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Impedance-matched cavity quantum memory
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We consider an atomic frequency comb based quantum memory inside an asymmetric optical cavity. In this
configuration it is possible to absorb the input light completely in a system with an effective optical depth of
one, provided that the absorption per cavity round trip exactly matches the transmission of the coupling mirror
(“impedance matching”). We show that the impedance matching results in a readout efficiency only limited
by irreversible atomic dephasing, whose effect can be made very small in systems with large inhomogeneous
broadening. Our proposal opens up an attractive route toward quantum memories with close to unit efficiency.
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I. INTRODUCTION

Quantum memories for photons [1–4] are essential ele-
ments for many applications in quantum information pro-
cessing, including quantum repeaters [5] and linear-optics
quantum computing [6]. Most conceivable applications require
memories with storage and readout efficiencies that are at or
above the 90% level (and likely far above that level for quan-
tum computing). While quantum memory experiments have
progressed impressively over the last few years, efficiencies
typically range from a few percent to a few tens of percent
[7–16]. Only a few experiments have reached efficiencies
above the 50% level [17–19], most notably a storage and
readout efficiency close to 70% has been achieved [18] in
a highly absorbing solid-state atomic ensemble using the
gradient echo memory protocol [20].

It is usually thought that implementing memories in
atomic ensembles [3] with efficiencies close to unity will
require optical depths much greater than one [18,21,22].
However, reaching high optical depth is difficult in practice,
in particular for the most attractive solid-state systems, such
as rare-earth ion doped crystals [4]. Individual crystals with
realistic dimensions and doping levels often have very limited
optical depth. One exception is praseodymium-doped Y2SiO5

crystals [18]. But in order to fully exploit the potential of
other materials, having considerably lower optical depth but
otherwise interesting coherence properties, it would be of great
interest to find a general method to overcome this crucial
limitation.

Here we show that memories with unit efficiency can be
realized in a cavity-memory system with an optical depth
of one, by using the impedance matching condition. This
condition is attained [23] when the absorption, per cavity round
trip, is exactly matched to the transmission of the coupling
mirror of the (asymmetric) cavity. The result is a complete
absorption of the incoming light and we show that the resulting
memory readout efficiency reaches 100% for optical depths
around 1. The use of impedance matching had previously
been suggested for quantum memories in homogeneously
broadened systems [24], however, the results of Ref. [21]
later showed that in such systems high effective optical depth
is always required for high efficiency, because the effect
of spontaneous decay cannot be ignored. In homogeneous

systems the efficiency roughly scales with 1 − 1/d [21], where
d is the optical depth.

Here we show that the situation is different in systems
with inhomogeneous broadening, for instance in solid-state
approaches [4,22]. In such systems there is an additional
timescale given by the inverse of the inhomogeneously
broadened bandwidth. This can be much shorter than the
spontaneous decay time. As a consequence, the effects of
spontaneous decay can be negligible during absorption and
re-emission even for moderate optical depth. Long storage
times are nevertheless possible because the inhomogeneous
component of the dephasing can be made to be reversible, e.g.,
by tailoring the spectral density in the form of a frequency
comb (AFC) [22] or by using an externally controlled
reversible inhomogeneous broadening (CRIB) [4,20]. As a
consequence, the principle of impedance matching can develop
its full potential in inhomogeneously broadened systems, as we
will now show in more detail.

II. PERFECT ABSORPTION THROUGH
IMPEDANCE MATCHING

Let us start by considering the absorption of light by an
inhomogeneously broadened atomic ensemble in a one-sided
cavity, see Fig. 1. The readout step will be treated in Sec. III,
for the case of an AFC-based control of the inhomogeneous
dephasing. The dynamical equation for the cavity field E is

Ė = −κE +
√

2κEin + iP̃
∫

dωn(ω)σω, (1)

where κ is the cavity decay rate, P̃ is proportional to the dipole
moment [22], ω is the detuning, n(ω) is the inhomogeneous
atomic spectral distribution, and σω is the atomic polarization
at detuning ω. The equation for the atomic polarization is

