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Casimir pressure in a multilayer system with a fixed total length
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We consider Casimir pressure on a slab in a configuration consisting of various dielectrics with planar symmetry.
In such configurations, one usually calculates the Casimir pressure (force) on a particular slab assuming that
lengths of all other slabs remain unchanged. Alternatively, one can consider a multilayer system with a fixed total
length. With this restriction only, the length of each slab can eventually be changed under the Casimir pressure
that will try to minimize the total Casimir energy of the system. Here we calculate the Casimir pressure on the
slab in such a “constrained” configuration and compare the results with the standard approach. It turns out that,
by applying different boundary conditions, one can obtain significantly different Casimir pressures on the same
object. In particular, when the thicknesses of the slab and surrounding layers are on the nanometer scale, the
Casimir pressure on the slab can change from strongly squeezing in the case of fixed thicknesses of surrounding
slabs to strongly relaxing in the case when only the length of the total system remains fixed.
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I. INTRODUCTION

The Casimir effect was originally predicted for a system
consisting of two parallel, ideally reflecting plates separated
by a vacuum layer. Such plates attract each other due to
the vacuum fluctuations of the electromagnetic field between
them [1]. This effect can be considered within different
concepts, and probably the most common one is to determine
the difference between the ground-state energy of the field in
a given configuration and in the corresponding free space (i.e.,
the Casimir energy) and to connect the interaction between
the plates with the change of this energy. Later on, the same
idea was expanded to much more complicated systems and
also to the systems at nonzero temperatures [2]. The main
problem with such an approach is related to the fact that the
electromagnetic ground-state energy is infinite, so one has to
find a way how to appropriately regularize it. In the case of
two perfect mirrors mentioned before, this regularization was
done by Casimir [1]. Since then, a lot of different regularization
procedures were proposed resulting, in principle, in different
ground-state energies of the system [3]. In conjunction with the
Casimir energy, it becomes important to determine the Casimir
force acting on the corresponding surfaces of the system, which
obviously should not depend on the regularization procedure.
Again, this can be done using different methods, with or
without regulation [4]. The existence of the Casimir effect
is nowadays well supported by the experimental results [5,6].

The Casimir force on a slab can be simply defined as a
force that tries to change the slab thickness, thus lowering
the electromagnetic energy of the system. In the multilayer
configuration with the planar symmetry, the Casimir force
on the surfaces of the slab j is accordingly calculated as a
partial derivative of the Casimir energy with respect to the
slab thickness dj . Note that in this approach all other slab
thicknesses in the system are (implicitly) assumed fixed. This
concept has been used, for example, in several recent articles,
concerning the Casimir force on very thin layers [7–10].

It is interesting to discuss the Casimir force on slab j in a
system with the same geometry, but with different constraints
implemented on the system’s configuration. Particularly, we
here analyze a situation where only the total length of the

system (and not of particular layers) is fixed. To point out
the differences between this and the standard approach, we
take two examples: (i) A metallic slab in a (vacuum) cavity
surrounded by (perfect) mirrors. In this well-known model
the squeezing of the metallic slab as well as the squeezing
of the vacuum space between the slab and cavity walls is
energetically favorable. But if the distance between the cavity
walls is fixed, both squeezing processes are obviously not
possible, and one has to determine the resulting force that
acts on the metallic slab trying to minimize the total Casimir
energy of the system. (ii) A thin vacuum layer surrounded by
two mirrors (Casimir-like configuration). If the mirrors are not
perfect and their thicknesses are finite, we can assume that the
distance between the outer surfaces of the mirrors is fixed.
Then squeezing the vacuum layer between the mirrors means
also relaxing the thicknesses of the mirrors. This process will
obviously change the total Casimir energy and accordingly
influence the Casimir force on the mirrors, as well as the
attraction between them.

Essentially the same approach can be applied to similar
systems of different “cavity” geometries. In that sense the
fixed total length of the system means that the change of the
shape of one (metallic) layer requires the (opposite) change
of another (vacuum) layer within the system. The calculations
would be more complicated, for example, for curved slabs or
for one sphere (tube) into another, but here we are going to
use simple models to demonstrate how the fixed length of the
whole system can significantly influence the resulting Casimir
force on each system’s layer.

The article is organized as follows. In Sec. II we give a
short theoretical background with emphasis on the derivation
of the Casimir force or pressure on a particular layer with the
specific boundary conditions. All details needed for analysis
of a three-layer system are given in Sec. III. The discussion of
the simplest case of a thin metallic layer in a cavity is given in
Sec. III A, while another important case of a thin vacuum layer
surrounded by metallic layers is discussed in Sec. III B. In both
cases we analyze the Casimir pressure on the surfaces of layer
j in a model where only the total length of the system is fixed
and compare it with the corresponding results [9,10] obtained
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FIG. 1. Geometry of the model.

in a model that takes into account the possible change of only
one layer thickness dj . The conclusion is given in Sec. IV.

