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Efficient multimode quantum memory based on photon echo in an optimal QED cavity
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Effective multimode photon echo quantum memory on multiatomic ensemble in the QED cavity is proposed.
We obtain the analytical solution for the quantum memory efficiency that can be equal to unity when optimal
conditions for the cavity and atomic parameters are held. Detailed analysis of the optimal conditions is performed.
Numerical estimation for realistic atomic and cavity parameters demonstrates the high efficiency of the quantum
memory for an optically thin resonant atomic system that opens a door for real applications.
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I. INTRODUCTION

Quantum communications and quantum computation re-
quire an effective quantum memory (QM) that must be of
a multimode and high fidelity character [1–5]. Most well-
known electromagnetically induced transparency (EIT) based
QM [6] demonstrates an efficient storage and retrieval only
for a specific single temporal mode regime [7–9]. Photon
echo QM [10–14] offers the most promising properties for
a realization of the multimode QM [15–17]. However, the
quantum efficiency of all discussed multimode variants of
the photon echo QM tends to unity for infinite optical depth
αL as [1 − exp(−αL)]2, where α and L are the resonant
absorption coefficient and length of the medium along the light
field propagation [18,19]. Above formula for QM efficiency
imposes a fundamental limit for the QM efficiency so it is
necessary to increase either the atomic concentration or the
medium length. However, the QM device should be compact
and the large increase of the atomic concentration gives rise
to atomic decoherence due to the dipole-dipole interactions
limiting thereby a storage time. So, using the free space QM
scheme is quite problematic for practical devices.

Efficient QM on a multiatomic system inside the optical
resonator has been considered on EIT effects in [20,21].
Possibility of the photon echo signal enhancement in resonator
was demonstrated in [22]. Efficient photon echo QM with
controlled reverse of inhomogeneous broadening (CRIB) has
been studied recently in the ideal cavity [23] and in the bad
cavity [24] where high QM efficiency has been demonstrated
only for a specific optimal single mode regime. Here, we
propose a general approach for a multimode photon echo
type of QM in the QED cavity (single mode resonator). We
demonstrate a high efficiency of the QM for the optimized
system of atoms and QED cavity at arbitrary temporal shape
of the stored field modes. We find a simple analytical solution
for QM efficiency and the optimal conditions for a matching
of the atomic and cavity parameters where the QM efficiency
can reach unity even for a small optical depth of the medium
inside the cavity.

*samoi@yandex.ru

II. BASIC EQUATIONS

We analyze a resonant multiatomic system in an arbitrary
single mode one-sided QED cavity coupled with signal and
bath field modes (nonsignal free space electromagnetic modes
in our model). By following the cavity mode formalism [25],
we use a Tavis-Cumming Hamiltonian [26] Ĥ = Ĥo + Ĥ1,
for N atoms, field modes and their interactions taking into
account the inhomogeneous and homogeneous broadenings of
the atomic frequencies and continuous spectral distribution of
the field modes where

Ĥo = h̄ωo

⎧⎨
⎩

N∑
j=1

Ŝj
z + â†â +

2∑
l=1

∫
b̂
†
l (ω)b̂l(ω)dω

⎫⎬
⎭ (1)

are main energies of atoms (Sj
z is a z projection of the spin 1/2

operator), the energy of the cavity field (â† and â are arising
and decreasing operators), energies of signal (l = 1) and bath
(l = 2) fields (b†l and bl are arising and decreasing operators
of the field modes [b̂†l (ω′),b̂l′ (ω)] = δl,l′δ(ω′ − ω)),

Ĥ1 = h̄
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j
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j
+â]

+ ih̄

2∑
l=1

∫
κl(ω)[b̂l(ω)â† − b̂

†
l (ω)â]dω. (2)

The first term in (2) comprises the perturbation energies of
atoms where �j (t) is a controlled frequency detuning of j th
atom �j (t < τ ) = �j and �j (t > τ ) = −�j , δ�j (t) is its
fluctuating frequency detuning determined by local stochastic
fields, gj is a photon-atom coupling constant in the QED
cavity, S

j
+ and S

j
− are the transition spin operators. Ensemble

distributions over the detunings �j and δ�j (t) determine
inhomogeneous �in and homogeneous γ21 broadenings of the
resonant atomic line. In the following, we use a Lorentzian
shape for inhomogeneous broadening (IB) and a typical
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anzatz for the ensemble average over the fluctuating detunings
δ�j (t):

