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Fisher information in a quantum-critical environment
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We consider a process of parameter estimation in a spin-j system surrounded by a quantum-critical spin chain.
Quantum Fisher information lies at the heart of the estimation task. We employ Ising spin chain in a transverse
field as the environment which exhibits a quantum phase transition. Fisher information decays with time almost
monotonously when the environment reaches the critical point. By choosing a fixed time or taking the time
average, one can see the quantum Fisher information presents a sudden drop at the critical point. Different initial
states of the environment are considered. The phenomenon that the quantum Fisher information, namely, the
precision of estimation, changes dramatically can be used to detect the quantum criticality of the environment.
We also introduce a general method to obtain the maximal Fisher information for a given state.
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I. INTRODUCTION

Fisher information lies at the heart of a parameter estimation
theory that was originally introduced by Fisher [1]. It provides
in particular a bound to distinguish the members of a family of
probability distributions. When quantum systems are involved,
especially for problems in which the quantity of interest
is not directly accessible, the optimal measurement may
be found using tools from quantum estimation theory. The
quantum version of the Cramér-Rao inequality has been
established [2–5] and the lower bound is imposed by quantum
Fisher information (QFI) [5]. Fisher information becomes a
useful tool for evaluating the accuracy limits of quantum
measurements; moreover, it has important applications in
quantum technology such as quantum frequency standards
[6,7], measurement of gravity accelerations [8], and clock
synchronization [9].

It is significant to consider the relation between QFI
and other important concepts such as quantum entanglement
and squeezing. Recently, in Ref. [10] QFI is employed
to understand multipartite entanglement. The researchers
introduce an operational interpretation for pure-state global
multipartite entanglement based on a locally depolarizing
channel. After that Pezzé and Smerzi [11] introduced a
sufficient condition for N -particle entanglement by making
use of QFI, which is more general than the spin squeezing
condition. Concerning open quantum systems and nonunitary
processes, QFI has been applied to finite dimensional systems
[12] to optimally estimate the noise parameter of depolarizing
[13] and amplitude-damping channels [14]. In the estimation
of the loss parameter of a bosonic channel, by calculating
the QFI, people found that Gaussian squeezed probes can
improve the estimation [15]. In a noisy quantum system,
researchers identified an optimal quantum measurement which
maximizes the QFI [16]. Recently, many people have turned to
the problem of parameter estimation in systems with quantum
phase transition (QPT). In a transverse Ising chain, optimal
estimation of coupling constants quantified by QFI is possible
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at values of the field equal to the critical point [17]. QFI
can be also used to distinguish and characterize behaviors of
the ground state of the Lipkin-Meskhov-Glick model, which
displays a second-order quantum phase transition [18].

In this article, we consider parameter estimation in a spin-j
system surrounded by a quantum-critical environment which
is described by a quantum Ising chain with transverse field.
In most of the previous studies about QFI in noisy systems,
people have focused on how the properties of input states,
such as entanglement or squeezing, influence the QFI. We
think it is also significant to consider that the noisy channel
itself possesses special properties, for example, QPTs. The
aim of this article is to find how the quantum criticalities of
the environment change the QFI and, accordingly, influence
the precision of estimation in the center system.

It is known that QPT takes place at zero temperature, at
which the thermal fluctuations vanish. Therefore, quantum
fluctuation plays the major role in QPT. At the critical
point, a qualitative change occurs in the ground state and
long-range correlation also develops. Actually, the QPT of
the surrounding indeed affects the properties of the center
system; for example, it enhances the decoherence of the
system [19–21], accelerates the disentanglement [22], and
also helps to induce entanglement [23,24] of the system. In
this article, we observe that QFI decays with time almost
monotonically when the environment approaches the critical
point, which implies that the precision of the estimation is
depressed evidently by the critical fluctuation. For a fixed time
or by taking the time average, QFI presents a sudden drop
at the critical point. We stress that the critical fluctuation
of the environment enhances the decoherence process and
consequently reduces the QFI greatly, that is, it reduces the
precision of estimation. Therefore, the critical properties of
the environment are harmful to parameter estimation in the
coupled system, which is in contrary to the case in Ref. [17],
where estimation of the coupling constant is improved by
quantum criticality.

