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Isospectral potentials from modified factorization
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Factorization of quantum-mechanical potentials has a long history extending back to the earliest days of
the subject. In the present article, the nonuniqueness of the factorization is exploited to derive new isospectral
nonsingular potentials. Many one-parameter families of potentials can be generated from known potentials using
a factorization that involves superpotentials defined in terms of excited states of a potential. For these cases an
operator representation is available. If ladder operators are known for the original potential, then a straightforward
procedure exists for defining such operators for its isospectral partners. The generality of the method is illustrated
with a number of examples which may have many possible applications in atomic and molecular physics.
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I. INTRODUCTION

The factorization method due to Hull and Infeld [1] has
been widely exploited in quantum mechanics to determine the
spectra and wave functions of exactly solvable potentials. This
approach has been formalized in supersymmetric quantum
mechanics (SUSY QM) [2], which has been used to find many
new isospectral potentials. The usual procedure is to find a
factorization of a quantum-mechanical Hamiltonian and the
methods of SUSY QM then guarantee that a supersymmetric
partner potential is isospectral to the original Hamiltonian.
As verified in the following, this procedure yields a pair of
potentials with the same spectra (possibly apart from the
ground state) and related wave functions. Throughout this
article we work in h̄ = 2m = 1 units.

Let us consider a one-dimensional Hamiltonian

H
(0)
− = −∂2

x + V
(0)
− (x),

where V
(0)
− (x) is an arbitrary nonsingular potential with at

least one bound state and zero ground-state energy [given
the Hamiltonian H = −∂2

x + V (x) one simply subtracts the
zero point energy to obtain H

(0)
− ]. It is a second-order linear

operator and it can be factored into a product of first-order
linear operators as follows:

H
(0)
− = [−∂x + W0(x)][∂x + W0(x)] ≡ A

†
0A0,

once the ground-state wave function ψ0(x) is specified.
The function W0(x) = −∂x ln ψ0(x) is called superpotential
generating the potential

V
(0)
− (x) = W 2

0 (x) − W ′
0(x).

Fortunately, the factorization does not commute A
†
0A0 �=

A0A
†
0 unless the superpotential is constant. In other words, an

inverted product A0A
†
0 is a certain new Hamiltonian H

(0)
+ =

A0A
†
0 = −∂2

x + V
(0)
+ (x) where

V
(0)
+ (x) = W 2

0 (x) + W ′
0(x),
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is also free of singularities. It turns out that the eigenfunctions
and eigenvalues of these partner Hamiltonians are related.
Indeed, we have the following first-order intertwining relations

H
(0)
− A

†
0 = A

†
0H

(0)
+ and H

(0)
+ A0 = A0H

(0)
− , (1)

from which one observes that since A0ψ0(x) = 0, the spectra
of H

(0)
+ and H

(0)
− are connected by Ẽn = En+1 (n = 0,1, . . .)

where Ẽn and En denote the eigenvalues of the Hamiltonians
H

(0)
+ and H

(0)
− , respectively, with eigenfunctions ψ̃n and ψn.

Thus, the Hamiltonians have identical energy spectrum except
for the ground state of H

(0)
− . The wave functions satisfy

ψ̃n(x) ∝ A0ψn+1(x), ψn+1(x) ∝ A
†
0ψ̃n(x) and if ψn+1(x) is

normalizable, then ψ̃n(x) is also normalizable and vice versa
because

〈ψ̃n(x),ψ̃n(x)〉 = 〈ψn+1(x),A†
0A0ψn+1(x)〉

= En+1〈ψn+1(x),ψn+1(x)〉.
Note that for singular potentials (for instance, with a 1/x2

singularity) some of the wave functions ψ̃n(x) are not
acceptable as they may not be normalizable [3]. That is, for
singular potentials the degeneracy of energy levels is only
partially valid or invalid at all. The upshot of all this is that one
can generate new isospectral potentials from existing exactly
solvable potentials.