σ̇ω = −iωσω − γhσω + iPE, (2)

where γh is the homogeneous linewidth and P is the dipole
moment. Finally the input-output relation for the cavity is

Eout = −Ein +
√

2κE, (3)

which is valid for relatively high cavity finesse. (We will drop
this simplifying assumption later on.)
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FIG. 1. (Color online) We consider a quantum memory (QM)
based on an atomic frequency comb which is placed in an asymmetric
optical cavity with reflectivity R1 < R2 ≈ 1. The input and output
fields Ein and Eout are separated by a quarter-wave plate (λ/4) and a
polarization beam splitter (PBS). If the QM strongly absorbs only a
particular linear polarization mode, one can also use a Faraday rotator
and a half-wave plate as in Ref. [16]. The atomic comb memory
is based on an inhomogeneously broadened transition, where the
absorption depth d is shaped into a comb structure as function of
detuning δ with periodicity � and tooth width γ . The interaction
between the atomic comb structure and a incoming light pulse leads
to a coherent re-emission at t = 2π/�. Longer storage times can be
achieved by using additional ground state levels [22,25].

Putting the solution of Eq. (2) into Eq. (1) gives

Ė(t) = −κE(t) +
√

2κEin(t)

−PP̃
∫ t

−∞
dt ′ñ(t − t ′)e−γh(t−t ′)E(t ′), (4)

where ñ(t) is the Fourier transform of n(ω). If γi � γh,
where γi is the width of the inhomogeneous distribution
n(ω), then the exponential containing γh can be ignored over
the relevant timescales. If moreover γi is significantly larger
than the bandwidth of the input light, then ñ(t − t ′) can be
approximated as N

γi
δ(t − t ′) (for times around t = 0, i.e., when

the absorption happens, cf. below for much later times), where
N = ∫

dωn(ω) is the total number of atoms, yielding

Ė = −κE +
√

2κEin − 	E, (5)

where 	 = NPP̃
γi

emerges as the absorption rate of the cavity
field by the atomic ensemble.

Under conditions where the input field varies much more
slowly than the cavity lifetime, i.e., when the input spectrum
is in resonance with the cavity, one can now adiabatically
eliminate the cavity mode (i.e., set Ė = 0), which gives

E =
√

2κ

κ + 	
Ein. (6)

Plugging this into Eq. (3) results in

Eout = κ − 	

κ + 	
Ein. (7)

Total absorption, corresponding to Eout = 0, can thus be
achieved for κ = 	, which is the impedance matching con-
dition in our case. The intuitive explanation is that in this
situation the absorption losses have exactly the same effect as
a second identical mirror would. To the input field the cavity-
memory system therefore looks exactly like a symmetric
Fabry-Perot cavity, leading to zero reflection on resonance
[23]. The ratio 	/κ is exactly the effective optical depth, or the
cooperativity C in the notation of Ref. [21]. Perfect absorption

is thus achieved for an optical depth of one, a very moderate
value. Our results are nevertheless consistent with those of
Ref. [21] in the sense that if all N atoms were concentrated into
the homogeneous linewidth γh rather than the inhomogeneous
linewidth γi , the resulting cooperativity would be very large,
given our assumption that γi � γh. However, fortunately there
is no need for all the N atoms to actually have the same
frequency in the quantum memory schemes based on control
of inhomogeneous dephasing.

III. HIGH-EFFICIENCY READOUT FOR
AN AFC MEMORY

In the context of quantum memories it is crucial to also
obtain an efficient readout of the stored excitation. Here we will
limit our analysis to the case of an AFC-based [22] quantum
memory. We only briefly remind the reader of the essential
features, for details we refer to Ref. [22]. The inhomogeneous
absorption is shaped into a comb structure, by optical pumping
techniques, having periodicity � and peak width γ (see
Fig. 1). The interaction between an incoming light pulse in
resonance with the comb results in a coherent re-emission
after a time t = 2π/�, due to a periodic rephasing of the
atomic coherence (we assume that the input spectrum is larger
than �). Note that freely controllable storage times far beyond
2π/� can be achieved by using an additional ground state
level [22], as recently also shown experimentally [25].