From another point of view, the reduction of the estimation
precision also reflects that the information captured by us is
being lost. We recall another concept—purity, which is closely
related to QFI. During some parameter estimation processes,
QFI can characterize the purity of the measured state [25,26].
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Therefore, purity is decreased by decoherence as well as
QFI and indicates information loss. It is known that, in non-
Markovian processes, there exist revivals of coherence [27,28],
which can be understood as the reversed flow of information
from the environment to the open system [29,30]. In a sense,
the results shown by us imply that the critical fluctuation can
remarkably prevent the reversed flow of information. Another
interesting point of this article is the introduction of a method
to detect QPT by coupling the quantum-critical system to
the external spin-j system. The region where the estimation
accuracy changes dramatically indicates the quantum-critical
region of the environment.

The rest of this article is organized as follows: In Sec. II,
we introduce the parameter estimation and the definition of
QFI. Also a general method to obtain the maximal QFI is
be presented. In Sec. III, we describe the driven Hamiltonian
and give the time evolution operator. In Sec. IV, the reduced
density matrix of the system is obtained and all the elements
are calculated in detail. For the small systems of j = 1/2 and
1, the analytical results of the maximal QFI are shown. Two
initial states of the environment are considered in this section.
We also calculate the QFI numerically. Finally, the significant
results are given in Sec.V.

II. THE MAXIMAL QFI UNDER UNITARY
TRANSFORMATION

A typical problem of quantum estimation is to ask what
is the best observable. For example, in order to estimate the
true value of parameter θ provided that the system is in one
state of the family {ρθ }, an observable θ̂ is called to be the
unbiased estimator, that is, the expectation of the estimator
should satisfy Tr(ρθ θ̂ ) = θ , and in general the estimator θ̂ is
not unique. Among the unbiased estimators, we should select
a good one. Fortunately, an effective tool is presented by the
quantum Cramér-Rao (QCR) inequality,

�θ̂ � (�θ )QCR = 1√
νI (ρθ )

, (1)

which holds for any unbiased estimator of θ and provides
a bound to limit the precision of our estimation. In Eq. (1),
ν is the number of trails and I (ρθ ) is the QFI. In some
cases, the state ρθ is obtained as the output during a uniform
process, ρθ = ρout = UθρinU

†
θ , where Uθ = exp(iθK̂) and

K̂ is a generator. Generally speaking, an interferometer is
quantum mechanically described as a collective, linear rotation
of the input state by an angle; then the generator K̂ = Ĵ�n is the
angular momentum operator along direction �n. To obtain the
QFI, the standard procedure starts by solving for the symmetric
logarithmic derivative Lθ, defined as any Hermitian operator
that satisfies the equation

∂θρθ = 1
2 (Lθρθ + ρθLθ ). (2)

The QFI does not depend on the particular choice of Lθ and is
given by

Iθ = Tr
(
ρθL

2
θ

)
. (3)

For pure states, the QFI is just proportional to the variance of
Ĵ�n [31], that is, I (ρin,Ĵ�n) = 4(�Ĵ�n)2. Therefore, besides in-
creasing experimental times ν, we can improve the estimation

precision �θ̂ by choosing the proper states ρin for a given Ĵ�n.
It is found that entangled input states usually induce larger
variance of Ĵ�n than separable states; thus entangled states are
useful to improve parameter sensitivity [32–39]. On the other
hand, for a given state ρin, we can optimize the QFI by choosing
a proper rotated direction �n.

Now let us introduce a general method to obtain maximal
QFI for a given state ρ [40].

A. Pure state case

The angular momentum in �n direction is

J�n =
3∑

k=1

Jknk, (4)

where the normalized direction �n = (n1,n2,n3) and the angular
momentum operator J1(2,3) corresponds to Jx(y,z). The QFI is
equal to the variance

(�J�n)2 = 1

2

∑
kl

[〈JkJl〉 + 〈JlJk〉]nknl −
∑
kl

〈Jk〉〈Jl〉nknl

= �nC�nT , (5)

where the symmetry covariance matrix

Ckl = Cov(Jk,Jl) = 1
2 [〈JkJl〉 + 〈JlJk〉] − 〈Jk〉〈Jl〉. (6)

Therefore the variance can be written as

(�J�n)2 = �nO(OT CO)OT �nT = �n′Cd �n′T , (7)

where O is an orthogonal 3 × 3 matrix, Cd is the diagonal
form of C,

Cd = diag(E1,E2,E3), (8)

where we set E1 � E2 � E3, and the rotated direction �n′ =
�nO = (n′

1,n
′
2,n

′
3). Now, the maximal variance

max(�J�n)2 = max
(
E1n

′2
1 + E2n

′2
2 + E3n

′2
3

)
� E1, (9)

and in the above equation, the rotated direction is also
normalized and satisfies the condition n′2

1 + n′2
2 + n′2

3 = 1.
To attain Emax = E1, we choose n′

1 = 1 and n′
2 = n′

3 = 0;
therefore, �n = �n′OT .

