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Universal behavior of the geometric entanglement measure of many-qubit W states
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We show that when N >> 1 the geometric entanglement measure of general N-qubit W states, except maximally
entangled W states, is a one-variable function and depends only on the Bloch vector with the minimal z component.
Hence one can prepare a W state with the required maximal product overlap by altering the Bloch vector of a
single qubit. Next we compute analytically the geometric measure of large-scale W states by describing these
systems in terms of very few parameters. The final formula relates two quantities, namely the maximal product
overlap and the Bloch vector, that can be easily estimated in experiments.
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I. INTRODUCTION

The physics of many-particle systems differs fundamentally
from the one of a few particles and gives rise to new
interesting phenomena, such as phase transitions [1,2] or
quantum computing [3—6]. Entanglement theory, in particular,
appears to have a much more complex and richer structure in
the N-partite case than it has in the bipartite setting. This
is reflected by the fact that multipartite entanglement is a
very active field of research that has led to important insights
into our understanding of many-particle physics [7-14]. In
view of this, it seems worthy to investigate also the behavior
of entanglement measures for large-scale systems. Despite
the fact that the number of entanglement parameters scales
exponentially in the number of particles [15], it is sometimes
possible to capture the most relevant physical properties by
describing these systems in terms of very few parameters.

Recently a duality between highly entangled W states and
product states has been established [16]. The important class of
W states [17] represents a particular interesting set of quantum
states associated with high robustness against particle loss and
nonlocal properties of genuine entangled multipartite states
[18-21]. And different experimentally accessible schemes to
generate multipartite W states have been proposed and put into
practice over the years [22-25].

The duality specifies a single-valued function r of entan-
glement parameters. We shall refer to r as the entanglement
diameter, as it will play a crucial role throughout this article.
Another reason for the term entanglement diameter is that r can
be interpreted geometrically as a diameter of a circumscribing
sphere. The geometrical interpretation and its illustration will
be presented in the appendix and now we focus on the physical
significance of r.

The entanglement diameter uniquely defines the maximal
product overlap and nearest product state [7,26-28] of a given
highly entangled W state. It has two exceptional points in the
parameter space of W states. At the second exceptional point
the reduced density operator of a some qubit is a constant
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multiple of the unit operator and then the entanglement
diameter becomes infinite. The maximal product overlap g
of these states is a constant regardless how many qubits
are involved and what are the values of the remaining
entanglement parameters. These states are known as shared
quantum states and can be used as quantum channels for
the perfect teleportation and dense coding. Thus the shared
quantum states are uniquely defined as the states whose
entanglement diameter is infinite.

Furthermore, highly entangled W states have two different
entangled regions: the symmetric and asymmetric entangled
regions. In the computational basis these regions can be defined
as follows. If a W state is in the symmetric region, then the
entanglement diameter is a fully symmetric function on the
state parameters. Conversely, if a W state is in the asymmetric
region, then there is a coefficient ¢ such that the ¢ dependence
of the entanglement diameter differs dramatically from the
dependencies of the remaining coefficients. Hence the point
of intersection of the symmetric and asymmetric regions is
the first exceptional point. It depends on state parameters and
its role has not been revealed so far. One thing was clear that
the first exceptional point does not play an important role for
three- and four-qubit W states [29,30].

In this article we show that the first exceptional point
is important for large-scale W states. It approaches to a
fixed point when number of qubits N increases and becomes
state-independent(up to 1/N corrections) when N > 1. As
a consequence the entanglement diameter, as well as the
maximal product overlap, becomes state-independent too and
therefore many-qubit W states have two state-independent
exceptional points. The underlying concept is that states whose
entanglement parameters differ widely may nevertheless have
the same maximal product overlap and this phenomenon
should occur at two fixed points. This is an analog of the
universality of dynamical systems at critical points. It is an
intriguing fact that systems with quite different microscopic
parameters may behave equivalently at criticality. Fortunately,
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the renormalization group provides an explanation for the
emergence of universality in critical systems [1,2,31].

