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Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis
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Rapid purification by feedback—specifically, reducing the mean impurity faster than by measurement alone—
can be achieved by choosing the eigenbasis of the density matrix to be unbiased relative to the measurement basis.
Here we further examine the protocol introduced by Combes and Jacobs [Phys. Rev. Lett. 96, 010504 (2006)]
involving continuous measurement of the observable Jz for a D-dimensional system. We rigorously rederive
the lower bound (2/3)(D + 1) on the achievable speedup factor and also an upper bound, namely D2/2, for all
feedback protocols that use measurements in unbiased bases. Finally, we extend our results to n independent
measurements on a register of n qubits and derive an upper bound on the achievable speedup factor that scales
linearly with n.
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I. INTRODUCTION

Many quantum information processing (QIP) tasks require
pure states as a resource [1]. Preparation of pure states may
be a bottleneck in certain physical implementations of some
QIP protocols (e.g., solid-state systems). In these systems,
measurements cannot be treated as instantaneous [2–5] and are
often slow compared to the time scale for unitary operations
[6]. In such systems, a projective measurement is approached
only in the limit of long measurement times by integrating
the measured current [7]. There are demonstrable advantages
associated with using the dynamics of the measured current
to perform readout or state estimation [7]. Technology is
approaching the point where it can implement useful feedback
protocols [8–15]. Thus, it makes sense to consider combining
continuous measurement with quantum feedback [16] to
control the purification process. Our goal is to increase the rate
at which these systems can be purified in order to alleviate the
bottleneck identified previously. We note that by the addition
of a unitary at the end of the measurement process, rapid
purification is identical with rapid state preparation [17–19].

The von Neumann entropy, S(ρ) = −Tr[ρ log ρ], for a
quantum state ρ is a natural choice for characterizing a proce-
dure that purifies and/or cools the state of a quantum system.
Unfortunately, the von Neumann entropy is not an easy quan-
tity with which to perform calculations. Because of this, the
linear entropy, given by L(t) = 1 − Tr[ρ(t)2], is often used to
make the calculations more tractable. In this paper, we use the
linear entropy, also known as the impurity, to characterize the
purification process. Since unitary operations on a quantum
system leave the eigenvalues of the density matrix unchanged,
in order to reduce the entropy of a system it must be allowed
to interact with a bath. It is this interaction which enables, and
is common to, all purification and cooling procedures.

Until recently, the majority of work in the field of state
purification had been based on what we term “open-loop”
control methods, such as algorithmic cooling [20] or dissi-
pation engineering [21]. In this approach, the bath remains
unmeasured or the results of the measurements are forgotten.
As a result, the system evolves according to a deterministic

master equation, such as

dρ = dtL[�]ρ ≡ −idt[H (t),ρ] + 2γ dtD[�]ρ, (1)

where D[A]ρ ≡ AρA† − 1
2 (A†Aρ + ρA†A) [16], H (t) is the

system Hamiltonian, � is a lowering operator, and γ is a re-
laxation rate. Consequently, the control signals or interactions
are not conditioned on measurement results and thus can be
completely determined prior to the cooling process. Cooling
can be thought of as a version of purification in which the final
state is also the ground state for the system.

In measurement-based purification schemes, the bath must
be measured. In this case, the system can be purified without
control fields, provided the system observable coupled to
the bath has no degenerate eigenvalues, by measurement
alone. The change to an observer’s state of knowledge of an
individual system after a weak measurement of the system
observable X is described by the stochastic master equation
(SME) [22,23]

dρ = dtLc[X]ρ ≡ 2γ dtD[X]ρ +
√

2γ dWH[X]ρ, (2)

where H[A]ρ ≡ Aρ + ρA† − Tr[(A† + A)ρ]ρ [16] and dW

is the increment of a Wiener noise process [24]. It should be
noted that we have moved to a frame that has enabled us
to factor out the Hamiltonian evolution. The measurement
strength, γ , determines the rate at which information is
extracted and thus the rate at which the system is projected
onto a single eigenstate of X [25,26]. (This means for times
τ � γ −1 we may say that we have performed a projective
measurement of the observable X.) The measurement result in
a small time interval [t,t + dt) is

dR =
√

4γ 〈X(t)〉dt + dW (t), (3)

where dW is the same Wiener noise process that appears in
Eq. (2) and 〈X(t)〉 = Tr[Xρ(t)]. We denote the continuous
measurement record obtained by the observer integrated up
until time t as R(t) = ∫ t

0 dR(t ′).
Conceptually, a continuous measurement is a sequence

of weak measurements in the limit where the strength of
the measurements tends to zero and the repetition rate
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tends to infinity [16,22,23,27]. Feedback, if thought about
in the framework of a sequence of weak measurements,
amounts to the ability to perform a unitary operation in
between each measurement [27]. While unitary operations by
themselves do not change the entropy of a system, the average
reduction in the linear entropy caused by a measurement
depends not only on the measurement but also on the prior
state of the system. Feedback protocols that increase the
rate of purification usually involve choosing the applied
unitary after each weak measurement so as to increase the
entropy reduction generated by the next weak measurement
[3,17–19,28–43].