B. Mixed state case

In the case of mixed state ρ, for a rotated angle θ , the
operator Lθ in Eq. (2) can be described in the eigenspace of ρ,

Li,j = 〈i|Lθ |j 〉 = 2i(pj − pi)〈i|J�n|j 〉
pj + pi

, (10)

in which the eigenstate satisfies ρ|i〉 = pi |i〉; during a uniform
process ρθ = UθρU

†
θ , the eigenvalue pi will not change. Then

by using Eq. (3) we obtain the Fisher information

Iθ =
∑
i,j

2(pi − pj )2

pi + pj

|〈i|J�n|j 〉|2

=
∑
kl

∑
i,j

2(pi − pj )2

pi + pj

〈i|Jk|j 〉〈j |Jl|i〉nknl

=
∑
kl

C̃klnknl = �nC̃�nT , (11)
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where the matrix element for the symmetry matrix C̃ is

C̃kl =
∑
i,j

2(pi − pj )2〈i|Jk|j 〉〈j |Jl|i〉
pi + pj

. (12)

Therefore, following the previous steps, we can use a unitary
matrix Õ to diagonalize C̃ and find the direction �n that
corresponds to the maximal Fisher information,

C̃d = ÕT C̃Õ = diag(Ẽ1,Ẽ2,Ẽ3), (13)

where Ẽ1 � Ẽ2 � Ẽ3. Therefore, �n = �n′Õ, with �n′ = (1,0,0),
and the maximal Fisher information Imax = Ẽ1.

III. MODEL HAMILTONIAN AND
EVOLUTION OPERATOR

We choose the engineered environment system to be an
Ising spin chain in a transverse field which displays a QPT. One
spin is transversely coupled to the chain. The corresponding
Hamiltonian reads

H = −
[

M∑
l=−M

σx
l σ x

l+1 + (λ + gJ z)
M∑

l=−M

σz
l

]
, (14)

where λ characterizes the strength of the transverse field,
Jz denotes the z component of the spin operator with the
quantum number j . g denotes the coupling strength between
the Ising chain and the spin Jz, σα

l (α = x,y,z) are the Pauli
operators defined on the lth site, and the total number of
spins in the Ising chain is L = 2M + 1. The Ising model is
an important model which exhibits QPT and can be exactly
calculated.

In order to diagonalize the Hamiltonian, first we notice that
[Jz,σ

α
l ] = 0; thus it is convenient to define an operator-valued

parameter,

λm = λ + gm, (15)

with m denoting the eigenvalues of Jz. When we diagonalize
the Ising spin chain, the parameter λm can be treated as a c

number with different values corresponding to the eigenvalues
of Jz in the system space.

By combining a Jordan-Wigner transformation and a
Fourier transformation in the momentum space [41], the
Hamiltonian can be written as [22,42]

Hm =
∑
k>0

(
	k,mei

θk,m
2 σkx σkze

−i
θk,m

2 σkx
) + (λm−1)σ0z, (16)

where we have used the following pseudospin operators
σkα(α = x,y,z),

σkx = d
†
kd

†
−k + d−kdk,(k = 1,2, . . . ,M),

σky = −id
†
kd

†
−k + id−kdk,

(17)
σkz = d

†
kdk + d

†
−kd−k − 1,

σ0z = 2d
†
0d0 − 1,

and d
†
k ,dk {k = 0,1,2, . . .} denote the fermionic cre-

ation and annihilation operators in the momentum space,

respectively. Here,

	k,m = −2
√

[λm − cos(2πk/L)]2 + sin2(2πk/L), (18)

θk,m = arcsin

[
2 sin(2πk/L)

	k,m

]
. (19)

From Eq. (16) and the units where h̄ = 1, the time evolution
operator is obtained as

Um(t) = ei(1−λm)σ0zt
∏
k>0

ei
θk,m

2 σkx e−it	k,mσkze−i
θk,m

2 σkx . (20)