The developed concept distinguishes three classes of W
states. The first class consists of highly entangled W states
which are below both exceptional points and then r varies
from rp, = 1/2torg = 1/«/§ + O(1/N). We will show that
these states are in the symmetric region and their entanglement
diameter is a slowly oscillating function on entanglement
parameters. Accordingly, the maximal product overlap is an
almost everywhere constant close to its greatest lower bound.
Similar results have been obtained in Ref. [32], where it is
shown that almost all multipartite pure states with sufficiently
large number of parties are nearly maximally entangled with
respect to the geometric measure [7] and relative entropy
of entanglement [8]. We will not analyze rigorously these
states since they are too entangled to be useful in quantum
information theory [33].

The second and most interesting class consists of highly
entangled W states which are between two exceptional points
and then r varies from ry to infinity. These states are in
the asymmetric region and the behavior of the entanglement
diameter is curious. We will show that r is a one-variable
function in this case and depends only on the Bloch vector
b of a single qubit. As a consequence, g depends only on
the same Bloch vector too and its behavior is universal.
That is, regardless how many many qubits are involved and
what are the remaining N — 1 entanglement parameters the
function g(b) is common. We will compute analytically g(b)
and thereby find the Groverian and geometric entanglement
measures [7,28] for the large-scale W states even if neither
the number of particles nor the most of state parameters are
known.

The third class consists of slightly entangled W states which
are above both exceptional points. In this case the maximal
product overlap takes the value of the largest coefficient and
these states do not posses an entanglement diameter. We will
not analyze this trivial case, but will combine the functions
g(b) for slightly entangled and highly entangled asymmetric W
states and obtain an interpolating function g(b) valid for both
cases. It is in a perfect agreement with numerical solutions
and quantifies the many-qubit entanglement in high accuracy
(Ag/g ~ 1073 at N ~ 10).

The importance of the interpolating formula in quantum
information is threefold. First, it connects two quantities,
namely the Bloch vector and maximal product overlap, that
can be easily estimated in experiments [34,35]. Second, it is
an example of how we compute entanglement of a quantum
state with many unknowns. Third, if the Bloch vector varies
within the allowable domain then maximal product overlap
ranges from its lower to its upper bounds. Then one can prepare
the W state with the given maximal product overlap, say go,
bringing into the position the Bloch vector, say g(bo) = go.

This article is organized as follows. In Sec. II, we review
the main results of Ref. [16]. In Sec. III, we consider two- and
three-parameter W states in the symmetric region and show
that all of these states are almost maximally entangled. In
Sec. IV, we consider three- and four-parameter W states in
the asymmetric region and compute explicitly their maximal
product overlap. In Sec. V, we generalize the results of Sec. 11
and Sec. IV to arbitrary many-qubit W states. In Sec. VI, we
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discuss our results. In the appendix, we provide a geometrical
interpretation for the entanglement diameter.

II. MAXIMAL PRODUCT OVERLAP OF W STATES

In the computational basis N-qubit W states can be
written as

IW,) = ¢1]100...0) 4 ¢2]010...0) 4 - - - + ¢c»00...01), (1)

where the labels within kets refer to qubits 1,2, ..., N in that
order. The phases of the coefficients ¢; can be absorbed in
the definitions of the local states |1;)(i =1,2,...,N) and
without loss of generality we consider only the case of positive
parameters. For the simplicity we assume that cy is the
maximal coefficient, that is, cy = max(cy,cy, ...,cn).

The maximal product overlap g(¥) of a pure state |y) is
given by

) =, max (Y luiuz..u)l, @)

2seey un

where the maximization runs over all product states. The larger
g is, the less entangled is |/). Hence for a quantum multipartite
system the geometric entanglement measure E, is defined as

E; = —2logg(y).

The maximal product overlap demarcates three different
entangled regions in the parameter space of W states:

(a) The symmetric region of highly entangled W states,
where g(ci,¢a,...,cy) is a symmetric function on all coef-
ficients c;.

(b) The asymmetric region of highly entangled W states,
where the invariance of g(cj,cs, ...,cy) under the permuta-
tions of coefficients ¢; ceases to be true.

(c) The region of slightly entangled W states, where the
inequity gz(cl,cz, ...,cy) > 1/2 holds.