II. THEORETICAL BACKGROUND

Let us analyze a system consisting of parallel dielectric
plates of thicknesses dj (j = 0,1,2, . . . ,N − 1) and sur-
rounded by an (infinite) medium j = N (Fig. 1). We shall
assume that all media are described by the real dielectric
functions εj (ω). This enables us to use the standard pro-
cedure in obtaining the dispersion relations of the system’s
electromagnetic modes. In the following, we use the same
notation as in Refs. [9,10]. Particularly, we characterize an
electromagnetic mode of frequency ω by the wave vector
k parallel to the system surfaces, the perpendicular wave
vector βj in a layer j , βj (ω,k) = [εj (ω)ω2/c2 − k2]1/2, and
the polarization index q = p or q = s, denoting the p and s

polarization of the mode, respectively.
We start by calculating the Casimir energy EC of the system

using the surface mode summation method [11]. Surface
modes are defined as modes whose field vanishes in the outer
medium, and the Casimir energy is derived as the summation
only over the surface mode frequencies ω

q
n(k):

EC =
∑

k

∑
q=p,s

h̄

2

∑
n

ωq
n(k). (1)

Index n enumerates all surface modes with given (q,k).
In our system the electromagnetic field in each layer

j behaves as ∼exp(±iβj z), where z is the perpendicular
coordinate. Then, with respect to a layer j , the dispersion
relation of the surface modes can be written in the appropriate
form [10,11]

Q
q

j (ω,k) ≡ R
q

j (ω,k)e−2αj dj = 1, (2)

where αj = −iβj and R
q

j (ω,k) is the average reflectivity of the
layer boundaries which does not depend on the layer thickness
dj . Note that the factor e−2αj dj (Reαj > 0) in the dj → ∞ limit
leads to limdj →∞ Q

q

j (ω,k) = 0, which violates the dispersion
relation (2); that is, the frequencies ω

q
n(k,dj → ∞) are poles

of the term R
q

j (ω,k).

The contribution from the frequencies of all surface modes
is infinite, so one has to introduce a regularization term in
order to make the Casimir energy (1) finite. Putting all that
together, it is appropriate to choose the regularization energy
as the energy of the same system but with an infinite thickness
of the j th layer:

E
j

C =
∑

k

∑
q=p,s

h̄

2

∑
n

[
ωq

n(k) − ωq
n(k,dj → ∞)

]
. (3)

Such defined Casimir energy is finite, but also principally
different for each j = (0,1,2, . . . ,N − 1).

Since the energy difference does not depend on the
regularization factor and since this factor does not depend
on dj , we can write the infinitesimal change of the Casimir
energy EC(d0,d1,d2, . . . ,dN−1) as

dEC =
N−1∑
j=0

(
∂EC

∂dj

)
d(dj ) =

N−1∑
j=0

(
∂E

j

C

∂dj

)
d(dj ). (4)

Each partial derivative of E
j

C is finite and can be associated
with the corresponding Casimir force F

j

C .
As pointed out, we consider different forces on the plate j

with respect to various boundary conditions. In order to avoid
any possible confusion regarding the definition of the Casimir
force, we rather discuss the Casimir pressure on the slab;
that is,

P
j

C = − 1

A

∂E
j

C

∂dj

(5)

is interpreted as the Casimir pressure acting on surfaces A of
the slab j due to the change of the total Casimir energy. The
sign is chosen so that the negative or positive Casimir pressure
tries to squeeze or relax the slab, respectively.

After transforming the summation over k into the cor-
responding integration and using the argument theorem to
change the summation over n into the integration over ω [11],
the Casimir energy (3) becomes

E
j

C = h̄

2

A

4π2i

∫ ∞

0
dkk

∫ i∞

−i∞
dω

∑
q=p,s

ln
[
1 − Q

q

j (ω,k)
]
. (6)

To obtain the Casimir pressure in the Lifshitz-like form
we introduce the new variables (ξ,p) through ξ = −iω,k2 =
(ξ 2/c2)(p2 − 1) [12]. Equations (5) and (6) then give

P
j

C = − h̄

2π2c2

∫ ∞

1
dpp

∫ ∞

0
dξξ 2αj

∑
q=p,s

Q
q

j (iξ,p)

1 − Q
q

j (iξ,p)
.