IV. DECOHERENCE FACTOR AND MAXIMAL QFI

We choose the initial state of the whole system in the
following form,

|�(0)〉 = |ψ〉s ⊗ |ψ〉E, (21)

where the states |ψ〉s and |ψ〉E correspond to the system and
environment, respectively. In this article we consider that the
system initially starts from a coherent spin state which is the
eigenstate of Jx with the highest value j and can be expanded
in the eigenspace of Jz [43],

|ψ〉s = |j 〉x = 1

2j

j∑
m=−j

Cm|m〉, (22)

in which Jx |j 〉x = j |j 〉x , |m〉 are the eigenstates of
Jz with the eigenvalues m, and the coefficient Cm =√

(2j )!/[m!(2j − m)!]. The initial state of the whole
system is

|�(0)〉 = 1

2j

j∑
m=−j

Cm|m〉 ⊗ |ψ〉E. (23)

Driven by the time evolution operator Um [in Eq. (20)], the
state at time t becomes

|�(t)〉 = 1

2j

j∑
m=−j

Cm|m〉 ⊗ Um|ψ〉E, (24)

then we can obtain the reduced density matrix at time t ,

ρs(t) = TrE[|�(t)〉〈�(t)|] = 1

4j

j∑
m,n=−j

CmC∗
n |m〉〈n|Fm,n(t),

(25)

where the time dependent factor is

Fm,n(t) = E〈ψ |U †
nUm|ψ〉E, (26)

which is the so-called decoherence factor.

A. The first initial state of environment

The decoherence factor (26) contains the information of the
system and also depends on the initial state of the environment.
Thus we will consider a different initial state |ψ〉E . First, we
assume it to be the vacuum state in the momentum space,
namely,

|ψ〉E = |0〉k=0 ⊗k>0 |0〉k|0〉−k, (27)
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and the kth vacuum state |0〉k satisfies dk|0〉k = 0. Then the
decoherence factor is obtained as

Fm,n = eitg(m−n)
∏
k>0

{(	k,mt) cos(	k,nt)

+ sin(	k,mt) sin(	k,nt) cos(θk,n − θk,m)

+ i cos(	k,mt) sin(	k,nt) cos θk,n

− i sin(	k,mt) cos(	k,nt) cos θk,m}, (28)

in which 	k,m(	k,n) and θk,m(θk,n) are determined in Eqs. (18)
and (19), and the norm of the factor is [22]

|Fm,n| =
∏
k>0

{1 − [cos(	k,mt) sin(	k,nt) sin θk,n

− sin(	k,mt) cos(	k,nt) sin θk,m]2

− sin2(	k,nt) sin2(	k,mt) sin2(θk,n − θk,m)} 1
2 , (29)

This is one of our main results. Clearly, the norm |Fm,n| con-
sists of the terms Fk

m,n corresponding to the kth space which is
not more than 1. Therefore it can be expected that in the large L

limit, |Fm,n| will go to zero under some reasonable conditions.
By carrying out an analysis similar to that in Ref. [19], we

introduce a cutoff number Kc and define the partial product
for the decoherence factor in Eq. (29) as

|Fm,n|Kc
=

Kc∏
k>0

Fk
m,n � |Fm,n|, (30)

from which we obtain the corresponding partial sum

S(t) = ln |Fm,n|Kc
≡ −

Kc∑
k>0

∣∣ ln Fk
m,n

∣∣. (31)

For the case of small k and large L, we have 	k,m ≈ −2|1 −
λm|, sin θk,m ≈ −2πk/(L|1 − λm|), cos θk,m ≈ (1 − λm)/|1 −
λm|, and consequently sin2(θk,m − θk,n) ≈ 4k2π2g2(m − n)2/

[L2(1 − λm)2(1 − λn)2].
As a result, if L is large enough and g is a small perturbation,

the approximation of S can be obtained as

S(t) ≈ −E(Kc)(1 − λm)−2(1 − λn)−2

×{g2(m − n)2 sin2(2|1 − λm|t) sin2(2|1 − λn|t)
+ [sin(2|1 − λm|t) cos(2|1 − λn|t)|1 − λn|
− sin(2|1 − λn|t) cos(2|1 − λm|t)|1 − λm|]2}, (32)

where E(Kc) = 2π2Kc(Kc + 1)(2Kc + 1)/(6L2). In the
derivation of this equation, we have used ln(1 − x) ≈ −x for
small x and