The appearance of the three entangled regions is the conse-
quence of the existence of the two critical values for the largest
coefficient ¢y . The first critical value r1(cy,ca, . .. ,cy—1) is the
solution of

/&—c?+/ﬁ—w§+~-+¢ﬁ—c§4=(N—2yh
3)

which always exists and is unique. Note that the first critical
value r; for the coefficient cy depends on the remaining
coefficients ¢;,i = 1,2,...,N — 1 but does not depend on
cy. Nonetheless we will use the abbreviation ri(cy) =
ri(ci,ca, ... ,cy_1) whenever no confusion occurs.

The second critical value ry(cy,ca, ... ,cn—1) 1S given by

r22=c%+c%+~-~+c]2\,_l. 4)
In what follows we will use the abbreviation ry(cy) =
ry(cy,cz, ... ,cy—1 for the simplicity.

The second critical value is always greater than the first one
and thus there are three cases. The first case is cy < ry and the
maximal product overlap is expressed via the fully symmetric
entanglement diameter r(cy,c, .. .,cy), which is the unique
solution of

Jr-grfr-gs s g =w-on ©
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Then g is given by

2 r? cf

2 2
x(1+‘/1—:—§)...<1+ —i—@’) 6)

and is a bounded function satisfying the inequalities szv <

gz(cl,cz, cooen) < 1/2.
The second case is r; < cy < r,. In this case the entangle-
ment diameter 7(cy,c3, . .. ,cy) is the unique solution of

Jr-grfr-ge . mrog=w-on @

where only the last radical has the — sign. Then g takes the
form

2 r? cf

2 2
x(1+,/ —%)--~(1— —i—”;) @®)

where again the negative root is taken from the last radical.
The expression (8) also has an upper and lower bounds and the
inequalities cf\, < gz(cl ,€2, ...,Cn) < 1/2hold everywhere in
the asymmetric region.

The third case is cy > r; and g takes the value of the largest

coefficient in this case

gt = Cz2v' 9

Now g is bounded below and satisfies the inequality g> > 1/2.

Despite the fact that there exist three different expressions
for the maximal product overlap it is a continuous function on
state parameters. Indeed, at cy = r; both Egs. (5) and (7) have
the same solution r = r; = cy and expressions (6) and (8) for
g coincide. At cy — r, the solution of (7) goes to infinity,
r — oo, and (8) asymptotically comes to (9). At this limit

r
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g% = ¢ =r} = 1/2 and thus the surface g*(cy,c2, . ..,cy) =

1/2 separates out slightly and highly entangled W states.

III. SYMMETRIC ENTANGLEMENT REGION

In this section we analyze the maximal product overlap of
two- and three-parameter W states that belong to the symmetric
region of entanglement and show that if all coefficients are
small, then r is a slowly oscillating function close to 1/2.

A. Two parameter W states

Equations (5) and (7) are solvable for N = 3 and the answer
is [29]
2R,
g =
c3,

where R is the circumradius of the triangle cy,c;,c¢3.

When N > 4 Egs. (5) and (7) cannot be explicitly solved
to give analytic expressions for r in terms of the coefficients
¢y unless the state posses a symmetry. For example, for N = 4
the equations are solvable if any two coefficients coincide
and unsolvable if all coefficients are arbitrary [30]. However,
when N > 1 the situation is different. In many cases one can
derive approximate solutions that quantify the entanglement
of W states in high accuracy. We will find such approximate
solutions and compare them with the exact or numerical
solutions.

Consider first a W states with N =m + k qubits and
coefficients

if i <ct+c3
o o (10)
if c5=2ci+c

Cntl = Cmy2 =+ = Cpuyk = b.
(11)

When m > 1 and n > 1 the state is in the symmetric region
and Eq. (5) is reduced to

== =cy=a,

»  2Nmk — 4N — 1)(m cos® 0 + k sin” ) + 2mk(N — 2)v/D

my/r2 —a? +ky/r2 —b> = (N = 2)r. (12)

This equation is solvable by radicals. Setting a =
cos@//m, b = sinf/+/k one obtains

(13)

16(N — D(m — Dk — 1)

where

D=1- sin® 26. (14)

Atm =1 or k = 1 the denominator and numerator vanish
in Eq. (13), but their ratio gives the correct answer. We will
not consider this case since it is analyzed in detail in Ref. [30].