N∑
j=1

|gj |2 exp{−i�j (t − t ′)}�j (t,t ′)

≡ N |ḡ|2 exp{−(�in + γ21)|t − t ′|}, (3)

where �j (t,t ′) = exp{−iδϕj (t,t ′)}, δϕj (t,t ′) = ∫ t

t ′ dt ′′δ�j

(t ′′), |ḡ|2 is quantity averaged over the atoms. The second
term in (2) contains frequency detunings of the lth field
modes. The third term is the interaction energy of atoms with
cavity mode. The fourth term is an interaction energy of the
cavity mode with the signal and bath modes characterized
by the coupling constants κl(ω). The coupling of the cavity
mode with bath modes describes the nonideal character of the
resonator.

We note that [Ĥo,Ĥ1] = 0 so a total number of excitations
in the atomic system and the field modes is conserved during
the quantum evolution, Ĥo makes a contribution only to
the common phase of the wave function. H1 determines
a unitary operator Û1(t) = exp{−iĤ1t/h̄} causing the evo-
lution of the atomic and field systems with a dynamical
exchange and entanglement of the excitations among them.
We assume that initially all atoms (j = 1,2, . . . ,N ) stay
in the ground state |g〉a = |g1,g2, . . . ,gN 〉 and we launch
a signal multimode single photon field prepared in the ini-
tial quantum state |ψin(t)〉ph = ∏M

k=1 ψ̂+
k (t − τk)|0〉, ψ̂+

k (t −
τk) = ∫ ∞

−∞ dωkfk(ωk) exp{−iωk(t − τk)}b̂+
1 (ωk); fk is a wave

function in the frequency space normalized for pure single
photon state

∫ ∞
−∞ dωk|fk(ωk)|2 = 1, M is a number of modes,

|0〉 is a vacuum state of the field. The kth photon mode arrives in
the circuit at time moment τk , time delays between the nearest
photons are assumed to be large enough (τk − τk−1) � δtk ,
δtk is a temporal duration of the kth field mode. Additional
bath field modes (l = 2) are assumed to be in the vacuum state
b2(ω)|0〉 = 0. Thus, the total initial state of the multimode
light field and atoms is given by |�in(t)〉 = |ψin(t)〉ph|g〉a .

Neglecting a population of excited atomic states and using
the input and output field formalism [25] we derive the
following linearized system of Heisenberg equations for the
field operators and for the atomic operators in the rotating
frame representation:

d

dt
b̂l(ω) = −i(ω − ω0)b̂l(ω) − κl(ω)â, (4)

d

dt
Ŝ

j
− = −g∗

j â − i[�j + δ�j (t)]Ŝj
−, (5)

d

dt
â =

N∑
j=1

gj Ŝ
j
− − 1

2 (γ1 + γ2)â + √
γ1b̂1(t) + √

γ2b̂2(t),

(6)

where γl = 2πκ2
l (ωo), (l = 1,2) [25]. The input signal

field containing M temporally separated photon modes
is given by b̂1(t) = ∑M

k=1 b̂1,k(t − τk), where b̂l,k(τ̃k) =
1√
2π

∫ ∞
−∞ dω exp{−i(ω − ω0)τ̃k}b̂l(ω) and obviously we have

b̂2(t)|0〉 = 0.

III. QUANTUM STORAGE

By taking into account a formal solution of Eq. (5)

Ŝ
j
−(t) = Ŝ

j
−(to)�j (t,to) exp{−i�j (t − to)}

− g∗
j

∫ t

to

dt ′�j (t,t ′) exp{−i�j (t − t ′)}â(t ′), (7)

we use the Laplace transformation for âL(p) =∫ ∞
t0

dte−p(t−t0)â(t) and similarly for b̂1,L(p) in (6) that

leads to âL(p) = ∑4
n=1 ân,L(p), where

â1,L(p) = f (p)â(to), (8)

â2,L(p) = f (p)
N∑

j=1

gj Ŝ
j
−(to)�(s)

j (p), (9)