∑n
k=1 k2 = n(n + 1)(2n + 1)/6. Let us consider a

limit case where λ → λc = 1, with a small enough g and finite
number (m − n)2, then Sc(t) ≈ −16E(Kc)(m − n)2g2t4; that
is, the behavior of the factor can be approximated as

|Fm,n|Kc
≈ e−γct

4
,

with γc = 16E(Kc)g2(m − n)2. This means that |Fm,n| decays
nearly as a monotonous function of time when λ tends to
the critical point. While beyond the critical region, |Fm,n|
may present periodicity. Next we consider another limit
λ → 0, with g � 1, we have |1 − λm(n)| ≈ 1, then S0(t) ≈
−E(Kc)(m − n)2g2 sin4(2t). Here it should be noted that,
since λ is very small, the sum S0(t) obtained by a small

k approximation cannot give a good description of |Fm,n|;
however, it gives an upper limit, that is, |Fm,n| � e−S0(t). At
the strong strength limit λ → ∞, we have S∞(t) → 0, that is,
|Fm,n| → 1. From the analysis for the three limits λ → 0, 1,
and ∞, by choosing a finite time t > 1, one can find the bounds
e−Sc(t) < e−S0(t) and e−Sc(t) < e−S∞(t). Thus it can be expected
that the critical strength λc = 1 may induce the minimal value
of |Fm,n|. Although the previous analysis is rough, it is heuristic
and brings us some important behaviors of |Fm,n|, such as that
|Fm,n| decays with time almost monotonously and at a finite
long time it may present a drop near the critical point. In the
following, we will calculate the maximal QFI Imax and find its
direct relation to the decoherence factors. Therefore, one can
see that Imax presents special properties at the critical point.

Now let us calculate the maximal QFI. When j = 1/2, the
maximal QFI Imax is absolutely determined by the norm of the
decoherence factor:

Imax = |F1/2,−1/2|2. (33)

From the previous analysis, when λ → 1 we have Imax

bounded by e−2γ t4
with γ = 16E(Kc)g2. In Eq. (33), Imax

is just the Loschmidt echo [19]. The weak coupling strength
g acts as the perturbation; thus the Imax, that is, the Loschmidt
echo, will present a sudden drop at the critical point [19].
However, it is more complicated for the larger size system.
When j = 1, the initial state |ψ〉s = 1

2 (|1〉 + √
2|0〉 + | − 1〉),

and the reduced density is

ρs = 1

4

⎛
⎝ 1

√
2F1,0 F1,−1√

2F ∗
1,0 2

√
2F0,−1

F ∗
1,−1

√
2F ∗

0,−1 1

⎞
⎠ . (34)

Based on this expression, obtaining the analytical result of
the maximal QFI is nearly impossible. Fortunately, in this
initial state |ψ〉E = |0〉k=0 ⊗k>0 |0〉k|0〉−k , by choosing a small
enough parameter g < 10L−1 (L is the size of Ising chain),
we can approximately treat the factors as F1,−1 → |F1,−1| and
F1,0,F0,−1 →|F1,0|. Consequently, a good approximation of
the maximal QFI is obtained as

Imax = max(E1,2E2), (35)

where

E1 = (1 + |F1,−1|)2 + 2|F1,0|2(1 − 3|F1,−1|)
3 − |F1,−1| − 2|F1,0|2 ,

(36)

E2 = 3|F1,−1|2 − |F1,−1|3 − 4|F1,−1||F1,0|2 + 2|F1,0|2
3 − |F1,−1| − 2|F1,0|2 .

This analytical result is more complicated than the case of
j = 1/2. The Imax depends on the two factors |F1,−1| and
|F1,0|, and the expression is nonlinear. Nevertheless, from our
analysis and the results in Ref. [19], we know that the critical
behavior of the environment will enhance the decoherence
process, and a sudden drop of the decoherence factor can
signal the criticality. Then it is reasonable to expect that the
QFI Imax in Eq. (35) will exhibit an extremum at the critical
point. From the Eqs. (35) and (36), one can obtain Imax = 2
when t = 0 or g = 0.With time evolving, when the factors
|F1,−1| and |F1,0| tend to zero, the state becomes the maximal
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FIG. 1. (Color online) (a) Imax versus t for λ = 0.1 and 1. The
angular momentum number of the system is j = 1, and the size of the
environment is L = 2M + 1 and M = 750. The coupling strength is
g = 0.01. (b) The cases of larger λ = 2, 3, and 4 are shown.

mixed state and Imax approaches the value 1/3. When λ → 1,

the decoherence factor |F1,0| is bounded by e−γ t4
and |F1,−1|

by e−4γ t4
, which constrains the behavior of Imax.

