 0 0 ρ37 0 0

0 0 0 ρ44 0 0 0 0 0

ρ51 0 0 0 ρ55 0 0 0 ρ59

0 0 0 0 0 ρ66 0 ρ68 0

0 0 ρ73 0 0 0 ρ77 0 0

0 0 0 0 0 ρ86 0 ρ88 0

ρ91 0 0 0 ρ95 0 0 0 ρ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

where all nonzero matrix elements are time dependent.
Numerical analysis indicates that, during the time evolution,

the realignment negativity Eq. (6) of the initial state very
rapidly progresses to zero, so the system almost imme-
diately disentangles. To consider possible creation of free

entanglement, let us first check if the PPT condition can
be violated during such evolution. After taking the partial
transposition, the state Eq. (28) becomes

ρα(t)PT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0 0 0 ρ37

0 ρ22 0 ρ15 0 0 0 0 0

0 0 ρ33 0 0 0 ρ19 0 0

0 ρ51 0 ρ44 0 0 0 0 0

0 0 0 0 ρ55 0 0 0 ρ68

0 0 0 0 0 ρ66 0 ρ59 0

0 0 ρ91 0 0 0 ρ77 0 0

0 0 0 0 0 ρ95 0 ρ88 0

ρ37 0 0 0 ρ86 0 0 0 ρ99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

One can check that determinant d of the matrix Eq. (29)
equals

d = (ρ22ρ44 − |ρ15|2) (ρ33ρ77 − |ρ19|2) (ρ66ρ88 − |ρ59|2)

× (ρ11ρ55ρ99 − ρ55|ρ37|2 − ρ11|ρ86|2). (30)

We can show numerically that Eq. (30) changes sign, since the
last factor is positive for all t < tN and becomes negative if
t > tN , for some tN > 0, and the remaining factors are positive.
Moreover, all other leading principal minors of the matrix
Eq. (29) are always positive. So, the evolution of the bound
entangled state Eq. (22) has the interesting property: For all t <

tN , the states ρα(t) are PPT; and, then, suddenly they become
NPPT states (see Fig. 1). Now, we discuss distillability of the
states ρα(t). Since we cannot exclude the possibility that there
are NPPT states, which are nondistillable, we try to apply
the reduction criterion of entanglement. As we know, from the
discussion in Sec. II, any state that violates this criterion is
necessarily distillable. By direct computations, we show that
the matrix,

trB ρα(t) ⊗ 1 − ρα(t) (31)

0.0 0.2 0.4 0.6 0.8 1.0
0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

γt

F

FIG. 1. The time evolution of the factor F = ρ11ρ55ρ99 −
ρ55|ρ37|2 − ρ11|ρ86|2 in Eq. (30) for the initial state Eq. (22) with
α = 3.6 and the interatomic distance R = 0.2 λ.
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equals⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 0 0 0 −ρ15 0 0 0 −ρ19

0 r22 0 0 0 0 0 0 0
0 0 r33 0 0 0 −ρ37 0 0
0 0 0 r44 0 0 0 0 0

−ρ15 0 0 0 r55 0 0 0 −ρ59

0 0 0 0 0 r66 0 −ρ68 0
0 0 −ρ73 0 0 0 r77 0 0
0 0 0 0 0 −ρ86 0 r88 0

−ρ91 0 0 0 −ρ95 0 0 0 r99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(32)

where

rkk =
⎧⎨
⎩

ρ11 + ρ22 + ρ33 − ρkk, k = 1,2,3
ρ44 + ρ55 + ρ66 − ρkk, k = 4,5,6
ρ77 + ρ88 + ρ99 − ρkk, k = 7,8,9

. (33)