â3,L(p) = f (p)
√

γ2b̂2,L(p), (10)

â4,L(p) = f (p)
√

γ1b̂1,L(p), (11)

where �
(s)
j (p) = ∫ ∞

to
dt exp{−(p + i�j )(t − to)}�j (t,to),

b̂l,L(−iω) = √
2πb̂l(ω),

f (p) =
(

p + (γ1 + γ2)

2
+ N1|ḡ|2

(p + �in + γ21)

)−1

. (12)

After inverse Laplace transformation, we find a solution
â(t) = ∑4

n=1 ân(t), where four terms of the cavity field ân(t) =
1

2π

∫ ε+i∞
ε−i∞ dpep(t−t0)ân,L(p) have different temporal and phys-

ical properties. The first field â1(t) is determined by the initial
field ∼ â1(t0) that disappears rapidly in the cavity on time
interval (t − to) > [ 1

2 (γ1 + γ2) + N1|ḡ1|2/(�in + γ21)]−1. The
second field component â2(t) is excited due to the interaction
with atomic coherence at t = to. The third â3(t) and fourth
â4(t) field components are excited by the bath modes b̂2(ν)
and by the signal field b̂1(t). Due to the initial state |�in(t)〉,
the field components â2(t) and â3(t) redetermine only the
QED cavity vacuum without the excitation of real photons.
By taking into account the expectation values 〈b̂†2(ν)b̂2(ν)〉 =
〈Sj

+(to)Sj
−(to)〉 = 0 for the initial state, we leave only the non-

vanishing term for the atomic coherence at t = τ determined
by the signal field

Ŝ
j
−(τ ) = −g∗

j

∫ τ

to

dt ′�j (τ,t ′) exp{−i�j (τ − t ′)}â4(t ′). (13)

By using (13) and (3), we calculate the storage efficiency
of the signal field QST (τ ) = P̄ee(τ )/n̄1 where P̄ee(τ ) =∑N

j=1 〈Sj
+(τ )Sj

−(τ )〉 is an excited level population of atoms
after the interaction with last Mth signal field mode for τ >

τM + δtM (we assume the usual relation for temporal duration
and spectral width of the kth mode δtk ≈ δω−1

k ). The total
number of photons in the input signal field is n̄1 = ∑M

k=1 n̄1,k ,
n̄1,k = ∫ ∞

−∞ dt〈b̂†1,k(t)b̂1,k(t)〉 is a number of photons in the
kth temporal mode, 〈· · ·〉 is a quantum averaging over the
initial state |�in(t)〉. Performing the algebraic calculations
of P̄ee(τ ), we find the quantum efficiency of storage QST =
(1/n̄1)

∑n
k=1 QST,kn̄1,k where the storage efficiency of the kth

mode is

QST,k =
∫ ∞

−∞
dνZ(ν,�tot,�tot,γ1,2)

〈n̂1,k(ν)〉
n̄1,k

, (14)
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with spectral function

Z(ν,�tot,�tot,γ1,2)

= �2
tot

(�2
tot + ν2)

4γ1�tot

|γ1 + γ2 + �tot
(1−iν/�tot)

− 2iν|2 , (15)

where �tot = 2N |ḡ|2/�tot is a photon absorption rate by N -
atomic ensemble in unit spectral domain within the IB line,
�tot = �in + γ21 is a total line width.

For relatively narrow spectral width δωk of the kth signal
field and weak atomic decoherence rate in comparison with IB
(δωk,γ21 � �tot), we get from Eqs. (14) and (15)

QST,k = γ1

(γ1 + γ2)

4�tot/(γ1 + γ2)

[1 + �tot/(γ1 + γ2)]2
. (16)

Quantum efficiency QST,k reaches unity if the spectral func-
tion Z(ν = 0,�tot,�tot,γ1,2) = 1 that leads to the matched
impedance condition �tot/(γ1 + γ2) = 1 when γ2/γ1 � 1
(leading to �tot

∼= γ1) coinciding with the well-known matched
impedance condition for simple absorption in a resonator
[27,28]. γ2/γ1 � 1 means a weakness of irreversible loss into
the nonsignal modes. By taking into account �tot = γ1 + γ2

we find spectral function Z(· · ·) for arbitrary frequency ν

Z(ν,�in,�tot = γ1 + γ2)