By numerically calculating the QFI in Fig. 1, we find the
behavior of QFI Imax versus time is affected by the strength
λ, especially at the critical point λc = 1. The case of j = 1
is presented as an example, and the time t is rescaled to
be dimensionless according to the coupling constants. In
Fig. 1(a), we find that only in the vicinity of λ → λc does
Imax decay monotonously to a steady value of about 1/3. And
extending the time range, there is no oscillation. However,
when parameter λ becomes larger than λc (λ = 2, 3, and 4)
in Fig. 1(b), Imax oscillates with time. It presents like a
quasiperiodic function of t , and at some times Imax is larger
than 2. According to quantum estimation theory, the decay
of QFI means the optimal precision of estimation is reduced.
From our study, one can find that the precision of the estimation
on the postdecohered state is lower than that on the initial
state. And the critical fluctuation makes the decay process
nearly monotonous. However, beyond the critical region, the
oscillation of QFI with time implies the precision of estimation
may rise again during some time period. In a sense, this
phenomenon can be regarded as evidence of the revival of
coherence, which may be understood as the reversed flow of
information from the environment back to the open system
[27,30]. Therefore, the results shown in Fig. 1(a) exhibit
that the critical fluctuation of the environment remarkably
suppresses the reversed flow of information. We stress that
the monotonous decay of the precision of estimation in the
critical region λ → λc is helpful to characterize the quantum
criticality.
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FIG. 2. (Color online) For the first initial state of the environment,
it shows Imax versus λ at t = 10 for the systems j = 1, 3/2, 2. The size
of the environment is M = 750. The coupling strength is g = 0.005.

At a fixed time t = 10 in Fig. 2, by changing the parameter
λ, one can see the Imax presents a sudden drop at the critical
point. We show the results for different system sizes of j = 1,

3/2, and 2. Clearly, when λ tends to the critical point, Imax

exhibits a drop, and beyond the critical point it increases to the
maximal value. If we consider the time-averaging QFI in the
region [0,T ], that is, Īmax = 1

T

∫ T

0 Imax(t) dt, the phenomenon
is similar to that in Fig. 2 and is not shown in this article. The
drop of Imax reflects that the parameter estimation of the open
system becomes more inaccurate, which can be understood
as that the critical fluctuation greatly destroys the quantum
coherence and, consequently, the estimation based on the
quantum coherence becomes inaccurate.

Let us recall the fundamental change of the ground state
of the transverse Ising chain. At the limit λ = 0, the ground
state is doubly degenerate under the global spin flip by

∏L
l σ z

l .
However, at the limit λ → ∞, the ground state approaches
a product of spins pointing to the positive z direction. The
symmetry breaks at |λ| = 1. At this critical point, the structure
of the ground state changes dramatically, which will greatly
affect the system coupled to it. In our study, the critical
properties are reflected by the QFI. When λ is large, the effect
of a small coupling g will be erased, and then the decoherence
factor Fm,n(t) → 1. In other words the initial state of the
system will not be driven by the Hamiltonian (14); thus for the
pure state |j 〉x [in Eq. (22)], we can easily obtain Imax = 2j

by using of Eqs. (5) and (9), which is consistent with our
numerical results.

B. The second initial state of environment

In this section, the initial state of the environment is
assumed as the ground state of the transverse Ising chain,

|ψ〉E = |1〉k=0 ⊗k>0 ei
θk
2 σkx |1〉k|1〉−k, (37)

where the parameter θk satisfies sin θk =
2 sin(2πk/L)/	k and the eigenenergy 	k =
−2

√
[λ − cos(2πk/L)]2 + sin2(2πk/L). It should be noted

that in the ground state Eq. (37), |1〉k=0 is for the case λ < 1,

while for λ � 1 it should be |0〉k=0. The system still starts
from the state (22); then we can calculate the decoherence
factor. We find the function of Fm,n is similar to the conjugate
form of Eq. (28) by replacing the parameters θk,m(θk,n) with
αk,m(αk,n), which is defined as αk,m = θk,m − θk. It should
be pointed out that for the second initial state |ψ〉E (37), we
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FIG. 3. (Color online) For the second initial state of the environ-
ment, it shows Imax versus t for the system j = 1. The size of the
environment is M = 750. The coupling strength is g = 0.05. The
different cases of λ = 0.1, 1, 1.5, and 2 are considered.