Luckily, the previously discussed factorization is not
unique. For example, we have

(−∂x + 1)(∂x + 1) = [−∂x + tanh(x)][∂x + tanh(x)],

that is, two different superpotentials can give rise to the same
potential (in this particular example with no bound states).
One can try to construct new isospectral potentials exploiting
the nonuniqueness of factorization and obtain a one-parameter
family of potentials with the parameter arising as an integration
constant [4,5].

Suppose the Hamiltonian H
(0)
+ can be factorized by the

operators different than A0 and A
†
0, namely,

B = ∂x + f (x) and B† = −∂x + f (x),

where f (x) is the temporarily undetermined function

H
(0)
+ = BB† = −∂2

x + f 2(x) + f ′(x).
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Now demanding that this Hamiltonian involve the potential
V

(0)
+ (x) results in a differential equation that must be satisfied

f ′(x) + f 2(x) − V
(0)
+ (x) = 0.

This is a Riccati equation in its canonical form. The explicit
closed-form solution of this equation is not known typically,
but one understands that the superpotential W0(x) is a
particular solution. This is enough to construct the general
solution f (x) which depends on an arbitrary integration
constant that can be considered as a free parameter in the
partner Hamiltonian

H = B†B = −∂2
x + V

(0)
+ (x) − 2f ′(x) = −∂2

x + V (x).

According to SUSY QM the potentials V
(0)
+ (x) and V (x) are

isospectral [except for the lowest state of V (x)] provided that
f (x) is nonsingular. In addition, since BB† = A0A

†
0, it follows

that the potentials V
(0)
− (x) and V (x) have strictly identical

spectra.
In Ref. [4] Mielnik performed factorization of the harmonic

oscillator potential in this manner. Mielnik obtained a one-
parameter family of potentials with the oscillator spectrum,
but as we have just seen the procedure is straight forwardly
generalized to any potential V

(0)
+ (x).

In the standard [i.e., based on the first-order intertwining
relation (1)] unbroken SUSY QM it is impossible to use an
excited state of the original potential and at the same time avoid
creating singularities in the partner potential [6]. There is no
guarantee that the resulting wave functions are normalizable
and energy levels degenerate. The purpose of the present article
is to modify the operators B and B† in such a way as to
determine new strictly isospectral potentials without being
forced to solve Riccati equations (by reducing the Riccati
equation whose appearance in the factorization problems
is typical to the solvable Bernoulli equation), and more
importantly, by applying the nonuniqueness of factorization
to the superpotentials generated by the excited states of a
potential since these also satisfy the Schrödinger equation.

II. MODIFIED FACTORIZATION

In this section we show the consequences of the nonunique-
ness of the factorization method extended to the excited
states of a potential, rather than just the ground state. In
the literature the Hamiltonians H

(0)
+ and H

(0)
− are called

“bosonic” and “fermionic,” respectively. We show that the
degeneracy of energy levels of partner potentials depends
on whether the bosonic or fermionic Hamiltonians admit
nonunique factorization.

A. Bosonic Hamiltonian

Let there be given an analytically solvable nonsingular
potential V

(0)
− (x) whose energy eigenvalues En and wave

functions ψn(x) are known. Without loss of generality, let
E0 be zero, so that V

(0)
− (x) = ψ ′′

0 (x)/ψ0(x) = W 2
0 (x) − W ′

0(x)
and also define

V
(n)
− (x) = ψ ′′

n (x)/ψn(x) = W 2
n (x) − W ′

n(x),

where Wn(x) = −∂x ln ψn(x) is taken to be the superpotential
corresponding to ψn(x). From the Schrödinger equation it
follows that V

(n)
− (x) = V

(0)
− (x) − En, so that the potentials

V
(n)
− (x) are nonsingular, even though the superpotentials Wn(x)

are always singular for n > 0. Adjusting the energy scale
seems appropriate: One simply subtracts from the potential
the energy of the excited state so that the resulting potential
can be factored.