= γ1

�tot

1{
1 + ν2

�2
tot�

2
tot

[
1
4 (�tot − 2�tot)2 + ν2

]} . (17)

The spectral function Z(· · ·) for various broadening widths
�tot is depicted in Figs. 1 and 2 when the matched impedance
condition is fulfilled. As seen from Eq. (17) and in Figs. 1
and 2, there is an optimal broadening width �tot = �tot/2 (we
call it optimal spectral matching condition) where Z(· · ·) is
close to unity in the broadest spectral range. It is connected
with the fact that at this condition, the spectral function Z(· · ·)
is inversely proportional to the fourth degree of frequency ν4

rather than the second.
The first optimal condition implies that radiation entering

in the QED cavity will completely transfer to the atoms at
resonant frequency (ν ≈ 0) since the IB atomic system absorbs
the radiation with the optimal rate �tot

∼= γ1 leading to relation
â(t) = √

γ1b̂1(t) for arbitrary temporal mode shape (however,
in the limit of narrow spectral width) which also means an
absence of the reflection of the input signal field from the
QED cavity.
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FIG. 1. (Color online) Spectral function Z(· · ·) as a function of
ν for various IBs from narrow to optimal spectral width: �tot = 1
(yellow, short dashed), �tot = 3 (blue, long dashed), �tot = 5 (red,
solid); we use the units where �tot = 10.
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FIG. 2. (Color online) Spectral function Z(· · ·) as a function of
ν for IBs from optimal to infinite spectral width: �tot = 5 (red,
solid), �tot = 15 (brown, long dashed), �tot/�tot � 1 (purple, short
dashed); we use the units where �tot = 10.

The second optimal condition matches the spectral shapes
of cavity window transparency with the IB of the atomic
transition [29] near the central frequency. Thereby, the second
condition provides almost perfect fulfillment of the first
condition in the broadest spectral width of the light field modes.
Thus, if both optimal matching conditions are held, we will
get the broadest spectral range for perfect quantum storage of
each input kth mode. We note that the maximum number of
modes is limited only by Mmax ∼ �in/γ21 � 1 and the storage
of the multimode field in IB atomic system will occur by one
step procedure.

IV. MULTIMODE QUANTUM MEMORY

In accordance with the original protocol of photon echo
QM [10], after the complete absorption of the signal QM on
the IB transition, we recover the dephased atomic coherence
by changing the frequency detunings of atoms at time moment
t = τ . In general, the inversion of the atomic detunings �j →
−�j can be done by using a Doppler effect [10], properties
of local fields [11], or by directly changing a polarity of the
external magnetic or electric fields [12,13] in the cases where
the IBs are determined by Zeeman or Stark effects in external
control fields. It is also possible to recover the dephased atomic
coherence with quite large efficiency by exploiting the atomic
frequency comb structure of the IB line [30]. Below we assume
that the IBs are caused by the Stark or Zeeman effects that are
more convenient for the analyzed scheme of QM in the QED
cavity.

At first by using a Schrödinger picture we demonstrate
the QM in QED cavity in a most general way. Here, in spite
of a huge complexity of the compound light-atoms system,
we show that their quantum dynamics governed by H1 in (2)
can be perfectly reversed in time by our demand in a simply
robust way. That is by transferring to the new field operators
â = −Â and b̂1(ωo − �ω) = B̂l(ωo + �ω) (with similar re-
lations for the Hermit conjugated operators), we get a new
Hamiltonian with an opposite sign in comparison with the ini-
tial one Ĥ ′

1 = −Ĥ1 determining a temporally reversed evolu-
tion Û2[(t − τ )] = exp{−iĤ ′

1(t − τ )/h̄} = exp{iĤ1(t − τ )/
h̄}. Ignoring now a weak interaction with the bath (nonsignal)
modes and slow atomic decoherence, i.e., assuming γ21 ≈
0, γ2 ≈ 0, respectively, we find that the quantum evolution
Û2 recovers the initial quantum state of the multimode signal
field and atoms at t = 2τ due to unitary reversibility of the
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echo signal emission making the echo field spectrum inverted
relatively to the central frequency ωo in comparison with the
original one.

