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Physical realization of quantum teleportation for a nonmaximal entangled state
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Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect
teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis
Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme,
we propose a model based on quantum optics. In our model, we take a superposition of Schrödinger’s cat states
as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state
through a beam splitter. When the average photon number for our input states is equal to half the number of
photons into the beam splitter, our model has high fidelity.
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I. INTRODUCTION

Quantum teleportation is one of the efficient methods to
transfer quantum information, where a quantum entangled
state plays an essential role. In a model proposed by Bennett
et al. [1], the entangled state σ = |ξ 〉〈ξ | is given as an Einstein-
Podolsky-Rosen (EPR) pair |ξ 〉 = 1/

√
2(|01〉 + |10〉) in two

qubits space. Alice has the first qubit of the EPR pair and Bob
has the second qubit. Alice prepares an unknown quantum
state a|0〉 + b|1〉 in one qubit, and she implicates a quantum
measurement on the input qubit and the first qubit of the EPR
pair. The quantum measurement is a joint measurement of
the observable F = ∑4

k=1 zkPk , where zk is the measurement
value and Pk is one of the projections {Pk; k = 1,2,3,4};

P1 = |ψ (−)〉〈ψ (−)|, P2 = |ψ (+)〉〈ψ (+)|, (1)

P3 = |ϕ(−)〉〈ϕ(−)|, P4 = |ϕ(+)〉〈ϕ(+)|, (2)

with the Bell CONS given by

|ψ (±)〉 =
√

1

2
(|01〉 ± |10〉), |ϕ(±)〉 =

√
1

2
(|00〉 ± |11〉). (3)

Alice informs a result of the measurement to Bob via a
classical channel, then Bob can recover the original input
state by applying a unitary transformation to his obtained
qubit. Conventional models of perfect teleportation, as that
of Bennett et al., are supposed that Alice and Bob share a
maximal entangled state [2,3].

Recently, Kossakowski and Ohya proposed a new scheme
of teleportation, in which the teleportation process is mathe-
matically represented as a map from input to output, called a
teleportation map, and perfect teleportation is possible even
for a nonmaximal entangled state [4].

In this paper, we give a physical realization of the telepor-
tation map of the K-O scheme. Our model is based on physical
states in quantum optics. The input state is a superposition of
Schrödinger’s cat states [5,6], and the shared entangled state
is generated by a photon number state and beam splitter [7].
The entangled state is nonmaximal in general. Alice measures
the sum of the photon numbers and the phase difference of the
photons [8,9]. Bob can recover the input state by shifting the
phase [10]. These procedures are a specific case of the K-O

scheme. As a result, our model has high fidelity even for a
nonmaximal entangled state.

In Sec. II we explain the teleportation map of the K-O
scheme. In Sec. III, we explain our model of teleportation. In
Sec. IV, our model can be explained in the contexts of the K-O
scheme as a specific case of the K-O scheme. In Sec. V, we
estimate the fidelity between an input state and its output state
in our model.

II. SCHEME OF K-O TELEPORTATION

In this section we briefly explain the scheme of teleportation
proposed by Kossakowski and Ohya. Let us take the conditions
that all Hilbert space H1, H2, and H3 are Cn. Alice has a
unknown quantum state ρ onH1, and she was asked to teleport
it to Bob. For this purpose, an entangled state σ is prepared on
H2 ⊗ H3, and H2 is attached to Alice and H3 is to Bob. Any
entangled state σ can be given as

σ =
n∑

i,j=1

|i〉〈j | ⊗
⎛
⎝ n2∑

s=1

λsfs |i〉〈j |f ∗
s

⎞
⎠ , (4)

with
∑n2

s=1 λs = 1 and λs � 0. Here {|i〉}ni=1 is the fixed
orthonormal basis (ONB) in Cn, and {fs}n2

s=1 is an ONB in the
set of all bounded operators on Cn, which is simply denoted
by Mn.