Next we introduce the operators

Bn = ∂x + f (x) + Wn(x) and B†
n = −∂x + f (x) + Wn(x),

where f (x) will be determined in the following. Notice
when n = 0 these definitions reduce to the familiar case of
standard unbroken SUSY QM if f (x) = 0 and to the Mielnik’s
factorization [4] if f (x) �= 0.

The factorization of the Hamiltonian H̃
(n)
− = B

†
nBn leads to

H̃
(n)
− = −∂2

x + V
(n)
− (x) + f 2(x) + 2Wn(x)f (x) − f ′(x).

If we require that f 2(x) + 2Wn(x)f (x) − f ′(x) = 0 the
Hamiltonian becomes trivial because the potential V

(n)
− (x) is

related to V
(0)
− (x) by a constant shift. On the other hand, the

partner Hamiltonian H̃
(n)
+ = BnB

†
n is less trivial

H̃
(n)
+ = −∂2

x + V
(n)
+ + 2f ′(x),

where V
(n)
+ (x) = W 2

n (x) + W ′
n(x). The function f (x) is not

arbitrary—it is a solution of the Bernoulli equation (a specific
example of the Riccati equation)

f ′(x) = f 2(x) + 2Wn(x)f (x),

and reads

fn(x) = ψ−2
n (x)

C − ∫ x

x0
ψ−2

n (s)ds
,

where C, x0 are constants. It follows that ψn(x) must be inverse
square integrable; however, in general, the wave functions do
not possess this property.

There is yet another problem, namely, singularity of the
potentials V

(n)
+ (x) for n �= 0 corresponding to the zeros of

the wave functions. Consequently, the breakdown of the
degeneracy of energy levels of the Hamiltonians H̃

(n)
− and

H̃
(n)
+ occurs [in addition to H

(n)
− and H

(n)
+ ].

B. Fermionic Hamiltonian

The difficulties of establishing the degeneracy theorem
for bosonic Hamiltonians suggest to reverse the order of the
operators Bn and B

†
n and start with the fermionic Hamiltonian

H̃
(n)
+ = BnB

†
n

H̃
(n)
+ = −∂2

x + V
(n)
+ (x) + f 2(x) + 2Wn(x)f (x) + f ′(x),

where V
(n)
± (x) are defined as usual. We again obtain the

Bernoulli equation

f ′(x) + f 2(x) + 2f (x)Wn(x) = 0,
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whose general solution is

fn(x) = ψ2
n (x)

C + ∫ x

x0
ψ2

n (s)ds
, (2)

where C, x0 are constants and ψn(x) is assumed to be square-
integrable.

If it is possible to restrict the domain of the parameter C

and make fn(x) free of singularities, then the potential Ṽ
(n)
− (x)

in

H̃
(n)
− = B†

nBn = −∂2
x + Ṽ

(n)
− = −∂2

x + V
(n)
− − 2f ′

n(x),

constitute a one-parameter family of potentials isospectral to
the potential V

(n)
− (x).

To see this note that the Schrödinger equation H
(n)
− ψk =

(Ek − En)ψk implies

H̃
(n)
− [B†

nAnψk] = B†
nBnB

†
nAnψk

= B†
nAnA

†
nAnψk

= (Ek − En)[B†
nAnψk],

where we have used the nonuniqueness of factorization of
the Hamiltonian H

(n)
+ = AnA

†
n = BnB

†
n. So if ψk(x) is an

eigenfunction of the Hamiltonian H
(n)
− with energy eigenvalue

Ek − En, then B
†
nAnψk is an eigenfunction of H̃

(n)
− with

the same energy. Similarly, from the Schrödinger equation
H̃

(n)
− ψ̃

(n)
k = Ẽ

(n)
k ψ̃

(n)
k [where in Ẽ

(n)
k , k denotes the energy level

and (n) refers to the nth eigenfunction of the Hamiltonian H
(n)
− ]

it follows that

H
(n)
−

[
A†

nBnψ̃
(n)
k

] = Ẽ
(n)
k

[
A†

nBnψ̃
(n)
k

]
.