cannot obtain the analytical result of Imax like Eq. (35), since
all the decoherence factors behave quite differently in this
initial state. Only in a short-time region such as t < 0.3, can
Imax be characterized by Eq. (35) approximately. Instead, we
numerically study the QFI. In Fig. 3, in the system of j = 1,
we plot Imax as a function of t for different λ. Clearly, one can
find that when the environment tends to the critical point, QFI
is remarkably suppressed to the minimal value and without
rising again. While beyond the vinicity of the critical point,
Imax oscillates with time as a periodic function and larger λ

makes a longer period. It is clear that the quantum criticality
of the environment significantly reduces the precision of
estimation. However, beyond the critical region, the precision
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FIG. 4. (Color online) For the second initial state of the environ-
ment, panel (a) shows Imax versus λ at t = 4 for the systems j = 1,
3/2, and 2. The size of the environment is M = 750. The coupling
strength is g = 0.05. Panel (b) shows the time-averaging Imax versus
λ; also the different cases of j = 1, 3/2, and 2 are considered.

of estimation can increase again and even be several times
higher than the initial situation in some time periods.

Figure 4(a) shows Imax changes with different λ at a
fixed time t = 4, and the cases of j = 2, 3/2, and 1 are
considered. Similar to Fig. 2(a), Imax presents a sudden drop
to the minimum at the critical point. However, differently in
this case, Imax behaves as a very intense oscillation so that
it decreases sharply to the minimum and jumps up to the
maximum when λ crosses the critical region. Moreover, by
enlarging the system to j = 2, the maximum of Imax is more
than 10 times the minimum; that is, the precision of estimation
suddenly changes by a factor of 10. Therefore, it can be
expected that the larger dimension of the open system will
magnify the change of the precision of estimation, which will
make the phenomenon more evident and aid in the detection of
the quantum criticality. In Fig. 4(b), we plot the time-averaging
QFI Īmax = 1

T

∫ T

0 Imax(t) dt , with T = 500. We find that the
point where Īmax suddenly drops to the minimal value indicates
the critical region more accurately than that in Fig. 4(a). All the
results shown by us imply that the Imax, that is, the precision of
parameter estimation, changes dramatically when λ → 1 and
can be used to indicate the critical region of the environment.

V. CONCLUSION

By using quantum Fisher information, we have investigated
the problem of parameter estimation in a spin-j system
surrounded by an environment with QPT which is modeled by
the quantum Ising chain with transverse field. We introduced
a general method to obtain maximal QFI by choosing a
proper rotation direction. For the case j = 1/2, we obtained
the analytical result of the maximal QFI Imax, which is the
norm of the decoherence factor. For the system of j = 1,

only when the environment initially starts from the vacuum
state in the momentum space, can we approximately obtain
the analytical result of Imax, which depends on three kinds
of decoherence factors. By numerical calculation, we also
considered another initial state of the environment: the ground
state of the transverse Ising chain. For both the two initial
states, only in the critical region of λ → 1, does Imax decay
with time almost monotonically to the minimal value, namely,
the precision of estimation decreases almost monotonically.
While beyond the critical region, Imax begins to oscillate with
time, which means the precision of estimation can rise again
at some times. We conclude that the critical fluctuation of the
environment seriously destroys the coherence and thus reduces
the precision of estimation.

By choosing a fixed time or taking the time average, we
observe a sudden drop of the maximal QFI at the critical
point, which is due to the enhanced decoherence caused by the
quantum criticality. Our results clearly show that the critical
fluctuation of the environment is harmful to the parameter
estimation. The precision of estimation presents an evident
decrease due to the quantum criticality. Especially when
the environment starts from its ground state, enlarging the
open system to j = 2, the Imax, that is, the precision of
estimation, suddenly changes by a factor of 10, which makes it
possible to be detected in experiment. Therefore, we introduce
a method to detect QPT by coupling the quantum-critical
system to the external spin-j system. The region where the
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estimation precision changes dramatically can indicate the
quantum-critical region.
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Isart, Phys. Rev. Lett. 95, 110504 (2005).

[26] M. G. Genoni, P. Giorda, and M. G. A. Paris, Phys. Rev. A 78,
032303 (2008).

[27] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. Lett.
99, 160502 (2007).

[28] E. Ferraro, H.-P. Breuer, A. Napoli, M. A. Jivulescu, and
A. Messina, Phys. Rev. B 78, 064309 (2008).

[29] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[30] Xiao-Ming Lu, Xiaoguang Wang, and C. P. Sun, e-print
arXiv:0912.0587.

[31] M. Hayashi, Quantum Information: An Introduction (Springer-
Verlag, Berlin, Heidelberg, 2006).