If m,k > 1, then r is almost constant since

21 1 1
colo(Mro(l). u

The question is when (15) achieves the required accuracy.
It can be understood by reference to Fig. 1, where the 6

dependence of the exact solution (13) is plotted. The graphics
show that Ar/r ~ 1072 at N ~ 10.

As a consequence of Eq. (15) g2 is also almost con-
stant and close to its lower bound 1/e [36]. Indeed, using
approximations

1 / Clz " 2 /4,2
_ ~ pMa /4r
2_m<1 + 1 r2) e )
1 [\ e
_ ~ o /4r
2_k<1 + 1 r2> e

(16)
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FIG. 1. (Color online) The plots of the 8 dependence of the exact
solution r(0) for the state (11). The top, middle, and bottom lines
represent the cases (m = 10,k = 10), (m = 12,k = 18), and (m =
30,k = 30), respectively.

ero(i)re(r)
g=—-+0—)+0[-). a7
e m k

The behavior of the maximal product overlap g(6) given
by Egs. (6) and (13) is plotted in Fig. 2, which shows that
Ag/g ~ 1072 at m,k ~ 10. It is difficult if not impossible to
observe such small deviations of the maximal product overlap
in experiments and therefore approximate formulas (15) and
(17) have a good accuracy when N > 20.

one obtains

B. Three parameter W states
Consider now a three-parameter Wstate with N = m + k +
[ qubits and coefficients

Cl='"=Cp=0a, Cpgl="'+=Cpsk =Db,
Cm+k+1 =+ = Cmtk+l = C. (18)
We will analyze the case m,k,l >> 1. Then Eq. (5) can be
rewritten as
mVrt—a? + kP = I =2 = (N = 2. (19)

From the normalization condition ma? + kb* +1c2 =1 it
follows that a2 < 1 /m < 1 and similarly b2,c? « 1. On the

0385
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FIG. 2. (Color online) The maximal product overlap function
g2(9) at different values of m and k. The axes origin is put at the point
(0,1/e) to make it easer the comparison of the exact ant approximate
solutions. The top, middle, and bottom lines correspond to the
values (m = 10,k = 10), (m = 12,k = 18), and (m = 30,k = 30),
respectively.
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other hand, (19) shows thatr ~ 1, and therefore we can expand
the radicals in powers of a®/r?, b?/r?, and ¢?/r>. Then

#—1+0<111> (20)
4 mk’l)’
Again we got the same answer for r, which means that for
partitions with large number of qubits r depends neither on
m,k,l nor on a,b,c. More precisely, r depends only on the
expression ma’* + kb + Ic> = ||, which drops out owing
to the normalization condition.

The equation (19) can be solved explicitly, but the resulting
half-page answer is impractical and we will compare (20)
with the numerical solution instead. For this purpose we use
the parametrization

a=sinfcosp//m, b=sinfsing/vVk, c=cosé.

The behavior of the numerical solution 7(6) of Eq. (19) for
various values m,k,l and ¢ is plotted in Fig. 3. The graphics
show that the approximate solution is in a perfect agreement
with the numerical solution for N > 1.

In summary, in the symmetric region of highly entangled W
states the maximal product overlap does not depend on state
parameters when many qubits are involved. Consider a W state,
where ny,ny, ... ,n; product vectors in the computational basis
have coefficients cy,cy, ... ,ck, respectively. Then g does not
depend on partition numbers n; or amplitudes ¢; and the ap-
proximate solution (15) with the maximal product overlap (17)
quantifies the entanglement in high accuracy. For example, at
N ~ 10 the accuracy is Ag/g ~ 1072, This approximation is
true unless the condition n; > 1(i = 1,2, ...,k) is violated.
What is happening if this condition is violated is analyzed in
the next section.

IV. ASYMMETRIC REGION OF ENTANGLEMENT

In this section we consider three- and four-parameter W
states in the asymmetric region and show that if one of
coefficients exceeds the first critical value r|, then r is a rapidly
increasing function and ranges from 1/+/3 to infinity when the
maximal coefficient ranges from the first critical value to the
second critical value.
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FIG. 3. (Color online) The curves show the 6 dependence of
the function r(@). The upper, middle, and bottom curves repre-
sent the cases m=k=1=10,p =7/4), Im =k =1=20,0 =
57 /12) and (m = 10,k = 20,] = 30,9 = 7/6), respectively.