Hence, the normalized eigenfunctions of the Hamiltonians
H

(n)
− and H̃

(n)
− are related by

ψ̃
(n)
k (x) = (Ek − En)−1[B†

nAnψk(x)], (3)

and

ψk(x) = (Ek − En)−1[A†
nBnψ̃

(n)
k (x)

]
,

where k �= n. The operators An or Bn destroy a node in
the eigenfunctions, but they are followed, respectively, by
the operators B

†
n or A

†
n that create an extra node. Thus, the

overall number of the nodes does not change. In addition, the
normalization does not require positive semidefiniteness of
the energy eigenvalues, as in the standard case. This is good
because negative energy states appear when n > 0.

For any n there is always one missing state k = n, which
can be obtained by solving the first-order differential equation
Bnψ̃

(n)
n = 0 [by construction the state ψ̃ (n)

n has to be annihilated
by the operator Bn]

dψ̃ (n)
n (x)

dx
= −

[
Wn(x) + ψ2

n (x)

C + ∫ x

x0
ψ2

n (s)ds

]
ψ̃ (n)

n (x)

= d

dx

[
ln

ψn

C + ∫ x

x0
ψ2

n (s)ds

]
ψ̃ (n)

n (x).

Therefore,

ψ̃ (n)
n (x) = N (C) × ψn

C + ∫ x

x0
ψ2

n (s)ds
, (4)

with the corresponding energy Ẽ(n)
n = 0. All other energy

eigenvalues satisfy Ẽ
(n)
k = Ek − En. The normalization con-

stant N (C) depends on the parameter C and other parameters
of the potential such as width, depth, and so on. It is a constraint
that allows one to determine the values of C for which the
potentials Ṽ

(n)
− (x) are nonsingular and eigenfunctions ψ̃

(n)
k (x)

are well-defined.
One observes that the intertwining relationship between the

Hamiltonians H
(n)
− and H̃

(n)
− is of the second order

H̃
(n)
− B†

nAn = B†
nAnH

(n)
− and H

(n)
− A†

nBn = A†
nBnH̃

(n)
− .

In the second-order SUSY QM [7] two different Hamilto-
nians are intertwined by an operator of the second order in
derivatives, say, A = ∂2

x + η(x)∂x + γ (x). If A can be written
as a product of two first-order differential operators with
real superpotentials, then we call it reducible (otherwise one
refers to it as irreducible). Thus, our construction is equivalent
to the second-order SUSY QM with the reducible operator
A = −B

†
nAn. Performing an explicit factorization one finds

that −η(x) = fn(x) and −γ (x) = V
(n)
− (x) + fn(x)Wn(x). The

pros and cons of these related approaches are discussed in
detail in the concluding section.

From now on we will discuss the degeneracy of energy
levels of the Hamiltonians H

(n)
− and H̃

(n)
− only, leaving aside

the Hamiltonian H
(n)
+ which plays an intermediate role in this

construction.

III. EXAMPLES

Here we illustrate the results developed in the preceding
section by providing examples that arise from well-known
potentials and obtain some previously unreported potentials
which might be of interest in various fields of physics and
chemistry. One can also consult the Ref. [3] where factoriza-
tions of the harmonic oscillator potential were performed.