In the case of a high AFC comb finesse FA = �/γ , the
efficiency of this echo-type emission can be very large for
large optical depths [22]. For a forward readout configuration
it is limited to 54% due to re-absorption in the sample, while for
a backward readout it can reach 100% due to an interference
effect that is well understood [22]. We will show below that
in our proposed cavity arrangement, the efficiency can reach
100% for a much lower optical depth, also without having to
resort to the backward recall procedure [22].

We thus assume that n(�) has the shape of a comb, as in
Fig. 1. As a consequence ñ(t) has peaks not only at t = 0
(as we used before), but also at integer multiples of 2π/�.
Following Ref. [22] one can derive the following equation for
the cavity field around the first rephasing at t = 2π/�:

Ė(t) = −κE(t) − PP̃√
2κ

∫ 0

−∞
dt ′ñ(t − t ′)Ein(t ′)

−PP̃
∫ t

0
dt ′ñ(t − t ′)E(t ′), (8)

similar to Eq. (A15) in Ref. [22]. Using similar arguments as
for the absorption, this reduces to

Ė(t) = −κE(t) − 2
	

√
ηF√

2κ
Ein

(
t − 2π

�

)
− 	E(t), (9)

which is analogous to Eq. (A16) in Ref. [22]. Here ηF describes
the reduction in efficiency due to the fact that the individual
teeth in the frequency comb have finite width, which leads to
irreversible atomic dephasing. In the case of Gaussian peaks
[22] one finds ηF ≈ e−7/F 2

A . This should not be confused with

the cavity finesse FC = π(R1R2)
1
4

1−√
R1R2

.
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Adiabatically eliminating the cavity mode as before and
using the fact that there is no input field at t = 2π/� we find

Eout(t) = −2	
√

ηF

κ + 	
Ein

(
t − 2π

�

)
= −√

ηFEin

(
t − 2π

�

)
,

(10)

where the last equality holds under the impedance matching
condition (κ = 	). One sees that the readout efficiency is
only limited by the finesse of the atomic frequency comb,
which without the cavity would correspond to an infinitely
high optical depth d [22].

The above treatment applies to the regime where R1 ≈ 1
and R2 = 1. More precise results for a general asymmetric
cavity can be obtained in the following way. For the absorption
it is sufficient to include absorption factors into the usual “sum
over all roundtrips” treatment of a Fabry-Perot cavity. This
yields

Eout = Ein
−√

R1 + √
R2e

−d̃

1 − √
R1R2e−d̃

(11)

on resonance, where d̃ is the optical depth of the crystal inside
the cavity (averaged over the frequency comb, cf. Ref. [22]).
One sees that perfect absorption is still achievable provided
that

√
R1 = √

R2e
−d̃ , which is the impedance condition [23].

A similar treatment is possible for the memory readout.
From Ref. [22] it is known that the readout efficiency can
be obtained via a “sum over all amplitudes” approach. For
example, for forward readout the relevant efficiency factor is
given by Eq. (A19) of Ref. [22],∫ L

0
dze−α̃z/2α̃e−α̃(L−z)/2 = α̃Le−α̃L/2, (12)

where L is the length of the crystal, α̃ is the absorption
coefficient (α̃L = d̃), and one integrates over all possible
points of absorption z. The first factor under the integral
corresponds to the amplitude for the photon to be transmitted
to the point z, the second factor can be interpreted as the
amplitude for absorption and re-emission (in z), and the third
factor is the amplitude to be transmitted from z to the end
of the crystal after re-emission. This can be generalized for a
Fabry-Perot cavity, taking into account the fact that the photon
can do an arbitrary number of round trips in the cavity before
absorption and after re-emission. The result is