Alice performs the joint measurement of the observable F

on H1 ⊗ H2, which is set as follows:

F =
n2∑

k=1

zkPk (5)

≡
n2∑

k=1

zk

n∑
i,j=1

g∗
k |i〉〈j |gk ⊗ |i〉〈j |, (6)

where {gk}n2

k=1 is another ONB in Mn. Then K-O defined the
unnormalized teleportation map for an input state ρ and the
measured value zk of Alice as

Tk(ρ) ≡ tr12[(Pk ⊗ I )ρ ⊗ σ (Pk ⊗ I )] (7)

=
n2∑

s=1

λsfsgkρg∗
k f

∗
s , (8)
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where I is a unity of Mn and tr12 is the trace over the space
H1 ⊗ H2. It is easily seen that Tk(ρ) is completely positive
but not trace preserving. To consider the trace preserving map
from Tk(ρ), K-O considered the dual map T̃k(ρ) of Tk(ρ) [i.e.,
trATk(ρ) = trT̃k(A)ρ]. Indeed it is expressed as

T̃k(A) =
n2∑

s=1

λsg
∗
k f

∗
s Afsgk, A ∈ Mn. (9)

If and only if rankT̃k(I ) = n is satisfied, the dual teleportation
map T̃k is normalized as

ϒ̃k = κ
− 1

2
k T̃kκ

− 1
2

k , (10)

where

κk ≡ T̃k(I ) (11)

=
n2∑

s=1

λsg
∗
k f

∗
s fsgk. (12)

The dual map ϒk of ϒ̃k is trace preserving and it has the form

ϒk(ρ) =
n2∑

s=1

λsfsgkκ
− 1

2
k ρκ

− 1
2

k g∗
k f

∗
s . (13)

The output state in the K-O scheme is given by ϒk(ρ). Note
that this ϒk(ρ) is linear for input ρ.

K-O considered a special case of the entangled state σ

defined by Eq. (4), that is,

σ =
n∑

i,j=1

|i〉〈j | ⊗ f |i〉〈j |f ∗, (14)

where trf ∗f = 1. The σ is a pure entangled state so that we
can express σ by |ξ 〉〈ξ | with a state vector

|ξ 〉 =
n∑

i=1

|i〉 ⊗ f |i〉. (15)

The pure state σ given by the form of Eq. (14) is maximal
entangled state if and only if f ∗f = ff ∗ = I

n
. Further, under

the condition of rankf = rankgk = n, their output state is
written as

ϒk(ρ) = fgkκ
− 1

2
k ρκ

− 1
2

k g∗
k f

∗, (16)

where

κk = g∗
k f

∗fgk. (17)

Bob can recover the input state ρ with the following unitary
key

Uk = κ
− 1

2
k g∗

k f
∗. (18)

Even if the condition of rankf = rank gk = n is satisfied, the
pure state σ is not a maximal entangled state in general. Thus,
K-O teleportation does not require a maximal entangled state
for teleportation.

III. PHYSICAL MODEL FOR K-O TELEPORTATION

In this section we discuss a physical realization of the K-O
teleportation scheme. To simplify our discussion, we consider
the case of two-dimensional Hilbert space C2. Let an input
state be a pure state ρ = |ψ〉〈ψ | with |ψ〉 = c1|e1〉 + c2|e2〉,
where {|en〉; n = 1,2} is an ONB of C2. In this case, the
teleportation map given by Eq. (16) is

ϒk(ρ) = fgkκ
− 1

2
k |ψ〉〈ψ |κ− 1

2
k g∗

k f
∗, (19)

which can be expressed as ϒk(ρ) = |ψ ′〉〈ψ ′| with a state
vector as |ψ ′〉 = fgkκk

− 1
2 |ψ〉. Here, if both |e1〉 and |e2〉 are

eigenvectors of κk , the state vector |ψ ′〉 is written as

|ψ ′〉 = c1fgk〈e1|κk|e1〉− 1
2 |e1〉 + c2fgk〈e2|κk|e2〉− 1

2 |e2〉 (20)