Here, we consider rapid purification feedback protocols that
apply unitary operations to continually keep the eigenbasis of
the density matrix unbiased with respect to the basis of the
observable being measured, X. (Two bases of a D-dimensional
system are unbiased with respect to each other if the inner
product of every vector of the first basis with every vector
of the second basis is equal to 1/

√
D.) We refer to this class

of feedback protocols as “unbiased-basis” (UBB) feedback
protocols. Specifically, the goal of these protocols is to increase
the rate at which the average linear entropy of the system,
〈L(t)〉, decreases as a function of time. The average here
is taken over all possible trajectories (measurement records)
for the evolution of the system under the measurement (and
feedback). For a single qubit, the UBB protocol is optimal
[18,30,43]. UBB protocols were first examined for systems of
arbitrary dimension in [31]. The purpose of the present work
is to clarify and extend the results in [31], as well as to derive
upper and lower bounds on the performance of UBB protocols
when applied to registers of qubits.

In Sec. II, we review rapid purification for a single qubit.
Section III discusses previous results on qudit feedback in
an UBB, and Sec. IV provides a unified formalism to derive
both the upper and lower bounds on purification for any UBB
feedback on a qudit. Finally, we derive upper and lower bounds
for UBB protocols applied to a register of qubits in Sec. V and
conclude with a discussion of the results.

II. RAPID PURIFICATION FOR A SINGLE QUBIT

In this section, we review the UBB protocol for a single
qubit (originally presented in [30]). For a single qubit, the
UBB protocol is optimal—a nonrigorous proof of this is given
in [30], and a rigorous proof is given in [18] and confirmed in
Ref. [43]. It is not presently known whether UBB protocols
are optimal for systems of higher dimensions.

To calculate the factor by which a feedback protocol speeds
up the purification of a system, we divide the time it takes the
feedback protocol to achieve a given value of 〈L(t)〉 by the
time it takes a measurement in the absence of feedback to
achieve this value.1 In both cases, we start the system in the
maximally mixed state. We refer to a measurement acting
without feedback as a bare measurement [44].

1Another natural optimization would be to minimize the average
time it takes for a qubit to reach a fixed purity; for details, see
Refs. [32,41].

A. Purification from measurement alone

We perform our analysis while keeping the dimension of
the system arbitrary, for later convenience. Consider a quantum
system of dimension D initially in the maximally mixed state
ρ(0) = I/D, where I is the D × D identity matrix. It is pos-
sible to obtain a closed-form expression for the linear entropy
as a function of the measurement record by using the linear
trajectory formulation of continuous measurements [16,45,46]
(for a simple introduction, see [22]). This involves solving the
linear version of the SME, which produces an unnormalized
density matrix. The linear version of the SME in Eq. (2) is

dρ̃ = dtL̃c[X]ρ̃ ≡ 2γ dtD[X]ρ̃ +
√

2γ dRH̃[X]ρ. (4)

Here, H̃[A]ρ ≡ Aρ + ρA†, and the tilde over ρ denotes the
lack of normalization at all but the initial time. Because the
initial state is ρ̃ = ρ(0) = I/D, the density matrix commutes
with X at all times, and this makes obtaining the solution
simple. This solution is [22]

ρ̃(R,t) = exp(−4γX2t) exp(2
√

2γXR(t))I/D, (5)

where, as before, R(t) is the integrated measurement record.
For a qubit, for which D = 2, we take the observable to be
X = Jz = σz/2. The solution becomes

ρ̃(R,t) = e−γ t

2

(
e
√

2γR 0

0 e−√
2γR

)
. (6)

(Here we have dropped the time dependence of R for
compactness.)

The final normalized density matrix ρ(R,t) is given by
dividing ρ̃(R,t) by its norm, N = Tr[ρ̃(R,t)]. The probability
density that we obtain the state ρ(R,t) at time t is given by
P(R,t) = N exp (−R2/2t)/

√
2πt . The average impurity of

the final state is thus given by averaging the impurity L[ρ(R,t)]
over the probability density P(R,t). For a single qubit, this
gives

〈L(t)〉 = e−γ t

√
8πt

∫ +∞

−∞

e−R2/2t

cosh(
√

2γR)
dR. (7)

While this integral has no analytic solution (to our knowledge),
we can obtain the behavior in the long-time (LT) limit by
noting that the integral contains two multiplied distributions.
The distribution in the numerator is broad compared to the dis-
tribution in the numerator for t � γ −1. Thus, in this LT limit,
the integral can be approximated by

∫ ∞
−∞ dR/ cosh(

√
2γR) =

π/
√

2γ , and we have

〈L(t)〉LT = πe−γ t

√
16πγ t

. (8)

The key result is that the impurity for a bare continuous
measurement scales asymptotically as e−γ t .