2
∫

dz

√
T1e

−α̃z/2

1 − √
R1R2e−d̃

α̃
e−α̃(L−z)/2e−α̃L/2

√
T1R2

1 − √
R1R2e−d̃

, (13)

where T1 = 1 − R1 is the transmission of the first mirror.
Again the first factor under the integral corresponds to propaga-
tion before absorption, the second factor is the absorption and
re-emission amplitude, and the third factor is for propagation
after re-emission. The factor of 2 in front of the integral stems
from the fact that the photon can be absorbed while propagating
either in forward or in backward direction. Note that inside the
cavity there is no change of direction upon re-emission. (Of
course, the output field of the asymmetric cavity propagates
predominantly in the opposite direction to the input field, but
this is an automatic consequence of the interference between
all the possible paths.) Simplifying the above expression,
and multiplying by

√
ηF to take into account the irreversible

component of the atomic dephasing, one obtains the following
expression for the square root of the total memory efficiency η

(as is customary for quantum memories, we define efficiencies
with respect to intensities, not amplitudes):

√
η = 2d̃e−d̃T1

√
R2

√
ηF

(1 − √
R1R2e−d̃ )2

. (14)

Our previous results correspond to the limit
√

R1 = 1 − ε with
ε � 1, R2 = 1, d̃ � 1. In this case Eq. (14) becomes

√
η = 2d̃

√
ηF

ε + d̃
, (15)

so that we recover our previous result (η = ηF ) under the
impedance matching condition, which is now expressed as
ε = d̃ .

IV. IMPLEMENTATION ISSUES AND CONCLUSIONS

The total memory efficiency η (which includes absorption
and re-emission) is shown in Fig. 2 as a function of input mirror
reflectivity R1. Clearly one can achieve very high efficiency
for low reflectivities (in the context of optical cavities) and for
very reasonable optical depths. For example, a memory with a
peak optical depth d = 1 and AFC finesse FA = 10, such that
d̃ = 0.1, has an efficiency of only 1% without cavity, but can
be boosted to 92% efficiency by an impedance-matched cavity
of finesse FC ≈ 31.

An impedance-matched cavity memory can be operated for
a large variety of conditions. Equation (14) allows us to find
the best working conditions for a particular situation. There
are some assumptions, however, that must be fulfilled. The
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FIG. 2. (Color online) We here show the efficiency of an AFC-
cavity quantum memory in an asymmetric cavity (R2 = 0.999) as
a function of the input mirror reflectivity R1, based on Eq. (14).
We show the result for different comb finesse FA = 10 (solid
line), FA = 6 (dashed line), and FA = 4 (dashed-dotted line). The
single-pass effective absorption depth was set to d̃ = 0.1, which in a
memory without cavity would bound the efficiency to ∼1% [by use
of Eq. (12)]. In the figure one clearly observes the great enhancement
of memory efficiency using an impedance-matched cavity, i.e., at
R1 = exp(−2d̃) ≈ 0.82, reaching η ∼ 92% for FA = 10. At this
point the efficiency is only limited by irreversible atomic dephasing
due to the finite comb finesse FA. We also plot the reflectivity of the
combined AFC-cavity system (dotted line), showing the complete
absorption of light at the optimal point.
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quantum memory bandwidth must be significantly smaller
than the width of the optical cavity in order to fulfill the
resonance condition used above. As an example, if we assume
a cavity length L = 1 cm (reasonable for typical crystal
dimensions) the cavity width would be ≈480 MHz for the
example above. We have also assumed that the cavity has no
losses. In general the losses must clearly be significantly lower
than the memory absorption probability (per single pass). The
effect of losses can be evaluated, however, by changing the
reflectivity of the second mirror R2, thus introducing a loss to
the environment. For the example above, R2 = 0.99 instead of
R2 = 0.999 would reduce the efficiency to 84%. Practically
a good AR-coating on the crystal should keep the losses low
enough.

In conclusion, we have shown that impedance matching to
an optical cavity allows the implementation of highly efficient
quantum memories for an effective optical depth of only one.
Our proposal should make it much easier for experiments to
reach the truly high efficiency regime.

Note added. Recently, we became aware of a recent related
proposal [26].
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