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Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified
subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret
sharing can be achieved when all the members are quantum. So what happens if not all the members are
quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled
Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob
and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented
protocols are also shown to be secure against eavesdropping.
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I. INTRODUCTION

Suppose a service provider Alice wants to distribute some
secret information among clients, Bob and Charlie, such that
Bob and Charlie can obtain the secret information through their
cooperation, while one of them cannot. Classical secret sharing
has been proposed as a solution [1–3]. A simple example is that
Alice prepares a binary bit string related to her secret message
and generates a random string of the same length. She then
applies bitwise XOR operations on these two strings and sends
the resulting string to Bob and a copy of the random string to
Charlie. Obviously, Bob and Charlie, by acting together, can
access Alice’s message, but one of them can obtain nothing
about it.

Unfortunately, classical secret sharing cannot address the
problem of eavesdropping if it is not used in conjunction with
other techniques such as encryption. If an eavesdropper Eve
(including one malicious participant of the Bob-Charlie pair)
can control the communication channel and can obtain both of
Alice’s transmissions, then Alice’s message becomes transpar-
ent for her. Fortunately, quantum secret sharing can achieve
secret sharing and eavesdropping detection simultaneously.
Hillery et al. showed how to implement a secret sharing scheme
by using three-qubit entangled Greenberger-Horne-Zeilinger
(GHZ) states [4] in the presence of an eavesdropper [5].
Karlsson et al. presented a secret sharing scheme based on
two-qubit quantum entanglement such that only two members
implementing together are able to obtain the information [6].
Gottesman showed that the size of each important share
sometimes can be made half of the size of the secret if quantum
states are used to share a classical secret [7]. The secret sharing
protocol among n parties based on entanglement swapping of
d-level cat states and Bell states was introduced by Karimipour
et al. [8]. Guo and Guo proposed a secret sharing scheme
that utilizes product states instead of entangled states so as to
improve the efficiency up to 100% [9]. Xiao et al. generalized
the scheme in Ref. [5] into any number of participants and gave
two efficient quantum secret sharing schemes with the 100%
asymptotical efficiency [10]. Zhang and Man considered a
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multiparty quantum secret sharing protocol of the classical
secret based on entanglement swapping of Bell states [11].
There are also many quantum secret sharing protocols that con-
sider sharing quantum information [5–7,12–20]. Especially,
Markham and Sanders developed a unified approach to secret
sharing of both classical and quantum secrets by employing
graph state [20].

However, previous quantum secret sharing protocols
require all the parties to have quantum capabilities. So, what
happens if not all the parties are quantum? Actually, the
situation that not all the participants can afford expensive
quantum resources and quantum operations is more common
in various applications. It is well known that semiquantum key
distribution in which one party Alice is quantum and the other
party Bob just owns classical capabilities is possible [21–23],
so, it is interesting to ask whether semiquantum secret sharing
(SQSS) (the specific definition is given afterward) is possible.
The answer is affirmative.

In this paper, we consider the secret sharing protocol in
which quantum Alice has to share a secret with classical Bob
and classical Charlie such that the collaboration of Bob and
Charlie can reconstruct the secret, while one of them cannot
obtain anything about the secret. We say Alice is quantum as
she is allowed to prepare general quantum states and to perform
quantum operations on the qubits. We follow the descriptions
about “classical” in Refs. [21–23]. An orthogonal basis such as
the computational basis {|0〉,|1〉} can be selected as a classical
basis and can be replaced with the classical notations {0,1}.
Bob and Charlie are restricted to performing four operations
when they access a segment of the quantum channel: (1)
measuring the qubits in the classical {0,1} basis, (2) reordering
the qubits (via different delay lines), (3) preparing (fresh)
qubits in the classical basis, and (4) sending or returning the
qubits without disturbance. If one can only apply those four
operations on the qubits in the classical basis and cannot obtain
any quantum superposition of the two states in the classical
basis, such qubits can be regarded as classical bits, and the
operations can be considered to be classical, since they are
equivalent to the usual {0,1} computation. The protocol of this
kind is termed as SQSS. SQSS protocols can have two variants,
randomization-based SQSS and measure-resend SQSS, in
terms of the operations that classical participants are allowed to
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implement. In a randomization-based SQSS protocol, classical
participants are limited to perform operations (1), (2), and
(4), while in a measure-resend SQSS protocol, classical
participants are limited to perform operations (1), (3), and
(4). In principle, an SQSS protocol is considered as secure
if neither an eavesdropper nor a malicious participant can
obtain any information about the secret. In the following
sections, we utilize maximally entangled states of the GHZ
type to construct a randomization-based SQSS protocol and a
measure-resend SQSS protocol based on the semiquantum key
distribution protocols [21–23], and we show that the proposed
SQSS protocols are secure against eavesdropping.