We note that recently Jordan and Korotkov [3] generalized
Eq. (7) for an arbitrary initial state, ρ0 = ρ(0) = 1

2 (I + xσx +
yσy + zσz). Using linear trajectory theory as before, one can
show that the impurity decays as

〈L(t)〉 = e−γ tL(ρ0)√
2πt

∫ +∞

−∞

e−R2/2t dR

cosh(
√

2γR) + z0 sinh(
√

2γR)
,

(9)
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where z0 = Tr[σzρ(0)]. The asymptotic expression is

〈L(t)〉LT = πe−γ t

√
16γπt

2L(ρ0)√
1 − z2

0

. (10)

B. Purification using feedback

For the initial state ρ(0) = I/2, the measurement dynamics
is symmetric with respect to rotations about the z axis. Because
of this, we lose nothing by restricting our feedback protocol to
rotations about the y axis at some rate α(t). The SME for this
situation is

dρ = −idt[α(t)Jy,ρ] + dtLc[Jz]ρ(t). (11)

To simplify the calculations, we assume that α(t) can be
arbitrarily large compared to the measurement strength γ .
This means that we can consider the action of the control
in each infinitesimal time interval, [t,t + dt), as a unitary that
generates a rotation through any desired angle. This unitary is
therefore of the form

Ut ≡ U (t + dt,t) = exp {−iα(t)Jydt}. (12)

In this case, the state following an infinitesimal time step
consisting of measurement and feedback is

ρfb(t + dt) = Ut {ρ(t) + dρ(t)}U †
t

= Ut {ρ(t) + dtLc[Jz]ρ(t)}U †
t . (13)

Note that up to a unitary transformation, which has no effect
on the purity, this is equivalent to having the feedback change
the measurement basis:

ρfb(t + dt) = ρ(t) + dtLc[X̌(t)]ρ(t), (14)

where X̌(t + dt) = UtX̌(t)U †
t and X̌(0) = Jz. This is a

Heisenberg picture with respect to the control unitary. In what
follows, we always assume, for the sake of simplicity, that the
feedback changes the measurement basis rather than the state
of the system.

To derive an expression for 〈L(t)〉, we begin by examining
the first-order change in the linear entropy. This is

dL = d(1 − Tr[ρ2]) = −Tr[d(ρ2)]

= −Tr[2ρdρ + (dρ)2]. (15)

Here we must keep the second-order term in dρ, because ρ(t)
is stochastic, and (dW )2 = dt [24]. From Eq. (2), with X

replaced by X̌, the change in impurity is thus

dL = −8γ dt{Tr[ρX̌ρX̌] − 2Tr[X̌ρ]Tr[X̌ρ2]

+ Tr[ρX̌]2Tr[ρ2]} − 4
√

2γ dW {Tr[X̌ρ2]

− Tr[ρX̌]Tr[ρ2]}. (16)

To obtain the greatest decrease in impurity in each time interval
[t,t + dt), we must now optimize over all unitaries Ut to obtain
the locally optimal X̌(t). It was shown in [30] that for a single
qubit this is achieved by choosing the eigenbasis of X̌ to be
unbiased with respect to the eigenbasis of ρ. Each infinitesimal
measurement disturbs this unbiased relationship, and thus
feedback is required to maintain it. Since the disturbance to
the basis of ρ is proportional to dW (rather than dt), to keep

the bases perfectly unbiased requires that α(t) be arbitrarily
large.

If the bases of X̌(t) and ρ(t) are unbiased, then the bases
of X̌(t) and ρ(t + dt) will only be infinitesimally biased,
so that the necessary feedback unitary U (t,t + dt) will be
infinitesimally different from I. This is required for physically
reasonable feedback. Mathematically, however, it is simpler
to imagine the case where ρ(t) is diagonal in the Jz basis. In
this case, X̌(t) will be obtainable from Jz by a finite unitary
rotation.

We choose X̌ = Jx , so that the unitary that transforms X to
X̌ via X̌ = T JzT

† is

T ≡ exp
(
i
π

2
Jy

)
= 1√

2

(
1 1

−1 1

)
. (17)

One can show that if X̌ is traceless and unbiased with
respect to ρ, then regardless of the dimension Tr[X̌ρ] = 0
and Tr[X̌ρ2] = 0 (the derivation is given in Appendix A).
This considerably simplifies the expression for dL, which
is now

dL = −8γ Tr[X̌ρX̌ρ]dt. (18)

For a single qubit, it turns out that Tr[X̌ρX̌ρ] = L/4, and we
obtain the very simple equation

dL = −2γ dtL. (19)

Evolution of the impurity is thus deterministic and is given by

L(t) = e−2γ tL(0). (20)

Note that the evolution of L is only perfectly deterministic
under the assumption that the observable X̌ is perfectly
unbiased with respect to the density matrix. In the LT limit,
we obtain the speedup factor from Eqs. (8) and (20). Denoting
the time taken by a bare measurement to reach a given value
of L as tbare and that for the feedback protocol as tfb, we
equate L(tfb) = L(tbare) and solve for the ratio tfb/tbare. Doing
so gives

tfb

tbare
= 1

S
= 1

2
+ ln

√
16πγ tbare

2γ tbare
− ln 2π

2γ tbare
. (21)

For sufficiently large tbare (equivalently, a sufficiently small
target impurity), the second and third terms are insignificant,
and we obtain

S = tbare

tfb
= 2. (22)

Numerical calculations show that for shorter times (higher
target impurities) the speedup factor is always less than this.
Thus, the largest possible speedup for a single qubit is a factor
of 2.