≡ c1|ẽ1(k)〉 + c2|ẽ2(k)〉. (21)

The |ẽi(k)〉(i = 1,2) are states which stand for
fgk〈ei |κk|ei〉− 1

2 |ei〉. Note that the vectors of |ẽ1(k)〉 and
|ẽ2(k)〉 are normalized and mutually orthogonal, that is,
〈ẽi(k),ẽj (k)〉 = δi,j . Hence, Bob can recover the input
state |ψ〉 from |ψ ′〉 with a unitary transformation Uk =∑2

n=1 |en〉〈ẽn(k)|. Let us propose a physical model in which
the output state is given as the same form as Eq. (20).

The procedures of teleportation in our model consist of
following five steps.

Step 1. Alice prepares an input state |ψ〉 on H1, which is
described by

|ψ〉 = c1|αeven〉 + c2|αodd〉. (22)

Here, |αeven〉 and |αodd〉 are defined as

|αeven〉 = 1√
C+

∞∑
n=0

αn + (−α)n√
n!

|n〉, (23)

|αodd〉 = 1√
C−

∞∑
n=0

αn − (−α)n√
n!

|n〉, (24)

where C± ≡ 2 exp(|α|2) ± 2 exp(−|α|2) [11]. These states
|αeven〉 and |αodd〉 can be considered as Schrödinger’s cat states,
and the |ψ〉 can be considered as a qubit on the subspace K1

of H1 spanned by |αeven〉 and |αodd〉.
Step 2. One generates an entangled state by putting a photon

number state vector |N〉 into one side of a half beam splitter.
The entangled state is written on H2 ⊗H3 as

|ξ 〉 =
N∑

n=0

dn|n〉 ⊗ |N − n〉, (25)

where

dn = (−1)N−ne−iφ(N−n)

√
2−N

(
N
n

)
. (26)

The above φ is the phase difference between the reflected beam
and the transmitted beam [7]. Note that |ξ 〉 is a nonmaximal
entangled state in general.
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Step 3. Alice measures the phase difference of the beams and
the sum of the photon number on H1 ⊗H2 [9]. The operator
expressing the sum of the photon number is

N̂+ = N̂1 + N̂2 (27)

≡
∞∑

q=0

q

(
q∑

t=0

|q − t〉〈q − t | ⊗ |t〉〈t |
)

, (28)

where N̂1,2 are number operators on H1,2. The operator
expressing the phase difference of the beam is

�̂− =
q∑

m=0

φ−
m

(
q∑

t=0

∣∣φ(1)
t+m

〉 〈
φ

(1)
t+m

∣∣ ⊗ ∣∣φ(2)
t

〉 〈
φ

(2)
t

∣∣) , (29)

where

∣∣φ(k)
m

〉 =
q∑

n=0

exp
(
inφ(k)

m

)
√

q + 1
|n〉, (30)

φ(k)
m = φ

(k)
0 + 2πm

q + 1
, (31)

are Pegg-Barnett phase state vectors on Hk , and φ−
m = φ

(1)
0 −

φ
(2)
0 + 2πm

q+1 [10,12]. There exist simultaneous eigenvectors of

both N̂+ and �̂−, and these eigenvectors are given by

|q,φ−
m〉 =

q∑
n=0

exp(−inφ−
m)√

q + 1
|q − n〉 ⊗ |n〉, (32)

where q is an eigenvalue of N̂+ and φ−
m is that of �̂−.

Step 4. Alice informs the measured values of q and φ−
m to

Bob by means of a classical communication.
Step 5. Bob can recover the input state by means of the

phase-shift unitary operator defined by

U (φ−
m) = exp(−iNφ−

m)
∞∑

n=0

exp i[n(φ−
m + φ + π )]|n〉〈n|. (33)

If N − q is odd, one photon is added to the output state after
the above transformation [13].