We compute leading principal minors of the matrix Eq. (32),
which can change sign during the evolution, and can find the
following expressions:

m5 = r22r33r44(r11r55 − |ρ15|2),

m6 = r22r33r44r66(r11r55 − |ρ15|2),
(34)

m7 = r22r44r66(r11r55 − |ρ15|2) (r33r77 − |ρ37|2),

m8 = r22r44(r11r55 − |ρ15|2) (r33r77 − |ρ37|2) (r66r88 − |ρ68|2),

where mk for k = 5,6,7,8 are determinants of principal k × k

submatrices of the matrix Eq. (32). It turns out that the factor
r11r55 − |ρ15|2 is always positive, but, as follows from the
numerical analysis, r33r77 − |ρ37|2 as well as r66r88 − |ρ68|2
change sign during the evolution (see Fig. 2). Let tD be the
time at which the factor r66r88 − |ρ68|2 changes sign. We see
that tD > 0, so only after that time does the matrix Eq. (32)
become nonpositive. It means that, for t > tD , states ρα(t) are
necessarily distillable. One can check that tD > tN , and we
see that the initial bound entangled state Eq. (22) evolves in a
remarkable way: For all t � tN , it is PPT, for tN < t � tD , it
is NPPT but a priori can be nondistillable and only after tD ,
does it become distillable. To show this in the explicit way,

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

γt

G
,H

FIG. 2. The time evolution of the factors G = r33r77 − |ρ37|2
(dotted line) and H = r66r88 − |ρ68|2 (solid line) in Eq. (34) for the
initial state Eq. (22) with α = 3.6 and R = 0.2λ.

0 1 2 3 4
0.000

0.005

0.010

0.015

0.020

γt

N
0
,N

re
d

FIG. 3. The time-evolution negativity N0 (dotted line) and re-
duction negativity Nred (solid line) for the initial state Eq. (22) with
α = 3.6 and R = 0.2λ.

let us introduce the measure of the violation of the reduction
criterion, defined as

Nred(ρ) = max
(
0, − λred

min

)
, (35)

where λred
min is the minimal eigenvalue of the matrix:

ρred = trB ρ ⊗ 1 − ρ. (36)

The quantity Eq. (35) can be called the reduction negativity
of state ρ. For the bound entangled initial state Eq. (22), the
evolution of negativity and reduction negativity is given as
follows (Fig. 3). So, in the system, we observe the phenomenon
of delayed sudden birth of distillable entanglement. The
physical reason for the appearance of this phenomenon can be
explained as follows. During the time evolution of the system,
the process of the photon exchange produces coherence
between states |1A〉 ⊗ |3B〉 and |3A〉 ⊗ |1B〉, so the value
of |ρ37| starts to grow. Similarly, the same process causes
the production of coherence between states |2A〉 ⊗ |3B〉 and
|3A〉 ⊗ |2B〉, so |ρ68| also grows. Notice that the nonzero value
of |ρ37| or |ρ68| is necessary for the possibility of creation
of distillable entanglement. However, this condition is not
sufficient, since the populations of states of the two-atomic
system also evolve in time. We see from the formula Eq. (34)
that there is a threshold for the reduction negativity Eq. (35) at
which the system becomes distillable.

The numerical value of tD depends on the choice of the
parameter α and the interatomic distance R. For the initial
state with α = 3.6 and the distance R = 0.2λ, we obtain tDγ ≈
0.78, whereas tNγ ≈ 0.49.

VI. CONCLUSIONS

We have studied the dynamics of entanglement in the
system of three-level atoms in the V configuration coupled
to the common vacuum. In the case of small (compared to
the radiation wavelength) separation between the atoms, the
system has nontrivial asymptotic states that can be entangled
even if the initial states are separable. For the large class
of separable initial states, the asymptotic states are not only
entangled but also distillable. The same is true for some class of
bound entangled initial states. Thus, we have shown that the
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dynamics of the system can transform bound entanglement
into the free distillable entanglement of stationary states. For
the atoms separated by larger distances, only some transient
entanglement can exist, but still, the dynamical generation
of entanglement is possible. Also, we have shown that
this happens for the class of bound entangled initial states.
Moreover, we have demonstrated that such states evolve in
a very peculiar way: They almost immediately disentangle

after the atoms begin to interact with the vacuum, then, for
some finite period of time, there is no entanglement, and
suddenly, at some time, the entanglement starts to build up.
However, this entanglement a priori can be nondistillable.
We have analyzed this problem by using the reduction
criterion of separability and found that the free entanglement
surely appears in the system after some additional period of
time.
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