III. QUDIT PURIFICATION USING FEEDBACK

A. Purification from measurement alone

To analyze UBB feedback protocols for D-dimensional
systems, we need the asymptotic evolution of the impurity
for a bare measurement of Jz for arbitrary D. In [31], it
was shown only that at long times does L ∼ e−γ t . A more
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detailed analysis, to be presented elsewhere [47], shows that
the asymptotic behavior is

〈L2(t)〉LT = 2(D − 1)

D

πe−γ t

√
16γ tπ

. (23)

Interestingly, this is merely the expression for a single qubit,
Eq. (7), multiplied by a factor that depends on the dimension
of the system.

B. The UBB protocol

In this section, we examine the generalization of the
qubit rapid purification algorithm to D-dimensional systems
(qudits), which was first proposed in [31]. Recall that an UBB
protocol for a D-dimensional system involves using feedback
to continually adjust the measured observable X̌(t) so that its
eigenbasis remains unbiased with respect to the density matrix.
Note that for these protocols we require only a single basis that
is unbiased with respect to ρ—we do not require a complete
set of mutually UBBs.

The change in the impurity in a single infinitesimal time
step is once again given by Eq. (18):

dL = −8γ Tr[X̌ρX̌ρ]dt. (24)

However, in this case, the right-hand side is no longer a simple
function of L. Further, the evolution of L need no longer be
deterministic; L is now coupled to other functions of ρ, and
these still evolve stochastically. It is useful in what follows
to write the right-hand side explicitly in terms of the matrix
elements of X̌ in the elementary basis (the eigenbasis of ρ).
Denoting this basis as {|i〉}, i = 1, . . . ,N , we have

dL = −8γ dt
∑
i,j

|X̌i,j |2λiλj , (25)

where λj is the eigenvalue of ρ associated with the eigenstate
|j 〉.

In [31], a lower bound was derived on the performance of
UBB protocols by considering a protocol in which simulta-
neous measurements are made of all observables that can be
obtained from X̌ by permuting the basis vectors. This was
possible because the evolution of L under this protocol can
be solved. Under the D! simultaneous measurements, the total
change in L, dLtot, is simply the sum of the dL’s due to each
measurement:

dLtot = −8γ dt

D!

D!∑
m=1

Tr[X̌†
mρX̌†

mρ], (26)

where the X̌m= P
†
mX̌Pm are D! permutations of the operator

X̌. Since at least one of the observables X̌m in the sum in
Eq. (26) must give a dL that is at least as large as the average
over all the X̌m, the performance of this protocol is a lower
bound on the performance of protocols that employ a single
optimized observable X̌(t). An intricate calculation [31] shows
that Eq. (26) can then be rewritten in a remarkably simple
way:

dLtot = −8γ dt
(D − 2)!

D!
Tr[X2]L. (27)

In Appendix B, we give a new and much more detailed
proof of the process to obtain the relation in Eq. (27) from
Eq. (26), and in Sec. V, we use this to obtain a lower
bound on UBB protocols for a register of qubits. When
X = Jz, Tr[X2] = Tr[J 2

z ] = D(D2 − 1)/12, and Eq. (27)
becomes

dLLB = − 2
3γ t(D + 1)L. (28)

The subscript LB indicates that this increment is a lower bound
on |dL| for any UBB feedback, that is, |dLLB| � |dL[ρ]|.

IV. UPPER AND LOWER BOUNDS FOR RAPID
PURIFICATION USING UBB FEEDBACK

We now introduce a new method to determine the lower
bound obtained in [31], Eq. (28) here, and a similar method
that allows us to obtain an upper bound.

The lower bound in Ref. [31] was obtained by averaging
over all permutations Pm of the measured observable. We
now note that this procedure renders 〈dL〉 invariant to such
permutations. In light of this, and by analogy with the
technique employed in Ref. [41], we introduce a density matrix
for which dL is invariant under the permutations Pm:

ρF = diag

(
1 − 	,

	

D − 1
,

	

D − 1
, . . . ,

	

D − 1

)
. (29)

We call this the “flat state,” as it has one large eigen-
value and the remaining eigenvalues are equal in mag-
nitude (“flat”). For any D-dimensional state ρ, with an
impurity L[ρ], we can always find a 	 so that L[ρF] =
L[ρ].

Intuitively the state in which dL is most sensitive to
permutations for a fixed value of L is

ρ2 = diag(1 − 	′,	′,0, . . . ,0). (30)

We refer to this state as the “binary” distribution. Once again,
for a given ρ we can always find a 	′ so that L[ρ2] = L[ρ].