(7)

In terms of integration parameters we find αj = (ξ/c)[p2 −
1 + εj (iξ )]1/2, so that the term e−2αj dj in Q

q

j ensures the
convergence when integrating along the (p,ξ ) axis. This term
also provides an obvious result for the Casimir pressure on a
very thick slab:

lim
dj →∞

P
j

C = 0. (8)

An important contribution to the Casimir pressure in many
configurations is related to surface polaritons (SP), the modes
that are evanescent in all layers. The frequencies of SP modes
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are solutions of dispersion relation (2) with all αj being real.
A dielectric multilayer can support only a finite number of
SP modes and all of them are p polarized. Accordingly, the
SP contribution to the Casimir energy, E

j

S , can be calculated
directly from Eq. (3) if we only interchange the summation
indexes: (q,n) → σ , where σ enumerates all SP modes. The
renormalized energy E

j

S is finite and in many cases it gives
a good approximation of the total Casimir energy E

j

C [9,10].
The pressure on the slab j resulting only from the SP modes
is defined as

P
j

S = − 1

A

∂E
j

S

∂dj

= − h̄

4π

∫ ∞

0
dkk

∑
σ

∂ωσ (k)

∂dj

. (9)

From now on we assume that only the total space between
the outer (j = N ) plates remains fixed; that is, L = (d0 +
d1 + d2 + · · · + dN−1) = const. (Fig. 1). In that sense the
thickness of the outer medium is taken as infinite, and P N

C = 0
[Eq. (8)]. We denote the small change (displacement) of the
layer thickness dj by δdj . Then the displacements of all layer
thicknesses are connected through δL = ∑

j δdj = 0. Let us
concentrate on the layer j = J and its displacement δdJ . We
define all other displacements δdj by

δdj = −pj δdJ , with pJ = −1,
∑
j �=J

pj = 1.

The coefficients pj follow from the requirement that the
change of the total Casimir energy δEC due do the displace-
ments δdj takes its minimum value:

1

A
δEC =

( ∑
j

pjP
j

C

)
δdJ = min. (10)

Obviously δdJ < 0 (δdJ > 0) refers to squeezing (relaxing)
of the slab J . Now we can calculate the total Casimir pressure
P T J

C on the j = J slab as

P T J
C = − 1

A

δEC

δ(dJ )
= P J

C −
∑
j �=J

pjP
j

C. (11)

The interpretation of this result is plausible: The Casimir
pressure P T J

C tries to change (diminish or enlarge) dJ , but also
other dj thicknesses, in order to minimize the electromagnetic
energy in the system which total length is fixed. It means that,
for example, the pressure P J

C < 0 could be squeezing, but if
we find

∑
j �=J pjP

j

C < P J
C , the total Casimir pressure on the

slab j = J will in fact try to relax it (P T J
C > 0).

In all the preceding considerations the Casimir energy is
calculated from the ground-state electromagnetic energy of
a given configuration. Assuming the T = 0 stationary state,
that configuration is obviously determined by the ground-state
energy of the whole system, with all interactions included,
and the Casimir energy is typically only a small part of it.
Therefore, to obtain real δdj (or pj ) values one would have to
take into account the total Hamiltonian of the system (i.e., the
corresponding stretching coefficients of the slabs). However,
in a suitably chosen setup, which we discuss in the next
sections, one can take the present results to correctly describe
the influence of the Casimir pressure on the whole system and
to draw some interesting conclusions.

III. THREE-LAYER SYSTEM

In this section we shall discuss various systems, but all of
them are described within a model of three layers (j = 0,1,2)
surrounded by an external medium N = 3 (Fig. 1). The
dispersion relation for the surface modes in such a system can
be derived in a standard way, assuming α2

3 > 0. Following
Ref. [10] we can put it in the required form (2) Q

q

1 = 1,
with

Q
q

1 = r
qd

01 r
qd

21 e−2α1d1 . (12)

The reflection coefficients r
qd

j1 are obtained from the Fresnel
reflection coefficients r

q

jl for the j − l interface

r
p

jl = εlαj − εjαl

εlαj + εjαl

, rs
j l = αj − αl

αj + αl

, (13)

with the replacement

αj → α
qd

j ≡ αj

(
1 − r

q

j3e
−2αj dj

)
(
1 + r

q

j3e
−2αj dj

) , j = (0,2).

Analogous results can be obtained for Q
q

0 and Q
q

2 .
By transforming the dispersion relation Q

q

1 = 1 (12) into
Q

q

j = 1, we find

Q
q

j = r
qd

1j r
q

3j e
−2αj dj , j = (0,2). (14)

The corresponding reflection coefficients r
qd

1j are given by
Eq. (13) with the replacement, for given (j = 0,l = 2) or
(j = 2,l = 0),

α1 → α
ql

1 ≡ α1

(
1 + r

qd

l1 e−2α1d1
)

(
1 − r

qd

l1 e−2α1d1
) .