022309-4



UNIVERSAL BEHAVIOR OF THE GEOMETRIC ...

A. Three-parameter W states

Consider now the case when [ = 1 in (18)

L =-"=Cy =4a, Cm+l="'=Cm+k=b’ Cm+k+1 = C.

21

If c « 1, then ¢/r is small and r is almost constant. This
case is analyzed in the previous section and now we focus on
the case when c/r cannot be neglected. Then either ¢ < r or
ry < c <n.

When ¢ < r; Eq. (5) takes the form

myrt —a +kJr2 =2 42— =(N-2r.  (22)

The ratios a/r and b/r are small since m,k > 1. Hence we
expand the radicals in powers of these ratios up to quadratic
terms and solve the resulting equation. The answer is

r=—

/1 c? _1—3c2
2.1 =22 2 1—c2’

max(a’,b%) < * <

1 1-¢2

(23)

It is reasonable that » — 1/2 atc — 0.
When ¢ > r| Eq. (7) takes the form

myr2 —a? +kJr2 —bp> —\r2 —c2=(N —2)r.  (24)

Its approximate solution is

1 1 —c? : c2_3c2—1
2.1 =22 P2 1=c2’
A (25)
§<C <§.

As one would expect, r — oo at ¢ — 1/2.
Surprisingly, both solutions (23) and (25) can be unified to
a single solution as follows:

1 1-¢2
F= - —,
21 —=2c
The question at issue is when (26) gives a required accuracy
in the asymmetric region r; < ¢ < rp,. We compare it with
the numerical solutions of (22) and (24) for the values (m =
8,k =10,a/b = 0.8,r; ~ 0.34) in Fig. 4, where the solid line
is the plot of (26) and the dashed line is the numerical solution.

Remarkably, the approximate solution is in a perfect agreement
with the numerical one in the asymmetric region.

1
max(a®,b%) < ¢ < > (26)

B. Four-parameter W states

However, there are W state that are outside the realm of the
model sketched in the previous subsection. These are states
with few (at most three) coefficients close to the first critical
value r ~ 1/ ﬁ In this case these coefficients are not small
and the resulting r should has a different behavior.

Notice, two coefficients cannot exceed the first critical
value simultaneously. But we can construct W states whose
coefficients depend on a free parameter in such a way that at
one value of the free parameter the last coefficient exceeds the
first critical value and at another value of the free parameter the
preceding coefficient exceeds the first critical value. Below we

PHYSICAL REVIEW A 82, 022309 (2010)
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FIG. 4. (Color online) Graphic illustrations of the function r(c)
for the three- and four-parameter W states. The solid curve is the
approximate solution (26). The dashed curve is the joined numerical
solution of Egs. (22) and (24). All remaining coefficients are well
away from the first critical value (=0.58) when ¢ varies within
the range of definition in this case. Accordingly, the state is in the
symmetric region when 0 < ¢ < 0.58 and in the asymmetric region
when 0.58 < ¢ < 0.707. The dotted line is the numerical solution for
the state (27). Now another coefficient may exceed the first critical
value. Therefore there are two first critical values, for the last and the
preceding coefficients, respectively. The first critical value for the next
to last coefficient ¢ is ~0.606 and for the last coefficient d is ~0.59
which is attained at ¢ = 0.45657. Thus the state is in the symmetric
region when 0.45657 < ¢ < 0.606 and in the asymmetric region
otherwise. Remarkably, the three curves coincide when ¢ > 0.606.

construct an illustrative example of a such state and analyze
its entanglement diameter.

An example is the 19-qubit four-parameter W state with
coefficients

cp=--- ng"':C'17=b

(27
cig=c¢, cp=d.
For the normalized states we can use free parameters ¢, k, and
c as follows

e 0052¢(1 _ ), b= sin2<p(1 _ ),
Tk 10k
k—1
d> = T(1 — ).

Now we analyze the function r(c) at k = 1.8,¢ = w /4.