We now derive upper and lower bounds on UBB protocols
by showing that when L[ρ] = L[ρF ] = L[ρ2], and when each
of these three density matrices have a permutation applied that
maximizes dL,

|〈dL[ρF ]〉| � |〈dL[ρ]〉| � |〈dL[ρ2]〉|. (31)

A. The lower bound via the flat distribution

In Sec. III, we showed that the lower bound on the change
in impurity is dLLB = − 2

3γ t(D + 1)L. That is, |dLLB| �
|dL(ρ)|. Now we show that dLLB = dL(ρF ). We first note
that the impurity of ρF can be written as

L[ρF] = (D − 1)

[
2	(1 − 	)

D − 1
+ (D − 2)

	2

(D − 1)2

]
. (32)

Equation (32) enables us to factor out the impurity in the
following. Substituting ρF into Eq. (25) to calculate dL(ρF )
(or dLF in shorthand notation) and then writing dLF in the
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form of Eq. (32), we have

dLF = −8γ dt

⎛
⎝2	(1 − 	)

(D − 1)

∑
r 	=p

|X̌rp|2

+ 	2

(D − 1)2

∑
r 	=p,c 	=p

|X̌rc|2
⎞
⎠ , (33)

where the largest eigenvalue 1 − 	 is associated with some
particular eigenstate |p〉. It is easy to see that dLF is
invariant under the transformation dL[ρF ] = dL(P †

mρF Pm)
for all the D! permutations Pm labeled by m. The per-
mutation invariance of ρF already implies that dL(ρF ) =
(1/D!)

∑D!
m=1 dL(P †

mρF Pm) = dLtot = dLLB. Nevertheless,
we pursue the simplification of Eq. (33) by noting that for
any UBB ∑

r 	=p

|X̌rp|2 = (D + 1)(D − 1)/12, (34)

as shown in Appendix C. From this, it follows that

∑
r 	=p,c 	=p

|X̌r,c|2 = D + 1

12
(D − 1)(D − 2). (35)

Thus, it is possible to write Eq. (33) so that it has the same
form as Eq. (32), and simplifying the resulting expression
gives

dLF = −8γ dt
(D + 1)

12
L[ρF ] = −2

3
(D + 1)γ dtL(t). (36)

It should be noted that technically we have not inde-
pendently rederived the lower bound in Eq. (28); rather,
we have shown that for all UBBs and for all possi-
ble permutations Pm of ρF ’s basis and for all impurities
dLLB = dLF .

B. The upper bound via the binary distribution

We now show that |dL[ρ]| � |dL[ρ2]|. Substituting ρ2

into Eq. (25) gives dL2 = −8γ dt[2(1 − 	′)	′|X̌r,c|2]. This
expression is sensitive to the arrangement of the eigenvalues
of ρ2; accordingly, dL[ρ2] 	= dL(P †

mρ2Pm) for most permuta-
tions. The impurity for ρ2 can be written as

L[ρ2] = 2(1 − 	)′	′ = L[ρ] =
∑

r 	=c,c 	=r

λrλc. (37)

Using these relations, we find for the optimal permu-
tation that dL(ρ2) = −8γ dt[2(1 − 	′)	′ maxmn |X̌mn|2] =
−8γ dt maxmn |X̌mn|2L[ρ]. To prove |dL(ρ)| � |dL(ρ2)|, we
need to prove that∑

r,c

λrλc|X̌rc|2 �
∑
r,c

λrλc max
mn

|X̌mn|2. (38)

This is trivially true since all the λi’s are positive. All that
remains is to bound the maxmn |X̌mn|2 in any UBB.

A general unitary that transforms the basis |k〉 to a UBB is
T |n〉 = ∑j

−j
1√
D

exp (iφ(n)
k )|k〉. It is possible to rewrite |X̌mn|2

as |X̌mn|2 = |〈m|T †JzT |n〉|2 so that

max
mn

|X̌mn|2 � max
{φ(n)

k },{θ (m)
k }

1

D2

∣∣∣∣∣∣
j∑

k=−j

ei(φ(n)
k −θ

(m)
k )k

∣∣∣∣∣∣
2

� 1

D2

∣∣∣∣∣∣
j∑

k=−j

k

∣∣∣∣∣∣
2

. (39)

For even D, Eq. (39) evaluates to D2/16; for odd D, it evaluates
to D2/16 − 1/8 + 1/(16D2). For large D (say D > 5), D2/16
is a good approximation for both even and odd D. To find the
lower bound on the decrease in impurity, it is important to
remember that two matrix elements contribute to the sum:
maxm,n |X̌mn|2λmλn and maxm,n |X̌nm|2λnλm. For large D, the
impurity under the two-eigenvalue distribution is then

dL2 � −8γ dt
D2

16
2λ0λ1 = −γ dt

D2

2
L2(t). (40)

The dependance for this matrix element is only on the
dimension of the system. Thus, the speedup upper bound for
any UBB feedback is

S2 � D2

2
, (41)

for D � 1 and t � γ −1.

V. A REGISTER OF QUBITS

We now generalize UBB feedback protocols to the case of
a register of n qubits, where each qubit is independently and
continuously measured. Instead of one observable X, we now
have n, given by X(r) = I (1) ⊗ I (2) ⊗ . . . σ (r)

z . . . ⊗ I (n), where
r labels the rth qubit. The SME describing such a measurement
is

dρ =
∑

r

2κdtD[X(r)]ρ +
√

2κdW (r)H[X(r)]ρ. (42)

The combined state of the n qubits exists in a (D = 2n)-
dimensional Hilbert space.