II. THREE-QUBIT ENTANGLED STATES

In order to construct SQSS protocols, we introduce a three-
qubit entangled state in the following form:

|ψ〉 = 1√
2

(
|0〉 |00〉 + |11〉√

2
+ |1〉 |01〉 + |10〉√

2

)
. (1)

This state also can be rewritten as

|ψ〉 = 1√
2

(
|0〉 | + +〉 + | − −〉√

2
+ |1〉 | + +〉 − | − −〉√

2

)

= |0〉 + |1〉√
2

| + +〉√
2

+ |0〉 − |1〉√
2

| − −〉√
2

= | + ++〉 + | − −−〉√
2

. (2)

Obviously, by implementing a Hadamard operation on each
qubit of the state |ψ〉, respectively, |ψ〉 is transformed into the
standard GHZ state,

|GHZ〉 = |000〉 + |111〉√
2

. (3)

According to Ref. [24], if two three-qubit entangled states can
be mutually transformed by local unitary operations, they must
be equivalent. Hence, |ψ〉 is equivalent to the standard GHZ
state, and it belongs to the GHZ type. Like the canonical GHZ
state, it is also maximally entangled in several aspects [25].
For instance, it violates Bell inequality [26] maximally; it is
maximally fragile, since only one qubit loss can disentangle
it; by measuring a qubit, an Einstein-Podolsky-Rosen (EPR)
state can be obtained from the other two qubits; the mutual
information of measurement results can be maximal.

The GHZ-type state |ψ〉 is not only theoretically existent
but also experimentally feasible. It can be obtained from the
standard GHZ state by using Hadamard gates, and also can be
generated in the following way. To gain |ψ〉, we may begin by
preparing the state |0〉 and the Bell state |00〉+|11〉√

2
, and then, we

may apply the Hadamard gate to the first qubit, and finally we
may apply the controlled-NOT gate to the first two qubits. The
specific steps are illustrated by the quantum circuit shown in
Fig. 1. Let us follow the states in the circuit to clearly see the
process of generating |ψ〉. The input state of the circuit is

|ψ0〉 = |0〉 ⊗ |00〉 + |11〉√
2

. (4)

|00

|0

+ |11√
2

|ψ1 |ψ2|ψ0

H

FIG. 1. Quantum circuit for generating |ψ〉.

After sending the first qubit through the Hadamard gate, we
have

|ψ1〉 = |0〉 + |1〉√
2

⊗ |00〉 + |11〉√
2

= 1√
2

(
|0〉 |00〉 + |11〉√

2
+ |1〉 |00〉 + |11〉√

2

)
. (5)

Then, we send the first two qubits through the controlled-NOT

gate to obtain

|ψ2〉 = 1√
2

(
|0〉 |00〉 + |11〉√

2
+ |1〉 |10〉 + |01〉√

2

)

= |ψ〉. (6)

Since the Hadamard gate and the controlled-NOT gate, which
are fundamental quantum gates, can be experimentally feasible
[27,28], the procedure presented here can lead to the possibility
of generating |ψ〉.

Notice that full quantum secret sharing can be realized
by using standard GHZ states [5]. Alice, Bob, and Charlie
obtain a qubit from each GHZ state in the form of Eq. (3),
and then, make random measurements in the x or y basis.
Subsequently, they publicly announce which bases were used,
but not the corresponding measurement results. By revealing
a random subset of the outcomes, where their measurement
bases coincided for verification, Alice can establish a secret
string, which can be gained only when Bob and Charlie
cooperate. We will show the usefulness of the GHZ-type state
|ψ〉 for SQSS.