Casimir pressures P
j

C on layers j = (0,1,2) as well as the total
Casimir pressure, for example, on the slab j = 1,

P T 1
C = P 1

C − p0P
0
C − p2P

2
C, p0 + p2 = 1, (15)

can now be calculated from Eqs. (7)–(14).
As we have pointed out, we are analyzing our system

in the stationary state at T = 0 while taking into account
only the Casimir energy. Relative displacements of the slabs
pj = −δj /δ1, j = (0,2) are therefore calculated with two im-
portant restrictions: (i) We neglect the mechanical interaction
of the two plates in contact, which can be approved only if
the stretching coefficient of one of the plates is negligible, for
example, if this is a vacuum plate. In the three-layer system this
can be achieved in some important cases, discussed in the next
sections. (ii) The Casimir ground-state energy is calculated for
a given configuration which is the result of all interactions in
the system. Therefore one can obtain for the Casimir pressures,
for example, P 0

C > 0 and P 2
C < 0, which would, if only the

Casimir energy is taken into account, move the slab j = 1 in
the 0 → 2 direction. It is not allowed in the real stationary state,
so we assume that the displacement δ1 is simply compensated
by the displacements (δ0,δ2), that is, 0 � (p0,p2) � 1.

In the specific case |ε3| � |εj | , |ε1| � |εj |, the dielectrics
j = (0,2) are surrounded by highly reflecting media, so that
the pressures P

j

C are determined by Q
q

j = e−2αj dj . In the case
εj = 1 we obtain the well-known Casimir result [1] for the
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pressure that tries to squeeze the vacuum layer j surrounded
by perfect mirrors:

P c
C = − h̄cπ2

240 d4
j

. (16)

A. Thin metallic slab in a cavity

In our article [10], we have analyzed the Casimir pressure
(force) on a d1 thick metallic slab surrounded by dielectric
slabs of finite thicknesses d0 and d2 and immersed in an
outer medium N = 3. These calculations are based on the
assumption that the thicknesses (d0,d2) are fixed; that is,
squeezing or relaxing of d1 will not affect (d0,d2). Now we
want to discuss the total Casimir pressure P T 1

C , Eq. (15), on
the metallic slab in the same configuration, but assuming that
only the total length of the system L = (d0 + d1 + d2) remains
fixed.

Let us describe the metallic slab j = 1 by the standard
dielectric function

ε1(ω) = 1 − ω2
P

ω2
, (17)

where ωP is the electron-plasma frequency, and take the
plasma wavelength λP = 2πc/ωP as the characteristic length
to scale the system. Since we are analyzing pressures on
different layers, the normalization pressure is taken as a value
that depends only on ωP : PP = −h̄ω4

P /c3. With a typical
value ωP = 10 eV we find λP = 124 nm and PP = −2.11 ×
105 N/m2.

In the following calculations the metallic plate is separated
from the outer medium by the vacuum layers (ε0 = ε2 = 1).
In order to point out the influence of the boundary con-
ditions on the Casimir pressure, we start with the Casimir
choice and describe the outer medium as perfect mirrors
(|ε3| → ∞).

Let us first analyze the central (symmetric) position of the
metallic slab (d0 = d2). Figures 2 and 3 represent the Casimir
pressure on the metallic slab P 1

C calculated assuming fixed
distances of vacuum layers (d0,d2) and pressures on vacuum
layers P 0

C = P 2
C calculated assuming fixed thickness of the

metallic slab (d1). As expected, all pressures are attractive
(squeezing), but it is interesting to notice the similarities
between the two pictures; that is, pressures on the vacuum
layers and on the metallic slab are rather close, assuming
that corresponding thicknesses coincide. Since pressure P 2

C

is much more sensitive on the variation of d2 than pressure P 1
C ,

and vice versa, there is a crossing point (P 1
C = P 2

C) that occurs
roughly at d1 ≈ d2.

Now we calculate the total Casimir pressure P T 1
C on a

metallic slab assuming that the distance between the outer
slabs L remains fixed; that is, we put a thin metallic slab
in a cavity with fixed walls. Since the pressures are the
same on both sides of the slab (P 0

C = P 2
C), we find from

Eq. (15) P T 1
C = (P 1

C − P 2
C) regardless of the specific values

of parameters (p0,p2).
From the previous considerations it follows that, if the

vacuum layers are chosen to satisfy d0 ≈ d2 ≈ d1, one can
tune these distances to obtain P 1

C ≈ P 2
C , which leads to

the negligible total Casimir pressure on the metallic slab

FIG. 2. Casimir pressures P
j

C , j = (0,1,2), (in units of PP ) as a
function of the vacuum layer thicknesses d0 = d2 (in units of λP ),
for different thicknesses of the metallic slab: d1 = 0.001 λP (dash-
dotted lines), d1 = 0.01 λP (solid lines), and d1 = 0.1 λP (dashed
line). Dotted lines: SP contribution P

j

S to the Casimir pressures for
d1 = 0.01 λP .

(P T 1
C ≈ 0). However, for d2 � d1 or d2 � d1 one finds |P 1

C | �
|P 2

C | or |P 1
C | � |P 2

C |, so one can expect squeezing (P T 1
C ≈ P 1

C)
or relaxing (P T 1

C ≈ −P 2
C) pressure on it, respectively.