A. Purification from measurement alone

In this section, we do not analyze the no-feeback case to the
same level of rigor as we did in Sec. II A, but rather we rely
upon the intuition gained from that analysis. For simplicity,
consider first a two-qubit register with uncorrelated qubits.
The state of the system is ρ = ρ1 ⊗ ρ2. The impurity for such
a state is

L(2) = 1 − Tr[(ρ1 ⊗ ρ2)2] = 1 − Tr
[
ρ2

1

]
Tr

[
ρ2

2

]
, (43)

where the superscript “(2)” on L signifies the number of qubits
in the register. For very pure states, it is natural to parametrize
the eigenvalues of the rth qubit, ρr , as {λr

0 = 1 − 	r,λ
r
1 = 	r}

where the convention that 	r � 1 still holds. To first order in
	, we have

L(2) = 1 − (1 − 2	1)(1 − 2	2) ∼ 2(	2 + 	1). (44)

Because the qubits are initially uncorrelated and are indepen-
dently monitored, it is reasonable to assume that 	1 and 	2
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are of the same order, so L(2) ∼ 2(2	). When 	 � 1, then
L = 2(1 − 	)	 ≈ 2	 so L(2) ≈ 2L. At LTs, for n qubits we
expect that

〈L(n)〉LT ∼ n〈L(1)〉LT. (45)

We can verify this using the analytic expression for qubit
impurity, Eq. (7). Recalling that the purity may be written as
P = 1 − L, we have 〈P (n)〉 = 〈P (1)〉n, so

〈L(n)(t)〉 = 1 −
(

1 − e−4κt

√
8πt

∫ ∞

−∞

e−R2/(2t)dR

cosh(
√

8κR)

)n

. (46)

Using the LT expression for a qubit, Eq. (8), we obtain an LT
analytical expression for L in the absence of feedback for a
register of n qubits:

〈L(n)(t)〉LT ∼ 1 −
(

1 − nπe−4κt

√
64πγ t

)
= nπe−4κt

8
√

πκt
. (47)

To compare this expression to the qubit expression, Eq. (8), n

is set to 1 and κ = 1
4γ .

B. Lower bound for purification using UBB feedback
on a register of qubits

The change in impurity for a register of qubits in a UBB is

dL = −8κdt

n∑
r=1

Tr[X̌(r)ρX̌(r)ρ] (48)

= −8κdt

n∑
r=1

(D−1)∑
i,j=0

∣∣X̌(r)
i,j

∣∣2
λiλj . (49)

Using ρF to calculate the lower bound for a UBB protocol
in a register appears to be difficult. Instead, we derive the
lower bound using the same method presented in Appendix B.
To do this, we again introduce the feedback in the Heisenberg
picture so that X̌(r,m) = PmT X(r)T †P †

m. As before, the T ’s are
conditional unitaries that introduce the unbiasedness (between
ρ and X(r)), and the Pm’s also retain their meaning as
permutations. For a register being measured in a basis that
is unbiased with respect to the logical basis, with a randomly
changing permutation, the change in impurity is

dL =
n∑

r=1

D!∑
m=1

−8κdtTr[X̌(r,m)ρX̌(r,m)ρ],

where D = 2n − 1. After performing a similar procedure to
the one found in Appendix B, we find

dL = −8κdtnD(D − 2)!L(t). (50)

Thus, we find the impurity of the state undergoing feedback
of the previous form decreases as

L(n)(t) = e−8κnt/(D−1)L(0). (51)

The asymptotic speedup factor is

S = 2n

D − 1
. (52)

For n = 1 (i.e., a qubit), the speedup factor S is S = 2,
which agrees with the result from Ref. [30]. When n = 2, the

speedup is S = 4/3. This is comparable to the speedup found
for the locally optimal rapid measurement (RM) protocol
in [41], where the predicted speedup in the LT limit was
SRM ≈ 1.4. (The feedback in the RM protocol permutes the
eigenvalues of ρ in the logical basis to decrease a different
measure of impurity. Thus, at all times the state eigenbasis and
the measurement basis commute.) Unfortunately, when n = 3,
S = 6/7, which is a slowdown. This slowdown trend continues
for all n � 3, and for large n the slowdown is ∼ n2−n+1.

One can interpret Eq. (52) as a lower bound on a UBB
algorithm for a register of qubits in much the same way as we
did in Sec. III B. Equation (52) may also be interpreted as an
all-permutation deterministic purification protocol, although it
is only useful in a two-qubit register.