IV. REPRESENTATION WITH K-O FORMALISM

Let us rewrite |ξ 〉 and |q,φ−
m〉 with the K-O formalism

[Eqs. (25) and (32)]

|ξ 〉 =
N∑

n=0

|n〉 ⊗ f |n〉, (34)

|q,φ−
m〉 =

q∑
n=0

g∗
q,m|n〉 ⊗ |n〉, (35)

where

f =
N∑

n=0

dn|N − n〉〈n|, (36)

g∗
q,m =

q∑
n=0

exp(−inφ−
m)√

q + 1
|q − n〉〈n|. (37)

FIG. 1. Measurement probability P (q) with respect to |α|2 = 2
and N = 4.

Obviously, the gq,m satisfy tr (g∗
q,mgq ′,m′ ) = δq,q ′δm,m′ . With

the previous f and gq,m, we describe an output state in our
model as∣∣ψout

q,m

〉 = P (q,φ−
m )−

1
2 fgq,m|ψ〉 (38)

= P (q,φ−
m )−

1
2 (c1fgq,m|αeven〉 + c2fgq,m|αodd〉). (39)

The term of P (q,φ−
m ) means probability for the simultaneous

measurements of N̂+ and �̂−, and P (q,φ−
m ) = 〈ψ |κq |ψ〉

where κq = g∗
q,mf ∗fgq,m.

Figures 1 and 2 show the probability distribution of P (q)
given by

P (q) =
q∑

m=0

P (q,φ−
m ) (40)

= (q + 1)P (q,φ−
m ). (41)

When N is increased, the peak of P (q) shifts to the right.
The average of P (q) is achieved when q ≈ |α|2 + N/2. In
Eq. (39),

fgq,m|αeven〉 = [C+2N (q + 1)]−
1
2 exp(iNφ−

m)

×
N∑

n=max(0,N−q)

exp[−in(φ−
m + φ + π )]

×
√(

N
n

)αq−N+n + (−α)q−N+n

√
(q − N + n)!

|n〉, (42)

FIG. 2. Measurement probability P (q) with respect to |α|2 = 10
and N = 20.

022308-3



YOSHIHARU TANAKA, MASANARI ASANO, AND MASANORI OHYA PHYSICAL REVIEW A 82, 022308 (2010)

FIG. 3. Values of function r(q) with respect to q in the case of
fixed N = 4, α = √

2, and c1 = c2 = 1√
2
.

and

fgq,m|αodd〉 = [C−2N (q + 1)]−
1
2

×
N∑

n=max(0,N−q)

exp[−in(φ−
m + φ + π )]

×
√(

N
n

)αq−N+n − (−α)q−N+n

√
(q − N + n)!

|n〉, (43)

are mutually orthogonal. Note that, when q − N is an even
(odd) number, the fgq,m|αeven〉 is expanded by only even (odd)
number states, and the fgq,m|αodd〉 is expanded by only odd
(even) number states.

Here, let us remember the K-O state vector of Eq. (20).
Importantly, the output state |ψout

q,m〉 has the same form with
the K-O state under the condition of

〈αeven|κq |αeven〉 = 〈αodd|κq |αodd〉. (44)

If the above condition is satisfied, we can express the
|ψout

q,m〉 as

∣∣ψout
q,m

〉 = c1|β1〉 + c2|β2〉. (45)

The two states |β1〉 = fgq,m〈αeven|κq |αeven〉− 1
2 |αeven〉 and

|β2〉 = fgq,m〈αodd|κq |αodd〉− 1
2 |αodd〉 are normalized and

mutually orthogonal, that is, 〈βi,βj 〉 = δi,j . To investigate

FIG. 4. Values of function r(q) with respect to q in the case of
fixed N = 20, α = √

10, and c1 = c2 = 1√
2
.

FIG. 5. Values of F with respect to |α|2 in the case of fixed
c1 = c2 = 1√

2
.

whether Eq. (44) is satisfied or not, we estimate the values of
the following function

r(q,N,α,c1) = 〈αeven|κq |αeven〉
〈αodd|κq |αodd〉 . (46)

Obviously, r = 1 is equivalent to Eq. (44).
Figures 3 and 4 show the value of r with respect to q. As

the value of N is increased, the value of r approaches 1 for
almost every value of q. Importantly, the case that q is small,
that is, q = 0 and 1, cannot be observed due to Fig. 2 discussed
previously. As a result, the output state in our model can be
expressed as the form of Eq. (45) for every value of q, that is,
teleportation in our model is perfect.