Here we also want to analyze the influence of the outer
medium on the total pressure P T 1

C . Figure 4 describes situations

FIG. 3. Casimir pressures as a function of the thickness of the
metallic slab d1, for different vacuum layer thicknesses (d0 = d2):
d2 = 0.001 λP (dash-dotted lines), d2 = 0.01 λP (solid lines), and
d2 = 0.1 λP (dashed line). Dotted lines: SP contributions to the total
Casimir pressures for d2 = 0.01 λP .
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FIG. 4. Casimir pressures P 0
C , P 1

C , and P 2
C and the total Casimir

pressure P T 1
C = P 1

C − P 2
C on a thin Na slab (d1 = 0.01 λP ) as a

function of d0 = d2. The outer layers are taken to be ideal mirrors
(solid lines), Al (dashed lines), and NaCl (dash-dotted lines). The
dotted line represents the SP contribution P T 1

S = P 1
S − P 2

S to the
total Casimir pressure in the ideal mirrors case.

with the thin Na slab (ωP = 6.1 eV) in between different
outer slabs: ideal mirrors (ωP → ∞), standard metals (Al,
ωP = 15.8 eV), and polar dielectrics (NaCl, ε∞ = 2.4, ωT =
0.022 eV, ωL = 0.034 eV) [10,13]. Critical points dc

2 , denoted
by vertical lines on Fig. 4, divide regions of squeezing behavior
(P T 1

C < 0) from regions of relaxing behavior (P T 1
C > 0)

of the total Casimir pressure P T 1
C on the Na slab. Note that

(i) critical points are not particularly sensitive on properties of
the outer medium, and (ii) when the space between the slab
and the outer medium becomes very narrow (d2 < d1) there
is always a relaxing pressure on the metallic slab, due to the
strong attraction between the slab and the cavity walls.

Let us briefly comment on the contribution of SP modes to
the Casimir pressure that is shown by dotted lines in Figs. 2, 3,
and 4, for the case of ideal mirrors as the outer medium. As
expected [10], pressure P 1

C is dominantly due to SP modes
for thin metallic slabs (d1 < d2), while pressures (P 0

C,P 2
C) are

influenced by guided modes in all cases, since vacuum layers
(d0, d2) are put in between two highly reflecting plates [9].
As a consequence, the SP contribution P T 1

S to the total
Casimir pressure gives only a rough approximation of P T 1

C

(Fig. 4).
Let us now consider the asymmetric situation by taking, for

example, d0 > d2. In this case the “vacuum” Casimir pressure
P 0

C − P 2
C > 0 would try to push the slab as a whole in one

direction [14], but we have assumed that moving of the slab is
prevented by external sources. It is illustrative to calculate the
total Casimir pressure on the slab P T 1

C (15) while keeping
the same (d0 + d2) value. Figure 5 represents the Casimir
pressures on the metallic slab that changes its position from
the middle (d2 = d0) to the end (d2 = 0) of the cavity. The
parameters (p0,p2) follow from the requirement (10) and we
found a critical distance dc

2 , so that (p0 = 1,p2 = 0), that is,

FIG. 5. Casimir pressures P 0
C , P 1

C , and P 2
C (dashed lines) and the

resulting Casimir pressures P 1
C − P 0

C and P 1
C − P 2

C (dashed-dotted
lines) on a d1 = 0.01 λP thick metallic slab as a function of the
vacuum layer thickness d2. The total Casimir pressure P T 1

C (solid
line) has a discontinuity at dc

2 = 0.0103 λP . The cavity walls are
ideal mirrors, with the vacuum separations (d0 + d2) = 0.04 λP .

P T 1
C = (P 1

C − P 0
C) for d2 > dc

2 , and (p0 = 0,p2 = 1), that is,
P T 1

C = (P 1
C − P 2

C) for d2 < dc
2 . It gives a large discontinuity

of P T 1
C at d2 = dc

2 so that we have a sudden change from
squeezing (δd1 < 0) to relaxing (δd1 > 0) Casimir pressure
on a metallic slab. The discontinuity �PC = (P 2

C − P 0
C) is

obviously the result of different pressures on both sides of
the slab. To point out the continuity of the energy change
δEC/A = −P T 1

C δd1 (11) we have also plotted on Fig. 5
the curve −(P 1

C − P 2
C) that continuously keeps on the curve

(P 1
C − P 0

C) at d2 = dc
2 . Let us notice that if we have not required

δL = 0, that is, if we have taken fixed (d0,d2) values, then
P T 1

C = P 1
C would have a continuous transition from δd1 < 0

to δd1 > 0 at the very end of the cavity (dc
2 = 0.0013 λP ).