III. RANDOMIZATION-BASED SQSS PROTOCOL

In this section, we propose a randomization-based SQSS
protocol in which quantum Alice and the other two classical
parties, Bob and Charlie, share a secret string such that Bob
and Charlie can recover the secret string only when they
work together. Quantum Alice has the ability to prepare the
maximally entangled GHZ-type state |ψ〉 and to perform
some quantum operations such as Bell measurements and
three-qubit join measurements. Classical parties, Bob and
Charlie, are restricted to implementing three operations: (1)
measuring the qubits in the classical basis, (2) reordering the
qubits (via different delay lines), and (3) sending or returning
the qubits without disturbance. All the participants can access
a quantum channel and an authenticated public channel that is
susceptible to eavesdropping. The detailed steps are given in
the following.
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(i) Alice creates a sufficiently long string of three-qubit
entangled states in the form of Eq. (1). (Suppose N triplet
states are in the string, and they are indexed from 1 to N .)
After that, Alice sends the second and the third qubits of each
entangled state to Bob and Charlie, and keeps the remainder
for herself.

(ii) Upon receiving each qubit, Bob randomly determines,
either to measure the qubit using the classical basis (we refer
to this action as SHARE), or to reflect it back to Alice (we refer
to this action as CHECK). Particularly, Bob reflects the qubits
in a new order such that nobody else could distinguish which
qubits are returned. Each measurement outcome is interpreted
as a binary 0 or 1. Similarly, Charlie also randomly decides
either to measure the qubits or to reflect the qubits in another
order.

(iii) Alice temporarily restores the qubits reflected by Bob
and Charlie in quantum registers according to their incoming
sequences, and announces that she has received their reflected
qubits in a public channel.

(iv) Bob and Charlie declare which qubits were reflected
by them and the order in which their qubits were returned,
respectively. Alice reordered the reflected qubits according to
Bob’s and Charlie’s reports.

(v) For her own qubit in each position, Alice performs one
of the four actions according to Bob’s and Charlie’s actions on
the corresponding qubits, as illustrated in Table I.

It is supposed that the four cases in Table I, which appear
in the same probability:

(1) Both Bob and Charlie choose to SHARE, then Alice can
implement ACTION 1 to obtain a bit (we name this bit as the
SHARE bit) that can be retrieved if Bob and Charlie use the
XOR operation on their measurement outcomes;

(2) Bob chooses to SHARE, and Charlie chooses to
CHECK, then Alice can perform ACTION 2 to check whether
Bob’s measurement outcome is right and the resulting two-
qubit state is the correct Bell state;

(3) Bob chooses to CHECK, and Charlie chooses to
SHARE, then Alice can utilize ACTION 3 to check if Charlie’s
measurement result is right and the resulting two-qubit state is
the correct Bell state;

(4) Both Bob and Charlie choose to CHECK, then
Alice can check whether the original three-qubit entangled
state in the form of Eq. (1) is changed by carrying out
ACTION 4.

TABLE I. Participants’ actions on the qubits in each position.

Case Bob Charlie Alice

(1) SHARE SHARE ACTION 1a

(2) SHARE CHECK ACTION 2b

(3) CHECK SHARE ACTION 3c

(4) CHECK CHECK ACTION 4d

aTo measure her qubit in the classical basis.
bTo combine her qubit with Charlie’s reflected qubit and to perform
a Bell measurement.
cTo combine her qubit with Bob’s reflected qubit and to perform a
Bell measurement.
dTo combine her qubit with the two reflected qubits and to perform
an appropriate three-qubit join measurement.

For instance, let Bob randomly measure the qubits in
N/2 positions (SHARE) and reflect the qubits in the other
N/2 positions in a new order lB = l1l2 · · · lN/2 (CHECK),
and Charlie performs the similar operations as Bob does
and reflects the qubits in another order mC = m1m2 · · · mN/2.
Suppose N = 8, lB = 4731, and mC = 6427. Then, the lists
of the qubits measured by Bob and Charlie are indexed by
their complements l̄B = 2568 and m̄C = 1358, respectively.
Hence, Alice performs ACTION 1 in positions 5 and 8 and
interprets the measurement outcomes as classical bits 0 or 1,
and she performs ACTION 4 in positions 4 and 7. Alice also
implements ACTION 2 in positions 2 and 6, and ACTION 3
in positions 1 and 3.

(vi) Alice checks the error rate in cases (2), (3), and (4)
given in Table I. If the error rate in any case is higher than
some predefined threshold value, the protocol aborts.