Coming back to the real parameters of the atomic deco-
herence rate γ21 and cavity parameters γ1, γ2, we analyze
below a retrieval of the echo field and QM efficiency for
the multimode signal field (the field index “e” is introduced
to indicate the echo emission stage). By changing �

(s)
j (p)

to �
(e)
j (p) = ∫ ∞

τ
dt exp{−(p − i�j )(t − τ )}�j (t,τ ), we find

the Laplace image of the quantum echo field irradiated by the
atomic coherence Ŝ

j
−(τ ) in accordance with Eq. (9). We find

the echo field in time domain picture âe(t) after inverse Laplace
transformation, a calculation of all temporal integrals and
summation over the atomic responses. By taking into account
large IB in comparison with the atomic decoherence rate
�in � γ21, we find the echo field irradiated in the QED cavity

âe(t) = −exp{−2γ21(t − τ )}√
γ1

∫ +∞

−∞

dν√
2π

×
M∑

k=1

Z(ν,�in,�in)b̂1,k(ν) exp{iν(t + τk − 2τ )},

(18)

where �in = 2N |ḡ|2/�in ≈ �tot and we have assumed that
γ21δtk � 1.

The total photon number operator of the echo field
signal irradiated at time t � 2τ is n̂e = ∫ ∞

−∞ dνb̂
†
e(ν)b̂e(ν) =∑M

k=1 n̂e,k , where n̂e,k = γ1
∫ ∞
τ

dt ′â†
e,k(t ′)âe,k(t ′) relates to

the kth field mode with average photon number 〈n̂e,k〉 =
exp{−4γ21(τ − τk)}QME,kn̄1,k and

QME,k =
∫ +∞

−∞
dν[Z(ν,�in,�in,γ1,2)]2 〈n̂1,k(ν)〉

n̄1,k

. (19)

By comparing (19) with the storage efficiency (14), we find
that the complete spectral function of QM [Z(ν,�in,�in)]2 is
filtering the input light spectrum in the echo field that demon-
strates an influence of two similar steps of the light-atoms
interaction in accordance with their temporal reversibility;
the factor exp{−4γ21(τ − τk)} is a result of the irreversible
atomic decoherence on the QM efficiency during the storage
time 2(τ − τk) of the th mode. QME,k for the Lorentzian
spectral shape of each kth temporal field mode 〈n̂1,k(ν)〉 =
〈b̂†1(ν)b̂1(ν)〉k = 1

π
n̄1,kδωk/(δω2

k + ν2) and for Gaussian shape

〈n̂1,k(ν)〉 = n̄1,k
δωk√

2π
exp{− ν2

2δω2
k

} are presented in Fig. 3. We

had seen that the quantum efficiency QME,k is higher for
an input light field with a Gaussian spectrum because of the
weaker character of its spectral wings for |ν| > δωk .

Total quantum efficiency QME of the multimode field
retrieval is

QME = 1

n̄1

M∑
k=1

exp{−4γ21(τ − τk)}QME,kn̄1,k. (20)

The quantum efficiency of the multimode field retrieval for
Lorentzian and Gaussian spectral shapes of the field modes are
depicted in Fig. 4 in accordance with Eqs. (18) and (19) for a
broad range of ratios �in/(γ1 + γ2) and reasonable parameters
of the IB resonant atoms.

2 4 6 8 10 12 14
∆in

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Q
M

E
,k

FIG. 3. (Color online) Quantum memory efficiency QME,k for kth
mode with Gaussian spectral shape ∼ δωk√

2π
exp{− ν2

2δω2
k

} (red, solid)

and with Lorentian spectral shape ∼ 1
π
n̄1,kδωk/(δω2

k + ν2) (blue,
dashed), the calculations have been done in units of δωk = 1 for
�tot = 10. It is seen that QME,k reaches maximum at �in = �tot/2.