(a) The next to last coefficient ¢ coincides with its first
critical value r;(c) at ¢ =~ 0.606, that is, the solution of the
system

7m+10 rP—b2+ \Jr?—d>=17r, and r =c
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isr; = ¢ = 0.606. Then r(c) should range from r (c) to infinity
when c¢ ranges from r;(c) to 1/2 and should has a vertical
asymptote at ¢ — 1/2.

(b) Thelast coefficient d coincides with its first critical value
ri(d) at d ~ 0.593, that is, the solution of the system

7\/r12—7a2+10\/r12—b2+\/r12—02= 17ry and ri=d

is r; = d =~ 0.593. Note that at this point ¢ &~ 0.45657. Then
r should increase when d ranges from r(d) to dp,x. But the
maximum value of d is less than the second critical value
since d,%m =d*(c=0)=(k—1)/k =4/9 < 1/2. Therefore
r should be bounded above in the interval [r(d),dm.x] and
attain a maximum at dp,x. As d is a decreasing function on c,
r should attain a maximum at ¢ = 0 and then decrease when ¢
ranges from 0 to 0.45657.

(c) The state is in the symmetric region when d < r;(d) and
¢ < ri(c). Hence r(c) should be minimal and nearly constant
when 0.45657 < ¢ < 0.606.

The dotted line in Fig. 4 represents the ¢ dependence of the
function r(c). It agrees completely with the above analyze.

The main point is that all the three curves coincide when
¢ > ri(c). In the next section we will show that this is not
accidental and the curves must coincide. In this context the
equation (26) is a surprising result. The quantity r, as well
as the maximal product overlap g, depends from ¢ only. The
rest of the state parameters appear in (26) in the combination
|¥|> — ¢? and drop out by the normalization condition!

Furthermore, we can derive an analytic expression for the
maximal overlap. Using approximations (16) one obtains

g2() = (1 — 2y 1720/01=¢), (28)

The behavior of the function g(c) is shown in Fig. 5. The
solid line is the curve (28), the dashed curve is the numerical
solution for the state (21) and the dotted line is the numerical
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B0 0.44
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0.38

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 5. (Color online) The plots of the function g(c). The solid
line is the approximate solution (28), the dashed and dotted lines are
the numerical solutions for the states (21) and (27), respectively. The
curves may have different behaviors when ¢y < r; but coincide when
cy = 1.

PHYSICAL REVIEW A 82, 022309 (2010)

computation for the state (27). They all coincide when ¢ >
ri(c).

For highly entangled states the maximal product overlap
ranges from its lower to the upper bound when c ranges from
r1 to rp. On the other hand, the Bloch vector b of Nth qubit
is collinear with axis z and b, = 1 — 2¢%. Thus g is a one-
variable function on b, and one can vary the entanglement of
the multiqubit W state by altering the Bloch vector of a single
qubit. The remaining qubits should be present in order to create
an entanglement, but their individual characteristics do not
play any role within the domain —1 < b, <1 —2r?,N > 1.
These qubits are just spectators; they should appear in the
W state, but have no influence on the entanglement of the
state.

V. GENERAL CASE

The results of the previous sections are based on the fact
that the entanglement diameter r is bounded below. In the
symmetric region it is rigidly bound by the following theorem.

Theorem 1. If r is a solution of Eq. (5), then

S<rtg - (29)

Proof. Note that

2 2 2
r_2=(1+ 1_ﬁ)<1_ 1_ﬁ>
2
<2(1—‘/1—C—").
r

By summing over i the above inequality and using (5) and the
normalization condition one obtains

1
—2<2(n—n+2)=4.
’

Hence 12 > 1/4. Next, from x < 4/x for 0 < x < 1 itfollows
that

n 2 n 2
Z(l—:—;)gz 1—:—"2, or n—rlzgn—z,
i=1 i=1
that is, 72 < 1/2.

The inequalities (29) allow us to understand the behavior of
g of arbitrary N-qubit W states in the symmetric region. Indeed,
in this region ci2 ~ 1/N and therefore ci2 /r? < 1. Then one
can expand the radicals in (5) and obtain

N — L ~N -2,
2r2

which generalizes (5) and (6) to arbitrary W states with
ey <L L

In Eq. (18) we have chosen equal coefficients in order to
reduce the number of independent parameters and make it
easier the analyze. Now Theorem 1 states that it is irrelevant
whether some coefficients coincide. Decisive factor is that
the coefficients ¢; are small (~1/ VN ). Then the ratios c¢;/r
are small since r is bounded below (~1/2) and we can keep
first nonvanishing orders of these ratios. Surprisingly, all these
ratios are combined in such a way that they yield the Euclidean
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norm of the state function and the final answer becomes
independent on the state parameters as well as the number
of particles involved.