(vii) Alice requires Bob and Charlie to reveal a random
subset (assume the size of the subset is about N/8) of the
bits that are used to generate Alice’s SHARE bits. Actually,
this process is used to check the error rate in case (1). If the
values of Bob’s and Charlie’s bits are the same (or opposite),
then Alice’s bit should be 0 (or 1) according to Eq. (1). From
step v, we know that approximately N/4 positions are selected
by both Bob and Charlie to SHARE. If the error rate on SHARE
bits is not significant, the remaining N/8 SHARE bits of Alice
form the final secret string, which can be recovered only when
Bob and Charlie work together.

We show the preceding randomization-based SQSS proto-
col is secure against eavesdropping in two situations. The first
is that one dishonest classical party Bob (or Charlie) attempts
to find Alice’s secret without cooperating with the other party
in the recovery stage. The second is that an eavesdropper
Eve (including malicious Bob or Charlie), who has quantum
capabilities, is involved and aims to find Alice’s secret without
being detected.

We first suppose the dishonest classical party Bob can
access both of Alice’s transmissions. In some of the positions,
Bob may measure the qubit using the classical basis and resend
one of them in the state he found to Charlie. In terms of Eq.
(1), if both of the measurement outcomes are the same (or the
opposite), he learns that Alice’s bit must be 0 (or 1). In the other
positions, Bob may behave like an honest party and do nothing
on Charlie’s qubits. However, this cheating strategy can hardly
succeed, since Bob does not know Charlie’s choices. If Bob
measures Charlie’s qubit in the position where Charlie chooses
to CHECK, he suffers a problem. According to the state |ψ〉 in
Eq. (1), if Bob just measures his own qubit, then the two-qubit
state, which results from combining Alice’s qubit and Charlie’s
reflected qubit should be the Bell state, while, if Bob measures
both qubits for himself and Charlie, then the two-qubit state,
which results from combining Alice’s qubit and Charlie’s
reflected qubit will be the product state; and, thus, Alice
will find this abnormity with probability 1/2 by using a Bell
measurement. However, if Bob measures Charlie’s qubit in the
position where Charlie chooses to SHARE, his cheating will
not be found. In each position, Charlie has a probability of 1/2
for making either choice, so the probability that Bob escapes
from being detected is 1/2 × 1/2 + 1/2 = 3/4. Assume that
Bob has to measure both qubits in l(l � N/4) positions to
obtain the significant information of Alice’s secret without the
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aid of Charlie, then the probability that Bob goes undetected is
(3/4)l , which may be arbitrarily small by picking appropriate
l and N .

Now, let us consider the second case in which Eve, who has
quantum capabilities, is involved. Assume that Eve can obtain
both of Alice’s transmissions and tries to obtain Alice’s secret.
If Eve gets Bob’s and Charlie’s qubits of certain entangled
states, she may measure the two qubits in the Bell basis and
then resend the qubits in the states she found to Bob and
Charlie, respectively. In terms of Eq. (1), if the measurement
outcome is |00〉+|11〉√

2
, Eve learns that Alice’s bit should be 0;

otherwise, she knows that Alice’s bit should be 1. However,
Eve’s cheating is likely to be detected, since she does not know
Bob’s and Charlie’s choices. If she measures the qubits in the
position, where both Bob and Charlie choose to CHECK, then
the three-qubit state, which results from combining Alice’s
qubit and the other two reflected qubits will be the product
of one single state and a Bell state but not the same as the
original state |ψ〉 in the form of Eq. (1); and, thus, Alice can
discover this fraud with the probability 1/2 by measuring it in
an orthogonal basis of three qubits {|φ0〉,|φ1〉, . . . ,|φ7〉}, where

|φ0〉 = 1√
2

(
|0〉 |00〉 + |11〉√

2
+ |1〉 |01〉 + |10〉√

2

)
,

|φ1〉 = 1√
2

(
|0〉 |00〉 + |11〉√

2
− |1〉 |01〉 + |10〉√

2

)
,

|φ2〉 = 1√
2

(
|0〉 |00〉 − |11〉√

2
+ |1〉 |01〉 − |10〉√

2

)
,

|φ3〉 = 1√
2

(
|0〉 |00〉 − |11〉√

2
− |1〉 |01〉 − |10〉√

2

)
,

(7)

|φ4〉 = 1√
2

(
|1〉 |00〉 + |11〉√

2
+ |0〉 |01〉 + |10〉√

2

)
,

|φ5〉 = 1√
2

(
|1〉 |00〉 + |11〉√

2
− |0〉 |01〉 + |10〉√

2

)
,

|φ6〉 = 1√
2

(
|1〉 |00〉 − |11〉√

2
+ |0〉 |01〉 − |10〉√

2

)
,

|φ7〉 = 1√
2

(
|1〉 |00〉 − |11〉√

2
− |0〉 |01〉 − |10〉√

2

)
.