A. Morse potential

Let us first consider the Morse potential

V
(0)
− (x) = A2 − B(2A + α)e−αx + B2e−2αx, (5)

where the constants A, B, and α are nonnegative. There is
a finite number of energy levels Ek = kα(2A − kα) where k

takes integer values from zero to the greatest value for which
kα < A. For concreteness let us take A = 2 and α = B = 1.
The partner potential Ṽ (0)

− (x) is obtained from the ground-state
wave function ψ0(x) = e−2x−e−x

of the potential V
(0)
− (x) =

4 − 5e−x + e−2x

Ṽ
(0)
− (x)

= 4 − 5e−x + e−2x

−16
d

dx

[
e−4x−2e−x

C + e−2e−x (3 + 6e−x + 6e−2x + 4e−3x)

]
.
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C
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x
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0

x

FIG. 1. A few members of the one-parameter family of potentials
Ṽ

(0)
− (x) isospectral to the Morse potential V

(0)
− (x) with A = 2 and

α = B = 1 (thick solid line).

As the potential V
(0)
− (x) it has only two bound states with

eigenvalues Ẽ
(0)
0 = 0 and Ẽ

(0)
1 = 3. The normalized ground-

state wave function is

ψ̃
(0)
0 (x) =

√
8C(C+3)

3 e−2x−e−x

C + e−2e−x (3 + 6e−x + 6e−2x + 4e−3x)
.

Hence, the potential Ṽ
(0)
− (x) is nonsingular as long as C �∈

[−3,0] (see Fig. 1).
The normalized wave function ψ̃

(0)
1 (x) is determined by

applying the operator B
†
0A0 to the first (and only) normalized

excited state ψ1(x) = 2/
√

3e−x−e−x

(3 − 2e−x) of the potential
V

(0)
− (x)

ψ̃
(0)
1 (x) = 2e−e−x

(6 + 12ex + 9e2x) + Cee−x

(3e2x − 2ex)√
3(4 + 6ex + 6e2x + 3e3x + Ce2e−x+3x)

.

We would like to remind the ladder operators for the wave
functions of the Morse potential given in (5) and explicitly
derive them for the wave functions of the isospectral partner
potential. Let us denote s = A/α and y = 2B/αe−αx , which
is the common choice in the SUSY QM literature. Then for
the creation K+ and annihilation K− operators we have [8]

K+ =
[
∂y + s − n

y
− s + 1/2

2s − 2n − 1

]
,

and

K− = −
[
∂y − s − n

y
+ s + 1/2

2s − 2n + 1

]
,

(we note that K− �= K
†
+) with the following effect K+ψk(y) ∝

ψk+1(y) and K−ψk+1(y) ∝ ψk(y). The proportionality fac-
tors can be calculated after normalizing the eigenfunctions
ψk(y) = ys−ke−y/2L2s−2k

n (y), where L2s−2k
k (y) are associated

Laguerre polynomials.

Equation (3) enables us to deduce the ladder operators for
the eigenvectors ψ̃

(n)
k (y) of the potential Ṽ

(n)
− (x) whose energy

spectrum is identical to that of the Morse potential V
(n)
− (x).

The corresponding raising and lowering operators for ψ̃
(n)
k (y)

with k �= n are (B†
nAn)K+(A†

nBn) and (B†
nAn)K−(A†

nBn).
Exploration of the higher-order ladder operators is the direct
consequence of extending the first-order SUSY QM.

B. CPRS potential

In Ref. [9] Cariñena, Perelomov, Rañada, and Santander
(CPRS) have studied the following one-dimensional nonpoly-
nomial exactly solvable potential [we define our Hamiltonian
to be H

(0)
− = 2HCRPS + 3]

V
(0)
− (x) = x2 + 3 + 8

2x2 − 1

(2x2 + 1)2
.

This potential asymptotically behaves like a simple harmonic
oscillator, but its minimum at the origin is much deeper than
in the case of the harmonic oscillator. Using SUSY QM
techniques it was shown by Fellows and Smith [10] that V (0)

− (x)
is a partner potential of the harmonic oscillator x2 + 5 and
therefore their energy levels are the same. Here we further
analyze the CPRS potential and find new potentials with the
oscillator spectrum (see also Ref. [3]).