In the asymmetric region the entanglement diameter r
should has a lower bound but has not an upper bound since
r — o0 at ¢; — rp. One may expect that the lower bound of
r in the asymmetric region coincides with the upper bound of
r in the symmetric region. But the following theorem shows
that this is not the case.

Theorem 2. If r is a solution of Eq. (7), then

1
re > 3 (30)

Proof. We use the same technique, namely
N-1 »

1 c; c12V<N7121 | ci2 czz\,
pelat sty g) e

i i

or
1 oy .
r—2<2—2 1—r—2+r—2<3 simce cNér.

This bound, as well as bounds (29), is tight, for example,
r2 — 1/3 atc?> — 1/3 in (26).

Theorem 2 explains why the asymmetric approximate
solution (26) fits the numerical date more quickly (N ~ 10)
than the symmetric one (15) (N ~ 20). First, the lower bound
of r is greater in this case. Second, since cy is greater
(cny > rp) the remaining coefficients should be smaller due to
the normalization condition. These two factors together make
the ratio ¢; /r smaller. Hence the approximate solution should
has a better agreement with the exact one. Aside from that,
r is a fast increasing function and goes to the infinity unlike
to the symmetric case. Hence the values of the coefficients ¢;
become irrelevant when r > 1.

In fact there is no W state in the asymmetric region that
differs markedly from the above model when many qubits
are involved. The following theorem completes the proof that
in the asymmetric region the maximal product overlap is a
one-variable function.

Theorem 3. If cy = ry, then

, 1 1

Proof. Note that on the boundary of the symmetric and
asymmetric regions r =r; = cy and therefore r} > 1/3.
Expanding the radicals in (3) in powers of ¢?/r? one obtains

1—c3 1
N-1-—5%+0(|-)=N-2,
2cy N

which gives (31).
Now we are ready to explain what is happening in the
asymmetric region.

(a) When many qubits (N >> 1) are involved the first critical
value depends neither the number of qubits nor the state
parameters and is a constant, r; & 1/4/3.

(b) Regardless what is happening in the interval 0 < cy <
r1 all functions r(¢) must converge to the point r(1/+4/3) ~
1/+/3. This is the effect of the first critical value.
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FIG. 6. (Color online) The maximal product overlap g as a
function of z component of the Bloch vector b,. The solid line
is the interpolating formula (32). The dashed line is the numerical
computation for a 10-qubit W state.

(c) All functions r(c) have the same vertical asymptote,
namely r(c) - o0 at ¢ — 1/\/5. This is the effect of the
second critical value.

These statements together give no chance to differ markedly
exact and approximate solutions in the asymmetric region. In
conclusion, when N >> 1, everywhere the maximal product
overlap of W states is governed by the smallest b, among the
z components of the Bloch vectors. Using approximations

1 2
§<1+,/1—C—'2> e i=1,2,... ,N—1
r

and equations (9) and (26) one obtains

14+b, — 2z .
o=, if O<bz<%

Lk if b, <0

AN >1)= { (32)

Graphic comparison of the interpolating formula and nu-
merical computation of g is shown in Fig. 6, where the b,
dependence of g is plotted for N = 10. The solid and dashed
lines represent the interpolating function (32) and numerical
computation, respectively.

We did not plotted numerical results for different states
because different curves overlap and become indistinguish-
able. We failed to find the states for which the numerical
results markedly differ from the plotted one provided N > 1
holds.