In the case of thinner metallic slabs, the “sticking” pressure
P 1

C will be larger and this will lead to the bigger discontinuity
�PC , at the critical value dc

2 closer to the cavity wall (we
expect dc

2 ≈ d1). For example, if we take the same cavity, but
with d1 = 0.005 λP , we obtain �PC = 420PP at dc

2 = 0.0052
λP . However, the thickness d1 = 0.01 λP is typically around
1 nm, so one would like to know what would be the result
if all the involved thicknesses were an order of magnitude
larger. That situation is shown in Fig. 6. Obviously, Figs. 5
and 6 are similar in shape and we have again a discontinuity
of P T 1

C at dc
2 = 0.107 λP ≈ d1, but in comparison with the

previous case all relevant Casimir pressures are approximately
2 × 103 times weaker. This is a typical behavior of the Casimir
pressure that becomes much lower when the electromagnetic
field is confined in a larger space.

The simple “scaling” of a critical distance dc
2 with the

corresponding length scale is a consequence of comparable
Casimir pressures on a metallic slab and on a vacuum layer if
their thicknesses correspond (see our discussion after Figs. 2
and 3). If we further enlarge relevant thicknesses so to approach
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FIG. 6. Casimir pressures as in Fig. 5, but for ten times larger
characteristic thicknesses [d1 = 0.1 λP , (d0 + d2) = 0.4 λP ].

the micrometer range (dj/λp > 1), we can still find critical
distances dc

2 with the appropriate setup, but the corresponding
Casimir pressures will be at least 103 weaker than those in
Fig. 6. If one wants to measure the change of the thickness
of a metallic layer due to the resulting Casimir pressure on it,
the strong Casimir pressures (i.e., as thin as possible metallic
layers) are favorable [14].

B. Vacuum layer between two metallic slabs

Two metallic slabs separated by a vacuum layer represent
a well-known Casimir-like configuration. Again, we are faced
with the three-layer geometry, but the vacuum layer (j = 1) is
now in between two metallic plates (j = 0,2), all surrounded
by the outer medium N = 3 (Fig. 1). If the plates are perfect
mirrors then their thickness is of no importance and we find
the standard Casimir pressure (16) that attracts the plates.
However, for rather thin and nonperfect mirrors, one can expect
significant deviation from the Casimir result [9].

When analyzing such a configuration one typically calcu-
lates the Casimir effect by assuming that metallic slabs interact
with each other while keeping their thicknesses unchanged.
We here analyze such a system, but we assume that only the
total length of the system L = (d0 + d1 + d2) remains fixed.
To ensure this, we put metallic slabs in an appropriate cavity
with fixed walls. Depending on the thicknesses of the slabs,
the dielectric properties of the walls (i.e., the outer medium
N = 3) will influence the Casimir pressures (P 0

C , P 1
C , and P 2

C)
and therefore the total Casimir pressure P T 1

C (15) that acts
between the slabs.

For simplicity we first assume that the cavity walls
are perfect mirrors and that the metallic slabs j = (0,2)
are equally thick and described by the same dielectric
function (17). The results for the corresponding Casimir
pressures are shown in Fig. 7. Obviously, the Casimir
pressure P 1

C on the vacuum layer is squeezing for all
(d1,d2) values and it tries to attract the metallic slabs. However,

FIG. 7. Casimir pressures P 1
C and P 0

C = P 2
C as a function of

the thickness of the metallic slabs d0 = d2, for different vacuum
layer thicknesses: d1 = 0.001 λP (dash-dotted lines), d1 = 0.002 λP

(dotted lines), d1 = 0.01 λP (solid lines), and d1 = 0.1 λP (dashed
lines). The cavity walls are ideal mirrors. Inset: P 1

C and P 2
C on larger

scale, for d1 = 0.001 λP .

the metallic slabs are surrounded by different media (ideal
mirrors and vacuum). In this asymmetric situation, the Casimir
pressures P 0

C = P 2
C on the slabs, for thicker vacuum layers

(d1 >∼ 0.01λP ), are relaxing, and the total Casimir pressure
P T 1

C = P 1
C − P 2

C is enlarged in comparison with P 1
C . For

thinner vacuum layers, P 2
C significantly depends on both

thicknesses (d1,d2), and it can also change the sign [10], so,
depending on (d1,d2), P T 1

C can be much larger or lower than
P 1

C . However, for all (d1,d2) values, P 1
C dominates over P 2

C ; that
is, the total Casimir pressure P T 1

C always attracts the metallic
slabs.