The ground-state energy E0 = 0 and wave function

ψ0(x) = e−x2/2

2x2 + 1
,

of the potential V (0)
− (x) allows one to find its isospectral partner

Ṽ
(0)
− (x)

= x2 + 3 + 8
2x2 − 1

(2x2 + 1)2

−8
d

dx

[
e−x2

2x(2x2 + 1)e−x2 + (2x2 + 1)2(C + √
πerfx)

]
,

which has no singularities when |C| >
√

π (see Fig. 2) as
follows from normalizing the ground-state wave function
ψ̃

(0)
0 (x).
Its eigenvalues are the same as that of the potential V

(0)
− (x)

and given by Ẽ
(0)
k = 2k + 4 for k = 1,2, . . .. The normalized

ground-state wave function

ψ̃
(0)
0 (x) =

√
2(C2 − π )/

√
πe−x2/2

2xex2 + (2x2 + 1)[C + √
πerf(x)]

,

corresponds to the energy eigenvalue Ẽ
(0)
0 = 0. The rest of the

eigenfunctions can be derived using Eq. (3).
Neither Cariñena et al., nor Fellows and Smith provided the

raising and lowering operators for the wave functions ψk(x) of
the CPRS potential. Here we address the question of finding
ladder operators for the CPRS potential and its isospectral
partner. Taking into account that the CPRS potential itself is a
partner of the harmonic oscillator, we obtain its raising A†a†A
and lowering A†aA operators where

A = ∂x + x + 4x

2x2 + 1
,
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FIG. 2. Plot of the potential Ṽ
(0)
− (x) with C = 1.8 (close to√

π ) and the unnormalized probability densities (dashed line at the
corresponding level position) for its three lowest-energy levels. The
limit C → ∞ corresponds to the CPRS potential (thick solid line).

is needed to move between the CPRS potential and har-
monic oscillator whose creation and annihilation operators
are a† and a, respectively. Thus, the ladder operators for
the wave functions ψ̃

(n)
k (x) of the potential Ṽ

(n)
− become

(B†
nAn)A†a†A(A†

nBn) and (B†
nAn)A†aA(A†

nBn) for k �= n.

C. Infinite square well potential

Despite its simplicity, the one-dimensional infinite square
well potential with a deformed bottom requires some new
techniques for obtaining solutions of the corresponding
Schrödinger equation and usually one is unable to solve it
exactly. In a recent article [11], the exact solution for the
problem with a sinusoidal bottom has been deduced. In this
section we explicitly find potentials with undulating bottom
and energy spectrum coinciding with that of the infinite square
well.

The wave functions and energy eigenfunctions of the
infinite square well potential V

(0)
− (x) = −π2/L2 of width L

are given by ψk(x) = sin[(k + 1)πx/L] with 0 � x � L and
Ek = k(k + 2)π2/L2. Using this time for diverseness the first
excited state wave function ψ1(x) we find a pair of partner
potentials, namely, the infinite square well potential with flat
bottom

V
(1)
− (x) = −4π2/L2,

and the infinite square well potential with nonflat bottom also
defined in the region 0 � x � L (see Fig. 3)

Ṽ
(1)
− (x) = −4π2

L2
− 16

d

dx

[
sin2 (2πx/L)

C + 4x − L/π sin (4πx/L)

]
.

C 4

C 18

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10

5

0

5

x

V
1

x
FIG. 3. Selected members of the family of one-parameter poten-

tials Ṽ
(1)
− (x). The limit C → ∞ corresponds to the infinite square

well V
(0)
− (x) = −4 of width L = π (thick solid line).