C. Upper bound for purification using UBB feedback
on a register of qubits

As before, it is possible to rewrite |X̌(r)
mn| as |X̌(r)

mn| =
|〈m|T †X(r)T |n〉| so that

max
mn

|X̌(r)
mn| � max

{ϕk}
1

D

∣∣∣∣∣
D−1∑
k=0

eiϕk (−1)f (k,r)

∣∣∣∣∣ , (53)

where f (k,r) is a function that appropriately determines the
sign of the diagonal elements of X(r). Thus,

max
mn

|X̌mn| � 1, (54)

and

dL
(n)
2 � −8κdt

n∑
r=1

L(t) = −8κdtnL(t).

At LTs, the speedup upper bound for any UBB feedback in a
register is

S2 � 2n. (55)

By substituting in n = 1, we regain the result of Ref. [30].
At present, it is unclear if the bound in Eq. (55) is tight. One
reason why we expect this bound not to be tight comes from the
upper bound on the rapid measurement protocol of Ref. [41].
The upper bound was shown to be n, and numerical results
indicated it was SRM = 0.718n, which is significantly less than
the upper bound.

VI. DISCUSSION

For a qudit, we have bounded the speedup in purification
for any UBB feedback by 2

3 (D + 1) � S � D2/2. Prior to
this work, only the lower bound was known for the qudit.
In Ref. [19], it was shown that by applying a unitary,
chosen at random from the unitary group U(D), to a qudit
during the measurement process (random feedback) one could
attain S = 2

3D asymptotically. This suggests UBB feedback
is unnecessary for a speedup O(D), although it remains an
open question whether the actual speedup for UBB protocols
is O(D) or O(D2).

We also examined UBB feedback applied to a register of
n qubits. We have shown that the speedup in purification is
bounded by 2n/(2n − 1) � S � 2n. Prior to this work, there
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were no results for purification of a register of qubits using
UBB feedback.

Unlike the RM protocols of [41], the UBB protocols
presented in this paper are not locally optimized in time
for decreasing dL. Additionally, it is not clear if UBB
protocols allow one to obtain information about the preparation
procedure, unlike RM protocols, which may be used for state
estimation.

In the future, we plan to investigate locally optimal
protocols for the impurity (and other measures of mixedness)
and examine rapid purification using a particular UBB. Also,
very recently Ruskov et al. [48] have considered monitoring
a single qubit in three UBBs simultaneously. The relation
between their work and ours remains to be explored.
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APPENDIX A: PROOF THAT X̌ i i = 0

For a traceless operator X, which is diagonal in the
computational basis, we can find a transformation T that will
make it unbiased with respect to the computational basis. The
transformation has the form X̌ = T XT †

X̌il =
D∑

j,k=1

TijXjkT
†
kl .

Now we examine the diagonal elements. Being mindful of the
fact that T

†
rs = T ∗

sr , we have

X̌ii =
D∑

j,k=1

TijXjkT
†
ki =

D∑
j,k=1

TijXjkT
∗
ik =

D∑
j,k=1

TijT
∗
ikXjk.

Using the fact that X is diagonal gives the expression

X̌ii =
D∑

j=1

TijT
∗
ijXjj . (A1)

Unbiasedness means that TijT
∗
ij = 1/D, so that

X̌ii = 1

D

D∑
j=1

Xjj . (A2)

Recalling that X is traceless, we thus have X̌ii = 0.

APPENDIX B: PROOF OF EQ. (26)

Denote eigenvalues and eigenvectors of ρ in the basis
which diagonalizes ρ as ρ|i〉 = λi |i〉. Define X as a Hermitian
operator that is diagonal in this eigenbasis and X̌ = T XT † as
a transformed version of X that is unbiased with respect to
this eigenbasis. Now define Pm, for m = 1, . . . ,D!, to be the
D! operators that give each of the possible permutations of the
eigenbasis |i〉: For example, Pm|i〉 = |m(i)〉 labels a particular
permutation of the basis |i〉, while P

†
m|i〉 = |m−1(i)〉 is an

inverse permutation to m. Note that P
†
mPm|i〉 = PmP

†
m|i〉 =

|i〉. Starting with Eq. (26), one may write

S =
D!∑

m=1

Tr[PmX̌P †
mρPmX̌P †

mρ]

=
D!∑

m=1

D∑
i=1

〈i|X̌P †
mρPmX̌P †

mρPm|i〉. (B1)

Consider the action of the permutation operators and the
state on the basis |i〉:

P †
mρPm|i〉 = P †

mρ|m(i)〉 = λm(i)P
†
m|m(i)〉 = λm(i)|i〉. (B2)

Using the notation X̌|i〉 = |X̌i〉, we thus have

S =
D!∑

m=1

D∑
i=1

λm(i)〈X̌i|P †
mρPm|X̌i〉. (B3)

Now we use the completeness of the basis (〈a|b〉 =∑
j 〈a|(|j 〉〈j |)|b〉) so that

S =
D!∑

m=1

D∑
i,j=1

λm(i)〈X̌i|j 〉〈j |P †
mρPm|X̌i〉 (B4)

=
D!∑

m=1

D∑
i,j=1

λm(i)λm(j )〈X̌i|j 〉〈j |X̌i〉 (B5)

=
D!∑

m=1

D∑
i,j=1

λm(i)λm(j )|〈X̌i|j 〉|2. (B6)

Next, we sum over the m label, which represents permuta-
tions of the basis. First, we define

Cij = |〈X̌i|j 〉|2
D!∑

m=1

λm(i)λm(j ), (B7)

so that S = ∑
ij Cij . Suppose i = j ; then

Cii = |〈X̌i|i〉|2
D!∑

m=1

λ2
m(i). (B8)

There are (D − 1)! permutations that take i → p for a fixed
p ∈ [1,2, . . . ,D], so

Cii = |〈X̌i|i〉|2(D − 1)!
D∑

p=1

λ2
p = |〈X̌i|i〉|2(D − 1)!Tr[ρ2].