To obtain a crossing point P 1
C = P 2

C and determine the
corresponding critical distance dc

2 , we have to imply a smaller
difference between the dielectric properties of media on both
sides of the metallic plates. This situation is shown in Fig. 8
where we have taken the same configuration depicted in
Fig. 7, but the outer medium that surrounds the metallic
(Na) slabs is replaced with the polar dielectric (NaCl). The
new setup significantly changes the corresponding Casimir
pressures, particularly (P 0

C,P 2
C): like the “vacuum pressure”

P 1
C , the pressures on the metallic slabs P 0

C = P 2
C are now

always squeezing. As a result, we find critical distances dc
2

in all cases, which divides “thin slabs” (d2 < dc
2) with the

relaxing total Casimir pressure (|P 1
C | < |P 2

C |) from “thick
slabs” (d2 > dc

2) with the squeezing total Casimir pressure
(|P 1

C | > |P 2
C |). The dc

2 value for d1 = 0.1 λP cannot be re-
solved in Fig. 8, but we found dc

2 = 0.084 λP , with P 1
C = P 2

C =
0.027 PP .

In order to analyze in more detail the influence of the outer
medium on the appearance of critical values, we have analyzed
the Casimir pressures on Na slabs with different outer media:
Al (ωP = 15.8 eV), Na (ωP = 6.1 eV), Cs (ωP = 3.3 eV),
and NaCl (ωP =

√
ω2

L − ω2
T =0.026 eV). The results are shown
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FIG. 8. The same parameters as in Fig. 7, but with Na slabs
within the NaCl cavity walls. Inset: P 1

C and P 2
C on a smaller scale, for

d1 = 0.01 λP .

in Fig. 9. The Na curves obviously do not depend on d2,
and P 2

C = 0, since our system in that case consists of a thin
vacuum layer in between two semi-infinite Na slabs. If Al is the
outer medium, we find ωAl

P � ωNa
P , so the curves (P 1

C,P 2
C) are

similar to the corresponding curves in Fig. 7 (with ωP → ∞),
and there is no crossing point P 1

C = P 2
C . But if Cs or NaCl

is the outer medium, their ωP values are lower than ωNa
P , and

the situation resembles the situation depicted in Fig. 8, with
clearly defined critical values dc

2 . Note that the critical values
are not very sensitive to the properties of the outer medium

FIG. 9. Casimir pressures P 0
C , P 1

C , and P 2
C and the total Casimir

pressure P T 1
C = P 1

C − P 2
C acting on a thin (d1 = 0.01 λP ) vacuum

layer in between the Na slabs, as a function of the slab thicknesses
d0 = d2. The outer layers are taken to be Al (dashed lines), Cs (dotted
lines), NaCl (dash-dotted lines), and Na (solid lines).

FIG. 10. Casimir pressures P 0
C , P 1

C , and P 2
C (dashed lines) and

the total Casimir pressure P T 1
C (solid lines) acting on the thin vacuum

layer (d1 = 0.01 λP ) in between the Al (j = 0) and Cs (j = 2) slabs,
as a function of the slab thicknesses d0 = d2. The outer medium is Na.

and can be roughly approximated by dc
2 ≈ d1, just as in the

complementary case discussed in the previous section.
If we want to obtain the discontinuity in the Casimir

pressure, such as depicted in Fig. 5, we have to allow
different pressures on each side of the vacuum layer. This
can be achieved in various ways, but using the results of
a previous discussion, we assume a configuration with two
different metallic slabs (Al and Cs) of the same thicknesses
and surrounded by the third metal (Na). This configuration
satisfies ωAl

P > ωNa
P > ωCs

P , which should lead to significantly
different pressures P 0

C and P 2
C . The results are shown in Fig. 10.

Based on the previous considerations, all the curves can
be easily understood. The pressure P 1

C is mainly determined
by the thin vacuum layer (d1) and is squeezing at all d0 = d2

distances. The pressures (P 0
C,P 2

C) are negligible in comparison
with P 1

C at thick Al and Cs slabs (d2 � d1), while in the case of
thin slabs (d2 <∼ d1) the pressures P 0

C and P 2
C on the Al and Cs

slabs become strongly squeezing and relaxing, respectively. As
a consequence, in the case of thick (Al, Cs) slabs the resulting
Casimir pressure P T 1

C = P 1
C − P 2

C ≈ P 1
C tries to attract them

so that the squeezing of the vacuum layer is supported by
the relaxation of the Cs layer (δ1 = −δ2 < 0). But below the
critical value dc

2 = 0.0096 λP ≈ d1, there is a sudden change in
the resulting Casimir pressure; that is, at d2 < dc

2 the pressure
P T 1

C = P 1
C − P 0

C ≈ −P 0
C tries to repel the Cs and Al slabs. In

that case the pressure P 0
C dominates over (P 1

C,P 2
C) so that the

vacuum layer will be relaxed in order to compensate for the
squeezing of the Al slab (δ1 = −δ0 > 0).