Both of the potentials have identical energy spectra Ẽ
(1)
k =

(k − 1)(k + 3)π2/L2. The normalized first excited state of the
potential Ṽ

(1)
− (x) is calculated from (4) and reads

ψ̃
(1)
1 (x) =

√
2C(C + 4L)

L

sin (2πx/L)

C + 4x − L/π sin (4πx/L)
,

provided that C �∈ [−4L,0]. The wave functions ψ̃
(1)
0 (x),

ψ̃
(1)
2 (x), . . . , can be found from (3). We only calculate the

normalized lowest-state eigenfunction

ψ̃
(1)
0 (x) = sin πx

L

[
3π (C + 4x) − 8L sin 2πx

L
+ L sin 4πx

L

]
3
√

L
2

[
L sin 4πx

L
− π (C + 4π )

] .

It corresponds to the negative energy Ẽ
(1)
0 = −3π2/L2 as

expected since the potential Ṽ
(1)
− (x) is generated by the first

excited state of the original potential. Note that the potential
Ṽ

(1)
− (x) satisfies

Ṽ
(1)
− (C,x) = Ṽ

(1)
− (C + 2L,x + L/2).

It is known [8] that the eigenvectors ψk(x) of the Hamil-
tonian H

(n)
− admit the following creation and annihilation

operators

M+ = cos

(
πx

L

)
k̂ + L

π
sin

(
πx

L

)
∂x,

and

M− =
[

cos

(
πx

L

)
k̂ − L

π
sin

(
πx

L

)
∂x

]
k̂−1(k̂ − 1),
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where one defines the “number” operator k̂ and its in-
verse k̂−1 such that k̂ψk(x) = (k + 1)ψk(x) and k̂−1ψk(x) =
(k + 1)−1ψk(x). The ladder operators M± obey

M−ψk(x) = kψk−1(x) and M+ψk(x) = (k + 1)ψk+1(x).

It is not hard to convince yourself that the raising and
lowering operators for the wave functions ψ̃

(n)
k of the partner

isospectral Hamiltonian H̃
(n)
− are given by (B†

nAn)M+(A†
nBn)

and (B†
nAn)M−(A†

nBn), respectively, for k �= n [when k = n

use Eq. (4)].

D. Two-parameter set of potentials isospectral
to the harmonic oscillator

Given an eigenfunction ψn(x) of the potential V
(0)
− (x) one

can find the wave function ψ̃
(n)
k (x) of the one-parameter

potential Ṽ (n)
− using Eq. (3). Now one can repeat this procedure

and instead of the eigenfunction ψn(x) in (2) and (3) use
ψ̃

(n)
k (x) to obtain a two-parameter potential Ṽ

(n,k)
− (x) and

its eigenfunctions. One can go on with this construction
and obtain the well-defined multiparameter potentials strictly
isospectral to the potential V

(k)
− (x).

Let us focus on the harmonic oscillator V
(0)
− (x) = x2 − 1

(with ω = 2) whose ground-state wave function is ψ0(x) =
e−x2/2. The potential Ṽ

(0)
− (x) is carefully discussed in Refs. [3,

4,12] each using different approaches, so in the following we
omit unnecessary calculations and only state its normalized
first excited state wave function

ψ̃
(0)
1 (x) =

√
2√
π

e−3x2/2[1 + 2Cxex2 + √
πxex2

erf(x)]

2C + √
πerf(x)

,

where |C| >
√

π/2 to guarantee nonsingularity of the poten-
tial Ṽ

(0)
− (x). Applying (2) to the wave function ψ̃

(0)
1 (x) we get

the two-parameter potential (see Fig. 4)

Ṽ
(0,1)
− (x) = x2 − 3 − 2

d

dx

{
e−x2

C + √
π/2erf(x)

+
(
ψ̃

(0)
1 (x)

)2

C̃ + ∫ x

x0

[
ψ̃

(0)
1 (s)

]2
ds

}
,

which is isospectral to the potential Ṽ
(0)
− (x) − 2, which is, in

turn, isospectral to the harmonic oscillator V
(1)
− (x) = x2 − 3

[i.e., its energy levels are Ẽ
(0,1)
k = 2(k − 1)].