As seen in Fig. 4, the QM efficiency is very close to unity
at the optimal atomic and cavity parameters �in/(γ1 + γ2) = 1
for the Gaussian spectrum (upper curve) characterized by the
spectral width which is close to the width of the Lorentzian
spectral shape (down curve). Such high QM efficiency is
possible for the Gaussian spectrum only at the condition of
optimal spectral matching �in = 2�in = 10 even for relatively
narrow IB width �in/δω = 5. Otherwise, the QM efficiency
can be close to unity only in the limit γ1,�in � δωk , i.e., for
a too large light field temporal duration even if �in = γ1 and
γ2 � γ1.

The optimal condition for the QM efficiency leads to the
optimal optical depth of the resonant transition αL ∼ γ1L/c

(where c is the speed of light) that yields almost 100% QM
efficiency even for thin optical depth. To give an example, we
consider an optical cavity in Fig. 5.

L = 1 mm and γ1 = T/(2L/c) = 108 s−1 for transmission
coefficient T = (2/3) × 10−3 of the input mirror (where the
second mirror of cavity has 100% reflectivity) that leads to
the optimal optical depth αL ≈ 3 × 10−4. Such small but
optimal optical depth can be prepared by spectral tailoring of
the original IB resonant line of rare-earth ions in the dielectric

0

50
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M

0.5
1.0

1.5
2.0

2.5

in 1 2

0.6

0.7

0.8

0.9

QME

FIG. 4. (Color online) Quantum efficiency QME for Gaussian
(upper curve) and Lorentzian (down curve) spectral shapes of the
input light fields as a function of the mode number M := {1, . . . ,100}
and of the ratio �in/(γ1 + γ2) for the cavity with γ1 + γ2 = 10,
γ2/γ1 = 0.01 and atomic parameters: �in = 5, γ21 = 0.0001 which
are given in units of spectral width δωk = δω = δt−1 = 1 of the input
signal mode; time delay between the nearest two temporal modes is
(τk+1 − τk)/δt = 5, each mode contains n̄1,k = 1 photon.

022311-4



EFFICIENT MULTIMODE QUANTUM MEMORY BASED ON . . . PHYSICAL REVIEW A 82, 022311 (2010)

L 

∆(t>τ)= -∆ 
be(out) 

b1(in) 

T<< 1 R=1 

a

atoms 

FIG. 5. (Color online) Optical scheme of the QM with one-sided
QED cavity. First input semitransparent mirror has a transmission
coefficient T � 1, a second mirror has 100% reflectivity (R = 1);
γ1 = T/(2L/c), L is a longitudinal size of the cavity, c is the speed
of light, b1(in), be(out) are the input and echo fields, a is a cavity
mode field; central box is a medium with atoms, the atomic frequency
detunings are inverted at t = τ .

crystals [5,13,17]. At last we note that it is a one-sided
character of the cavity that provides a perfect storage and
retrieval of the input light fields with 100% efficiency.

V. CONCLUSION

We have found that an efficient multimode photon echo QM
can be realized in the QED cavity. Here, high QM efficiency
can be constructed for the signal light field of sufficiently
narrow spectral width (while for its arbitrary temporal shape)
even for the atomic system with thin optical depth determined
by the matching conditions for the IB resonant line of atoms
and single cavity mode. We stress a principle advantage of the

proposed multimode photon echo QM in a QED cavity with
respect to the QMs based on well-known EIT or early variants
of photon echo QMs [5] where 100% efficiency occurred only
for the infinite optical depth of the coherent resonant atomic
system (αL � 1). Also, we have to note that the fidelity of
the analyzed photon echo QM scheme will be close to unity
if we take into account the temporally reversed shape of the
irradiated light fields. (The most recent applicable analysis
of the fidelity for photon echo QM of single photon fields is
given in [31].) So, using the QED cavity not only increases
the optical depth via the well-known Purcell factor [32],
but makes it possible to realize optimal conditions for an
interaction between the external field and atoms. The first
condition is the matched impedance condition and the second
one is the spectral matching condition. Concerning the second
condition, we anticipate that a delicate spectral tailoring of
the inhomogeneous broadening can provide a high efficiency
QM even in rather broad spectral range. The possibility
predicted here to get a highest efficiency for the QM at finite
values of the experimental parameters is easily achievable in
practice and its multimode character opens a door for real
applications in particular for the construction of quantum
repeater.
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