IV. CONCLUSION

In this article we have discussed the influence of the
Casimir effect in the multilayer system. The motivation was
to take into account some specific boundary conditions, that
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is, to analyze the Casimir pressure on layers in a cavity with
a fixed length. In that case, for example, the squeezing of
one plate obviously requires the relaxation of the others. All
the results are compared with the standard approach, without
such a constraint. Although the behavior of the Casimir
energy or pressure is hard to predict in nontrivial systems,
we have derived some general conclusions in two important
configurations.

First, we have discussed the Casimir pressure on a d1

thick metallic slab separated by vacuum layers (d0,d2) from
the cavity walls. At large separations [(d0,d2) � d1], the
outer boundaries are not important and the resulting Casimir
pressure on the slab is squeezing. For thinner vacuum layers
[(d0,d2) <∼ d1], however, the total Casimir pressure on the slab
is very sensitive to the imposed constraints, and it can be
either squeezing or relaxing. For example, in the symmetric
configuration (ε0 = ε2,d0 = d2) the Casimir pressure on the
slab is always squeezing if we assume that only the slab
thickness (and not the vacuum layers) can be changed [10].
However, if the distance between the cavity walls remains fixed
so that the vacuum layers have to compensate for the change of
the slab thickness, we have found a critical thickness d2 = dc

2
where the total Casimir pressure on the slab vanishes, and
below which (d2 < dc

2) the resulting Casimir pressure on the
slab becomes relaxing. The situation is more complicated in
the asymmetric case, where (depending on configuration) one
can obtain for both types of implemented boundary conditions
either squeezing or relaxing Casimir pressure on the slab [10].
However, there is a significant difference between the dc

2
values at which it happens in those two cases, as well as the
difference in the behavior of the total Casimir pressure at dc

2 :
The transition from squeezing to relaxing pressure on the slab
is continuous and occurs near a cavity wall, if only the slab
thickness can be changed, and it is discontinuous and occurs
at dc

2 ≈ d1, if the total length of the system remains fixed. We
can conclude that only in the case of a free-standing slab is
the result simple: the Casimir pressure is always squeezing.
But if we put the slab in a cavity, the situation becomes rather
complicated when the slab thickness and its separation from
the cavity walls become comparable. As it turns out, answering
the question: What kind is the resulting Casimir pressure on
a slab in a cavity? is a very demanding task, and it strongly
depends on the imposed constraints.

As a second example, we have analyzed a thin vacuum layer
between two (different) metallic slabs adjacent to the cavity
walls. In this Casimir-like system, we can again draw some
general conclusions regarding the specific boundary condi-
tions. Assuming that the thicknesses of the metallic slabs are

fixed, the “vacuum” Casimir pressure that acts in between the
slabs is always squeezing. The situation is more complicated if
we assume that the cavity length is fixed. If the outer medium
has higher reflectivity (i.e, higher ωP value) than the metallic
slab in the cavity, the Casimir pressure on this slab will be
relaxing, which will enhance an attraction between the slabs.
In the opposite case, that is, when the metallic slab has a higher
ωP value than the surrounding media, the Casimir pressure on
this slab will be squeezing. In this case, the total Casimir
pressure on the vacuum layer can be either squeezing or
relaxing. We have found well-defined critical slab thicknesses
that divide those two opposite behaviors, and, knowing the
properties of the slabs and the outer medium, we can predict
whether this transition will be continuous or discontinuous.

To detect squeezing or relaxing of a metallic layer due to the
Casimir force one typically requires strong Casimir pressures
on that layer [14], so we have normalized the Casimir pressure
on PP that does not contain the thickness of the slab rather
than on the standard Casimir result P c

C that becomes weak at
larger thicknesses. We find PP /P c

C = 3.8 × 104(dj/λP )4, that
is, PP /P c

C � 1 for dj > 0.1 λP . Strong Casimir pressures can
be achieved at thin metallic layers, possibly in the nanometer
range. At this range the simple macroscopic theory adopted in
this article becomes questionable, but if the thin film remains
well defined [10], it should give a main contribution to the
Casimir pressure.

From the experimental point of view, one can possibly use
a similar setup discussed in Ref. [15]. In that case one would
have to fix the total length of the system, for example, by using
the thick outer (Si) slabs, and measure the thicknesses of both
the vacuum gap and the metallic (Cr) layers. Alternatively one
can add a thin metallic layer in the vacuum gap and measure
its thickness regarding the position in the gap. Note that the
experiment [15] is realized with thicknesses in the micrometer
range, while our results are typically shown on the nanometer
length scale. But as explicitly shown in Fig. 6, the predictions
on the behavior of the Casimir pressure remain the same if
the relevant distance scale is enlarged. In particular, in both
given examples, the critical thicknesses of the slabs at which
the total Casimir pressure changes its sign are derived if all
three involved layers have roughly the same thicknesses (d0 ≈
d1 ≈ d2). And in both cases it holds regardless of the chosen
materials of the slabs and regardless of how thick they are.
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