The potential Ṽ
(0,1)
− (x) is nonsingular for any C �= 0

and |C̃ + 1/(4C)| >
√

π/4 as follows from normalizing its
ground-state wave function. This family includes the oscillator
potential x2 − 3 in the limit C,C̃ → ∞; the potential Ṽ

(0)
− (x)

arises when C̃ → ∞; and finally Ṽ
(0,1)
− (x) reduces to the

potential Ṽ
(1)
− (x) [3] in the limit C → ∞.

Let us briefly mention how to obtain its eigenfunctions.
There is an expression similar to (3) for k = 2,3, . . .

ψ̃
(0,1)
k (x) ∝ B̃

†
1Ã1ψ̃

(0)
k (x) ∝ B̃

†
1Ã1B

†
0A0ψk(x),

C 1 and C 0.3

4 2 0 2 4

4

2

0

2

4

6

x

V
0,

1
x

FIG. 4. Plot of the potentials Ṽ
(0,1)
− (x), V

(1)
− (x) = x2 − 3 and the

nonnormalized probability densities (dashed line at the corresponding
level position) for the three lowest energy levels of Ṽ

(0,1)
− (x).

where ψ̃
(0)
k (x) and ψk(x) are the eigenfunctions of the potential

Ṽ
(0)
− (x) and the harmonic oscillator accordingly. The operators

B̃
†
1, Ã1 are defined by

Ã1 = ∂x − ∂x ln ψ̃
(0)
1 (x),

and

B̃
†
1 = −∂x + ∂x ln

{
C̃ + ∫ x

x0

[
ψ̃

(0)
1 (s)

]2
ds

}
ψ̃

(0)
1 (x)

.

Lastly, the raising and lowering operators for the eigen-
vectors ψ̃

(0,1)
k (x) are given by B̃

†
1Ã1B

†
0A0A

†
0A

†
0B0Ã

†
1B̃1 and

B̃
†
1Ã1B

†
0A0A0A

†
0B0Ã

†
1B̃1 with A

†
0, A0 being the creation and

annihilation operators of the harmonic oscillator.
The two-parameter family of potentials with oscillator

spectrum was also derived by the so-called second-order
intertwining technique in Ref. [13]. The advantages of the pre-
sented technique of getting multiparameter sets of isospectral
potentials are apparent.

IV. CONCLUSION

After the discovery of supersymmetry in string theory
and then field theory, factorization was recognized as the
application of supersymmetry to quantum mechanics. The
nonuniqueness of factorization serves as an avenue for
the construction of many isospectral potentials. In this article,
we have explored the generality of this method by extending it
to the excited states of a potential. Some nonsingular isospec-
tral potentials that arise from the technique have been presented
in this article. These include one-parameter extensions of the
well-known infinite square well and Morse potentials as well
as not so familiar CPRS potential and two-parameter extension
of the harmonic oscillator. For some potentials the associated
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wave functions and probability densities have been derived
and plotted. The ladder operators were determined explicitly.
The application of this technique may be of significant interest
because it can be applied to any one-dimensional quantum
mechanical potential.

The most general approach in the second-order SUSY
QM is based on an arbitrary solution of the Schrödinger
equation for the initial potential, rather than on its ground or
excited state wave functions as discussed in the present article.
However, there are certain advantages in such a presentation.
For example, one can explicitly construct the ladder operators
for both isospectral Hamiltonians. It is also possible to avoid
some technical complexities of the most general approach by
mimicking the traditional first-order SUSY QM. For instance,

in the second-order SUSY QM none of the expressions
AA† or A†A coincide with any of the isospectral partner
Hamiltonians, but are quadratic forms in them. For comparison
in our construction, which is based on the nonuniqueness of
factorization, the appearance of the atypical Hamiltonian H

(n)
+

at the intermediate stage does not affect the isospectral partner
Hamiltonians H̃

(n)
− and H

(n)
− .
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