VI. DISCUSSION

The main result of this work is the formula (32). First, it
shows that sometimes the characterization and manipulation of
the entanglement of many qubit states is a simple task, while
the case of few or several qubits is a complicated problem.
Second, it states that when N >> 1 the maximal product
overlap of W states is universal in the asymmetric and slightly
entangled regions and the only exceptions are W states in the
symmetric region that are almost maximally entangled states.
Then a question arises: Why do the maximal product overlaps
of the different W states that are far apart from the exceptional
points have the same behavior? Perhaps the reason is that these

022309-7



TAMARYAN, OHANYAN, AND TAMARYAN

states are all W-class states. Classification of entangled states
explains that pure states can be probabilistically converted
to one another within the same class by stochastic local
operations and classical communication [17,37,38]. And one
can assume that large-scale systems within the same class
have the feature, aside from the interconvertibility, that their
entanglement is universal. An argument in favor of this
assumption is that the geometric measure of entanglement [7],
the relative entropy of entanglement [8], and the logarithmic
global robustness [9] are related by bounding inequalities and,
moreover, the relative entropy of entanglement is an upper
bound to entanglement of distillation. Hence it is unlikely
that these measures may exhibit contradicting results and each
of them predicts its own and very different entanglement
behavior of large-scale W states. If this argument is true,
then entanglement of large-scale states within the same class
is universal. However, states from the different classes may
exhibit different behaviors. By no means it is obvious, and
probably not true, that the maximal product overlap of GHZ-
class states should have a behavior similar to that of W
states.

Another possible explanation is that the universality of
the maximal overlap of large scale W states is the inherent
feature of the geometric entanglement measure rather than
the inherent feature of quantum states. If it is indeed the
case, then a reasonable question is the following: Do the
exceptional points really exist or they are just the fabrication
of the geometric entanglement measure? In this context
the second exceptional point is a fundamental quantity.
Indeed, there are states applicable for the perfect teleportation
and dense coding and these states all should possess the
same amount of entanglement. Hence, there is an specific
entanglement point (infinite entanglement diameter in the
case of the geometric measure) that can be associated with
the exceptional point. And one can assume that the second
exceptional point is a property of quantum states rather than
a property of the maximal product overlap. And how about
the first exceptional point? Unfortunately, we do not know
any strong arguments in favor of it. In order to clarify the
existence or nonexistence of the first exceptional point, as
well as the second exceptional point, one has to analyze
another reliable entanglement measure, say relative entropy of
entanglement [39], and see whether it possesses exceptional
points.
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APPENDIX: GEOMETRICAL INTERPRETATION
OF THE DUALITY

The nearest product state |u;) ® |uz) ® --- ® |uy) of the
W state (1) can be parameterized as follows

lug) = sin 610 + cos 1), 0 < 6 < %

(AL)
k=12,...,N,
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where

cos? 0 + cos’ 0y + - - +cos? Oy = 1. (A2)

Thus the angles cos 6; define a unit N-dimensional vector
in Euclidean space. They satisfy the equalities

sin 26, _ sin 26, o sin20N. (A3)

C1 (&) CN

1
r

These equalities can be interpreted as trigonometric relations
for the right triangles with hypotenuses r, angles 26y, opposite
legs ¢; and adjacent legs \/r> — 7. If 26, > m/2, then one
takes the angle w — 26; instead. All of these triangles has the
same hypotenuse r and therefore can be circumscribed by a sin-
gle sphere with the diameter . The final picture represents two
inscribed N-dimensional pyramids with a common base and
lateral sides c1,¢a, ... ,cy and /72 — ¢3,\/r? — c3,\/r? — ¢,
respectively. The case N = 3 is illustrated in Fig. 7.

FIG. 7. (Color online) The geometrical interpretation of the
duality for three-qubit W states. Mutually, perpendicular bold lines
OX, 0Y, and OZ are coordinate axes and OO’ is an arbitrary direction.
OCyx,0Cy, and OCz are mirror images of the line OO’ in respect
to the three axes. The points Cx,Cy, and C are intersections of
these lines with the sphere uniquely defined by the two conditions:
its center lies on the line OO’ and its diameter OD=r is the
sum of the lateral sides of the upper pyramid (with the apex O
and base CxCyCz). Now the direction cosines (and sines) of the
vector O D are coefficients of the local states |u;) in a computational
basis. And the lateral sides of the lower pyramid (with the apex
D and base CxCyCy7) are the coefficients of a three-qubit W state
in the same basis. Thus each direction singles out a product state
and a W state and thereby establishes a correspondence among
them.
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