(B9)

Now consider the case where i 	= j . Take any pair q 	= p

and look for permutations that take i → p, j → q. There are
(D − 2)! of these permutations:

Cij = |〈X̌i|j 〉|2(D − 2)!
D∑

p 	=q

λpλq. (B10)
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Now examine
∑D

p 	=q λpλq term:(
D∑
p

λp

)2

=
(

D∑
p

λp

)(
D∑
q

λq

)

=
D∑
p

λ2
p +

D∑
p 	=q

λpλq (B11)

(Tr[ρ])2 = Tr[ρ2] +
D∑

p 	=q

λpλq.

As ρ is normalized, we find
∑D

p 	=q λpλq = 1 − Tr[ρ2].
The simplified expression for Eq. (B1), so far, is

S =
∑

i

Cii +
∑
i,j 	=i

Cij

=
∑

i

(D − 1)!Tr[ρ]|〈X̌i|i〉|2

+
∑
i,j 	=i

(D − 2)!(1 − Tr[ρ2])|〈X̌i|j 〉|2. (B12)

Now, we simplify the expression
∑

i 	=j |〈X̌i|j 〉|2. Using

the Parseval relation for a vector �, 〈�|�〉 = ∑D
j=1 |〈�|j 〉|2,

we find
D∑

j=1

|〈X̌i|j 〉|2 =
D∑

j 	=i

|〈X̌i|j 〉|2 +
D∑

j=i

|〈X̌i|i〉|2

(B13)

〈X̌i|X̌i〉 =
D∑

j 	=i

|〈X̌i|j 〉|2 + 〈X̌i|i〉2;

that is,
∑D

j 	=i |〈X̌i|j 〉|2 = 〈X̌i|X̌i〉 − 〈X̌i|i〉2. The total
expression is now

S =
D∑
i

(D − 1)!Tr[ρ]|〈X̌i|i〉|2 + (D − 2)!(1 − Tr[ρ2])

×
D∑

i=1

(〈X̌i|X̌i〉 − 〈X̌i|i〉2). (B14)

Massaging the
∑D

i=1〈X̌i|X̌i〉 term gives
D∑

i=1

〈X̌i|X̌i〉 =
D∑

i=1

〈i|X̌†X̌|i〉 = Tr[X̌2].

Recall that X̌ = T XT †, and thus Tr[X̌†X̌] =
Tr[(T XT †)†T XT †] = Tr[X2].

Now we examine the
∑D

i=1〈X̌i|i〉2 term. The eigenvectors
and eigenvalues of X̌ are X̌|�b〉 = xb|�b〉 and 〈i|�b〉 =
1/

√
D by way of their unbiasedness. By inserting the identity,

we have

〈X̌i|i〉 =
∑

b

〈X̌i|�b〉〈�b|i〉

= 1√
D

∑
b

〈i|X̌|�b〉

= 1√
D

∑
b

xb〈i|�b〉

= 1

D

∑
b

xb = Tr[X̌]/D, (B15)

so
∑D

i=1〈X̌i|i〉2 = Tr[X̌]2/D2. The total expression is

S = (D − 1)!Tr[ρ]Tr[X̌]2/D2

+ (D − 2)!(1 − Tr[ρ2])(Tr[X̌2] − Tr[X̌]2/D2). (B16)

Finally, recalling from Appendix A that X̌ is traceless, we
have

S = (D − 2)!Tr[X̌2](1 − Tr[ρ2]) (B17)

as required.

APPENDIX C: PROOF OF EQ. (34)

Recall that
∑D

r 	=0 |X̌r0|2 = ∑D
r=0 |X̌r0|2 as |X̌ii | = 0.

So,

〈k|X̌†X̌|k〉 = 〈k|(UJzU
†)†UJzU

†|k〉 = 〈k|UJ 2
z U †|k〉.

Now insert the identity

〈k|X̌†X̌|k〉 =
∑
l,m

〈k|U |l〉〈l|J 2
z |m〉〈m|U †|k〉

=
∑
l,m

〈k|U |l〉〈l|J 2
z |m〉〈m|U †|k〉. (C1)

The matrix J 2
z is diagonal, so

〈k|X̌†X̌|k〉 =
∑

l

〈l|J 2
z |l〉〈k|U |l〉〈l|U †|k〉

=
∑

l

〈l|J 2
z |l〉|〈k|U |l〉|2

= 1

D

∑
l

〈l|J 2
z |l〉 = D2 − 1

12
. (C2)
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