Similarly, if Eve measures the qubits either in the position,
where Bob chooses to SHARE and Charlie chooses to
CHECK, or in the position, where Bob selects to CHECK
and Charlie selects to SHARE, she can also be detected
with probability 1/2 by implementing a Bell measurement.
However, if Eve measures the qubits in the position where both
Bob and Charlie choose to SHARE, she cannot be detected. In
every position, as Bob and Charlie have a probability of 1/2
for choosing to SHARE or to CHECK, the probability that
Eve’s cheating is undetected is 1/4 × 1/2 × 3 + 1/4 = 5/8.
Suppose there are m(m � N/4) positions where Bob should
measure the qubits in a Bell basis to learn the considerable
information of the secret, then Bob’s cheating goes undetected
with probability (5/8)m, which can be small enough by
choosing suitable m and N . In addition, Eve also obtains
nothing about Alice’s secret information even if she manages
to entangle an ancilla with each qubit of Bob (or Charlie).
Suppose that, in a certain position, Eve has entangled an ancilla

|0〉 with |ψ〉, and both Bob and Charlie measure their qubits,
then the Alice-Eve system collapses to |00〉 or |10〉, which
leaks no information to Eve about Alice’s qubit. Note that
dishonest Bob (or Charlie) who might be quantum can also
implement the operations, which resemble the ones that can
be done by Eve, and Alice is still able to detect the cheating in
great probability by employing similar methods.

In addition, as Refs. [21–23] said that a protocol had
better satisfy complete robustness, which means that, if
Eve can obtain nonzero information about the secret string,
then honest participants can detect errors through tests with
nonzero probability. We show the proposed randomization-
based SQSS protocol is completely robust informally. Assume
quantum Eve (including dishonest Bob or Charlie) attempts to
obtain Alice’s secret. In some positions, when Eve wants to
acquire the information of Alice’s qubit by applying some
operations on the other two qubits, then her act inevitably
causes a disturbance to the state of the entire system. If at
least one honest participant chooses to reflect his qubits in
such positions, Alice could discover Eve’s cheating through
performing appropriate measurements. For example, if Bob
and Charlie choose to reflect their qubits, then Alice may
discover the three-qubit entangled state changed by using a
joint measurement of three qubits shown in Eq. (7). Even if
Eve might be dishonest Bob (Charlie), Alice is also likely to
find the correlation between Alice’s qubit and Charlie’s (Bob’s)
qubit varied by implementing a Bell measurement if Charlie
(Bob) reflects his qubit.

Particularly, notice that it is indispensable for Alice to
announce that she has received all the reflected qubits in
step iii. If Eve can learn which qubits were reflected by Bob
and Charlie and in which order they were reflected before
Alice receives the reflected qubits, she can obtain the secret
string of Alice without producing errors by using the similar
method to attack the mock protocol in Refs. [21–23]. For each
incoming qubit of Bob, she entangles an ancilla |0〉 with it
and implements a controlled-NOT operation on them (Bob’s
qubit as the control qubit and the ancilla qubit as the target
qubit). Then, she holds all the qubits that Bob reflected until
Bob publishes which qubits were reflected and in which order
they were reflected. Next, she rearranges the reflected qubits
in the same order as Alice sent them to Bob and performs
another controlled-NOT operation on each returned qubit and
the corresponding ancilla. After that, she resends the resulting
qubits in the order that Bob declared to Alice. Finally, in the
position where Bob chose to SHARE, she measures her ancilla
and learns Bob’s bit. For the qubits sent to Charlie, Eve does
similar operations and learns Charlie’s bits. In the position
where both Bob and Charlie chose to SHARE, Eve can obtain
the SHARE bit by implementing the XOR operation on their
bits according to Eq. (1). Moreover, Eve goes undetected, since
she introduces no errors.