V. FIDELITY

As we showed in a previous section, our model enables
perfect teleportation. However, |β1〉 and |β2〉 are different
from |αeven〉 and |αodd〉, respectively. We estimate the fidelity
between the input state and the recovered state after (Step 5).
If q − N is an even number, only the phase-shifting operator
U (φ−

m) applies to the output state |ψout
q,m〉, then the recovered

state |ψ rec
q,m〉 is obtained as

∣∣ψ rec
even

〉 ≡ U (φ−
m)

∣∣ψout
q,m

〉
. (47)

If q − N is an odd number, one photon is added to
U (φ−

m)|ψout
q,m〉, and the recovered state is

∣∣ψ rec
odd

〉 ≡ ∥∥a∗U (φ−
m)

∣∣ψout
q,m

〉∥∥− 1
2 a∗U (φ−

m)
∣∣ψout

q,m

〉
, (48)

where a∗ is the creation operator [13]. Average fidelity F is
given as

F = Feven + Fodd (49)

FIG. 6. Values of Feven with respect to |α|2 in the case of fixed
c1 = c2 = 1√

2
.
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FIG. 7. Values of Fodd with respect to |α|2 in the case of fixed
c1 = c2 = 1√

2
.

where

Feven =
∑

q:even

q∑
m=0

P (q,φ−
m )

∣∣〈ψ∣∣ψ rec
even

〉∣∣2
, (50)

Fodd =
∑
q:odd

q∑
m=0

P (q,φ−
m )

∣∣〈ψ∣∣ψ rec
odd

〉∣∣2
. (51)

In general, values of F (Feven/odd) depend on the average
of photon number |α|2 and the coefficients c1 and c2 of |�〉.
Figures 5, 6, and 7 show the behavior of F and Feven/odd to
|α|2 for c1 = c2 = 1/

√
2. One can see that the fidelities in

Fig. 5 have maximal values at |α|2 ≈ N/2. Figure 8 shows
values of F to c1 for a fixed |α|2 ≈ N/2. It is expected that
our teleportation gives high fidelity for any c1 when N is
increased. In our teleportation, an output is written as |ψout

q,m〉 =
c1|β1〉 + c2|β2〉 with a set of the orthogonal basis {|β1〉,|β2〉}.
The basis is different from the basis {|αeven〉,|αodd〉} of the
input state vector |ψ〉 = c1|αeven〉 + c2|αodd〉. Therefore, our
teleportation is perfect, but the fidelity is not equal to 1. It
is important that our teleportation becomes perfect even if a
small number of photons are input into a beam splitter, that is,
this teleportatin does not need infinite energy.

FIG. 8. Values of F with respect to arccos (|c1|2) in the case of
|α|2 = N/2.

VI. CONCLUSION

We have discussed the output state in a specific case of
K-O teleportation. Based on this discussion, we proposed a
physical model where the output state has the same form of
the K-O output state. We have shown that our model makes
perfect teleportation for the nonmaximal entangled state.

In our model, the input state is given as a superposition
of Schrödinger’s cat states. The experimental setups for
generating a superposition of coherent states were discussed
in [5,6]. The entangled state prepared between Alice and Bob is
generated by a photon number state through a beam splitter. It
should be noted that our teleportation does not need to prepare
a large number of photons as shown in Fig. 8. Even if a small
number of photons are used, our teleportation becomes perfect.
The experiment for generating a small number of photons were
discussed in [14]. In our model, Alice measures the sum of the
photon number and the phase difference of beams. Bob recov-
ers the input state from the output state by means of a phase-
shift operator. The experiments for the joint measurement were
presented in [15].
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