[32] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys.
Rev. Lett. 98, 090401 (2007).

[33] G. R. Jin and S. W. Kim, Phys. Rev. Lett. 99, 170405 (2007).
[34] S. M. Roy and S. L. Braunstein, Phys. Rev. Lett. 100, 220501

(2008).
[35] S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and

C. M. Caves, Phys. Rev. Lett. 101, 040403 (2008).
[36] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K.

Oberthaler, Nature (London) 455, 1216 (2008).
[37] H. F. Hofmann, Phys. Rev. A 79, 033822 (2009).
[38] M. Rosenkranz and D. Jaksch, Phys. Rev. A 79, 022103

(2009).
[39] T.-W. Lee, S. D. Huver, H. Lee, L. Kaplan, S. B. McCracken,

C. Min, D. B. Uskov, C. F. Wildfeuer, G. Veronis, and J. P.
Dowling, Phys. Rev. A 80, 063803 (2009).

[40] Yi-Xiao Huang, Jian Ma, Zhe Sun, and Xiaoguang Wang (to be
published).

[41] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, England, 1999).

[42] Y.-Dan Wang, F. Xue, Z. Song, and C. P. Sun, Phys. Rev. B 76,
174519 (2007).

[43] J. M. Radcliffe, J. Phys. A 4, 313 (1971); M. Kitagawa and
M. Ueda, Phys. Rev. A 47, 5138 (1993).

022306-7

http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1103/PhysRevLett.85.2010
http://dx.doi.org/10.1103/PhysRevLett.85.2010
http://dx.doi.org/10.1103/PhysRevLett.100.100503
http://dx.doi.org/10.1103/PhysRevLett.100.100503
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevA.72.052334
http://dx.doi.org/10.1103/PhysRevA.72.052334
http://dx.doi.org/10.1088/0305-4470/39/46/015
http://dx.doi.org/10.1103/PhysRevA.63.042304
http://dx.doi.org/10.1109/TIT.2008.929940
http://dx.doi.org/10.1103/PhysRevLett.98.160401
http://dx.doi.org/10.1103/PhysRevLett.98.160401
http://dx.doi.org/10.1103/PhysRevLett.104.020401
http://dx.doi.org/10.1103/PhysRevLett.104.020401
http://dx.doi.org/10.1103/PhysRevA.78.042106
http://dx.doi.org/10.1103/PhysRevA.80.012318
http://dx.doi.org/10.1103/PhysRevLett.96.140604
http://dx.doi.org/10.1103/PhysRevLett.96.140604
http://dx.doi.org/10.1103/PhysRevA.78.032309
http://dx.doi.org/10.1103/PhysRevA.78.032309
http://dx.doi.org/10.1088/1367-2630/11/11/113005
http://dx.doi.org/10.1088/1367-2630/11/11/113005
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://dx.doi.org/10.1103/PhysRevA.75.062312
http://dx.doi.org/10.1103/PhysRevA.74.054102
http://dx.doi.org/10.1103/PhysRevA.74.054102
http://dx.doi.org/10.1103/PhysRevA.78.022327
http://dx.doi.org/10.1103/PhysRevA.78.022327
http://dx.doi.org/10.1103/PhysRevLett.95.110504
http://dx.doi.org/10.1103/PhysRevA.78.032303
http://dx.doi.org/10.1103/PhysRevA.78.032303
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevLett.99.160502
http://dx.doi.org/10.1103/PhysRevB.78.064309
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://arXiv.org/abs/arXiv:0912.0587
http://dx.doi.org/10.1103/PhysRevLett.98.090401
http://dx.doi.org/10.1103/PhysRevLett.98.090401
http://dx.doi.org/10.1103/PhysRevLett.99.170405
http://dx.doi.org/10.1103/PhysRevLett.100.220501
http://dx.doi.org/10.1103/PhysRevLett.100.220501
http://dx.doi.org/10.1103/PhysRevLett.101.040403
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1103/PhysRevA.79.033822
http://dx.doi.org/10.1103/PhysRevA.79.022103
http://dx.doi.org/10.1103/PhysRevA.79.022103
http://dx.doi.org/10.1103/PhysRevA.80.063803
http://dx.doi.org/10.1103/PhysRevB.76.174519
http://dx.doi.org/10.1103/PhysRevB.76.174519
http://dx.doi.org/10.1088/0305-4470/4/3/009
http://dx.doi.org/10.1103/PhysRevA.47.5138