IV. MEASURE-RESEND SQSS PROTOCOL

In the following, a measure-resend SQSS protocol is
introduced. Quantum Alice can prepare the three-qubit GHZ-
type state |ψ〉 and can perform certain quantum operations on
the qubits. Classical parties, Bob and Charlie, are restricted
to performing three operations: (1) measuring the qubits in
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the classical basis; (2) preparing (fresh) qubits in the classical
basis; (3) sending or returning the qubits without disturbance.
This protocol is quite similar to the randomization-based SQSS
protocol except that step ii and step iv are adapted to the
different restrictions of classical participants, so the modified
steps are given as follows:

(ii) When Bob (or Charlie) receives each qubit, he randomly
determines, either to measure it in the classical basis and return
it in the same state he found (SHARE) it, or to reflect it directly
(CHECK).

(iv) Bob and Charlie declare the positions in which the
qubits were measured (or reflected).

The proposed measure-resend SQSS protocol is secure
against eavesdropping in a way similar to that in the
randomization-based SQSS protocol. A dishonest classical
party Bob (or Charlie) should not find Alice’s secret without
collaborating with the other party. Furthermore, the eavesdrop-
per Eve (including malicious Bob or Charlie) who has quantum
capabilities also should not be able to obtain Alice’s secret
without disturbance. Suppose classical Bob is dishonest, and
he has controlled both of Alice’s transmissions. In some of the
positions, Bob measures both qubits in the classical basis and
resends one of them to Charlie. However, if Charlie does not
measure the qubits in such positions, the Alice-Charlie system
should collapse to the Bell states but not to the product states,
which might be discovered by Alice through implementing
Bell measurements. Likewise, assume that quantum Eve (who
could also be dishonest Bob or Charlie) has managed to obtain
both Bob’s and Charlie’s qubits. In certain positions, Eve
measures the two qubits in the Bell basis and then resends
the qubits to Bob and Charlie, respectively. However, if at
least one honest participant does not measure his qubits
in such positions, Alice would be able to discover Eve’s
cheating through performing appropriate measurements. In
addition, even if Eve manages to entangle an ancilla with each
three-qubit entangled state |ψ〉, she also obtains nothing about
Alice’s bits, since the ancilla states are always left unchanged
in the positions, where both Bob and Charlie measure their
qubits.

In addition, the measure-resend SQSS protocol can also
be completely robust, since, if quantum Eve wants to obtain
the nonzero information of Alice’s qubit by implementing
operations on the other two qubits, disturbance may be
introduced to the three-qubit entangled state or the correlation
between Alice’s qubit and the honest participant’s qubit, and
that can be detected by Alice with nonzero probability.

Note that it is still significant to demand Alice to publish
that she has received all the reflected qubits in step iii of this

protocol. If this requirement is lost, Eve can cheat successfully.
For instance, Eve holds the reflected qubits from Bob and
Charlie until they announce the positions in which the qubits
were measured and resent (SHARE), or reflected directly
(CHECK). Then, Eve measures the qubits that they measured
and further resends them in the states she found, and reflects the
qubits that they reflected without disturbance. In the position,
where both Bob and Charlie measured their qubits, Eve learns
Alice’s bit must be 0 if her measurements are the same;
otherwise, she learns that Alice’s bit must be 1. In this case, Eve
can escape from being detected, since she does not introduce
disturbance anywhere.

V. CONCLUSION AND DISCUSSION

We have introduced a maximally entangled GHZ-type state
and have shown that it can be produced by using the quantum
circuit. Moreover, we have used such GHZ-type states to
propose two SQSS protocols in which Alice has quantum
capabilities, while the other two parties, Bob and Charlie,
are limited to classical operations: measuring qubits in the
classical basis, sending or reflecting qubits without distur-
bance, reordering some qubits, or preparing fresh qubits after
measurements and resending them. The proposed protocols
have also been shown to be secure against eavesdropping.
Since the proposed SQSS protocols do not require all the
participants to own quantum capabilities, the secret sharing
can be achieved at a lower cost. Therefore, the applicability of
secret sharing could be widen to the situation in which not all
the participants can afford expensive quantum resources and
quantum operations.

Nevertheless, we just consider the case that quantum Alice
shares a secret with two classical parties, Bob and Charlie. An
interesting question is: Can a general SQSS protocol in which
quantum Alice shares a secret with several parties who may be
quantum or classical be achieved? Additionally, we only show
the robustness of the proposed SQSS protocols informally. So
another interesting question is: How to give a formal proof of
robustness for an SQSS protocol?
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